Volume 10 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Jing Shen, Meiyun Zhang. Disassembly, refinement, and reassembly: From ancient papermaking to modern materials processing[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 7-13. doi: 10.1016/j.jobab.2024.11.002
Citation: Jing Shen, Meiyun Zhang. Disassembly, refinement, and reassembly: From ancient papermaking to modern materials processing[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 7-13. doi: 10.1016/j.jobab.2024.11.002

Disassembly, refinement, and reassembly: From ancient papermaking to modern materials processing

doi: 10.1016/j.jobab.2024.11.002
More Information
  • Papermaking, a cornerstone of human civilization and one of China's Four Great Inventions, exemplifies the enduring legacy of ancient ingenuity in shaping modern materials science. Originating from the groundbreaking work of Lun Cai and his team, the papermaking process involves the meticulous disassembly, refinement, and reassembly of natural fibers into cohesive sheets: a process that, while refined, has remained fundamentally unchanged for nearly 2 000 years. This work explores the pivotal role of papermaking in contemporary society within the broader context of materials science, highlighting its fundamental principles and the remarkable versatility of its scalable process. Papermaking, once central to the dissemination of knowledge worldwide, has now evolved into a key player in the sustainable production of environmentally friendly products, touching every aspect of modern life. The principles underlying papermaking have inspired the development of novel materials, with techniques such as vacuum filtration paving the way for innovations like nanopapers based on a diverse group of building blcoks. Looking ahead, the field presents significant opportunities in sustainable sourcing, the creation of eco-friendly packaging, and the development of advanced materials with applications in healthcare and beyond. The enduring relevance of papermaking lies in its adaptability, versatility, and boundless potential for future innovation.

     

  • The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Declaration of competing interest
  • loading
  • Aryal, P., Hefner, C., Martinez, B., Henry, C.S., 2024. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. Lab Chip 24, 1175–1206. doi: 10.1039/d3lc00871a
    Bhaw-Luximon, A., Jhurry, D., 2021. From land and marine resources to advanced nanobiomaterials: real potential for the bioeconomy. Acc. Mater. Res. 2, 134–137. doi: 10.1021/accountsmr.1c00003
    Bian, P., Dai, Y., Qian, X., Chen, W., Yu, H., Li, J., Shen, J., 2014. A process of converting cellulosic fibers to a superhydrophobic fiber product by internal and surface applications of calcium carbonate in combination with bio-wax post-treatment. RSC Adv. 4, 52680–52685. doi: 10.1039/C4RA08437C
    Blechschmidt, J., Heinemann, S., 2006. A Short History of Mechanical Pulping. In: Handbook of Pulp, pp. 1073–1074. doi: 10.1002/9783527619887.ch13Availableat:.
    Burger, P., 2007. Charles Fenerty and his Paper Invention. Library and Archives Canada, Toronto.
    Chen, H., Zhang, X. -L., Zhang, Y. -Y., Wang, D. ., Bao, D. -L., Que, Y. ., Xiao, W. ., Du, S. ., Ouyang, M., Pantelides, S.T., Gao, H. -J., 2019. Atomically precise, custom-design origami graphene nanostructures. Science 365, 1036–1040. doi: 10.1126/science.aax7864
    Clapperton, R.H., 2014. The paper-making machine: its invention, evolution, and development. Available at: https://doi.org/10.1016/C2013-0-10000-1.
    Delaney, J.L., Hogan, C.F., Tian, J., Shen, W., 2011. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal. Chem. 83, 1300–1306. doi: 10.1021/ac102392t
    Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S., 2007. Preparation and characterization of graphene oxide paper. Nature 448, 457–460. doi: 10.1038/nature06016
    Fan, J., Li, T., Ren, Y., Qian, X., Wang, Q., Shen, J., Ni, Y., 2017. Interaction between two oppositely charged starches in an aqueous medium containing suspended mineral particles as a basis for the generation of cellulose-compatible composites. Ind. Crops Prod. 97, 417–424. doi: 10.1016/j.indcrop.2016.12.048
    He, B., Zhang, M., Chen, G., 2019. Papermaking Principle and Engineering. Light Industry Press, Beijing.
    [12]
    Hills, R.L., 2016. Papermaking in Britain 1488–1988: A Short History. Bloomsbury Academic, London.
    Huang, H. ., Park, H., Huang, J., 2022. Self-crosslinking of graphene oxide sheets by dehydration. Chem 8, 2432–2441. doi: 10.1016/j.chempr.2022.05.016
    Huang, S., Zhang, S. X. -A., Qian, X., Ni, Y., He, Z., Sheng, L., Shen, J., 2024. Rice-leaf-mimetic cellulosic paper as a substrate for rewritable devices and biolubricant-infused "slippery" surfaces. Chem. Eng. J. 486, 150073. doi: 10.1016/j.cej.2024.150073
    Huang, X., Qian, X., Li, J., Lou, S., Shen, J., 2015. Starch/rosin complexes for improving the interaction of mineral filler particles with cellulosic fibers. Carbohydr. Polym. 117, 78–82. doi: 10.1016/j.carbpol.2014.09.047
    Huang, X., Shen, J., Qian, X., 2013. Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions. Carbohydr. Polym. 98, 931–935. doi: 10.1016/j.carbpol.2013.07.024
    Huang, X., Sun, Z., Qian, X., Li, J., Shen, J., 2014. Starch/sodium oleate/calcium chloride modified filler for papermaking: impact of filler modification process conditions and retention systems As evaluated by filler bondability factor in combination with other parameters. Ind. Eng. Chem. Res. 53, 6426–6432. doi: 10.1021/ie500770r
    Joshi, R.K., Carbone, P., Wang, F.C., Kravets, V.G., Su, Y., Grigorieva, I.V., Wu, H.A., Geim, A.K., Nair, R.R., 2014. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754. doi: 10.1126/science.1245711
    Khairallah, S.A., Martin, A.A., Lee, J.R.I., Guss, G., Calta, N.P., Hammons, J.A., Nielsen, M.H., Chaput, K., Schwalbach, E., Shah, M.N., Chapman, M.G., Willey, T.M., Rubenchik, A.M., Anderson, A.T., Wang, Y.M., Matthews, M.J., King, W.E., 2020. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science 368, 660–665. doi: 10.1126/science.aay7830
    Kiiskinen, H., Salminen, K., Lappalainen, T., Asikainen, J., Keranen, J., Hellen, E., 2019. Progress in foam forming technology. TAPPI J. 18, 499–510. doi: 10.32964/tj18.8.499
    Li, L. ., Qian, X., Shen, J., 2022. Flame-retardant, antibacterial, liquid-barrier, and wet-strength paper enabled by cellulosic fiber-derived additives. Carbohydr. Polym. 293, 119728. doi: 10.1016/j.carbpol.2022.119728
    Li, T., Fan, J., Chen, W. ., Shu, J., Qian, X., Wei, H., Wang, Q., Shen, J., 2016. Coaggregation of mineral filler particles and starch granules as a basis for improving filler-fiber interaction in paper production. Carbohydr. Polym. 149, 20–27. doi: 10.1016/j.carbpol.2016.04.082
    Li, X., Ballerini, D.R., Shen, W., 2012. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6, 11301–1130113. doi: 10.1063/1.3687398
    Liu, R., 1978. History of Chinese Ancient Papermaking. Light Industry Press, Beijing.
    Mao, L., Park, H., Soler-Crespo, R.A., Espinosa, H.D., Han, T.H., Nguyen, S.T., Huang, J.X., 2019. Stiffening of graphene oxide films by soft porous sheets. Nat. Commun. 10, 3677. doi: 10.1038/s41467-019-11609-8
    Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E., 2010. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82, 3–10. doi: 10.1021/ac9013989
    Shen, J., Fatehi, P., 2013. A review on the use of lignocellulose-derived chemicals in wet-end application of papermaking. Curr. Org. Chem. 17, 1647–1654. doi: 10.2174/13852728113179990075
    Shen, J., Fatehi, P., Ni, Y., 2014. Biopolymers for surface engineering of paper-based products. Cellulose 21, 3145–3160. doi: 10.1007/s10570-014-0380-6
    Shen, J., Fatehi, P., Soleimani, P., Ni, Y., 2011a. Recovery of lignocelluloses from pre-hydrolysis liquor in the lime kiln of kraft-based dissolving pulp production process by adsorption to lime mud. Bioresour. Technol. 102, 10035–10039. doi: 10.1016/j.biortech.2011.08.058
    Shen, J., Fatehi, P., Soleimani, P., Ni, Y., 2012. Lime treatment of prehydrolysis liquor from the kraft-based dissolving pulp production process. Ind. Eng. Chem. Res. 51, 662–667. doi: 10.1021/ie2019195
    Shen, J., Hubbe, M.A., 2023. Why paper technologists use the terms "wet end" and "wet end chemistry. BioResources 19, 19–22. doi: 10.15376/biores.19.1.19-22
    Shen, J., Kaur, I., Baktash, M.M., He, Z., Ni, Y., 2013. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process. Bioresour. Technol. 127, 59–65. doi: 10.1016/j.biortech.2012.10.031
    Shen, J., Liu, W., Li, C., 2005. Effect of cationic water-soluble polymers on rosin emulsification. China Pulp Paper 24, 22–25.
    Shen, J., Song, Z., Qian, X., 2009a. Investigations on the preparation of starch/sodium oleate/alum modified precipitated calcium carbonate filler and its use in papermaking. Appita 62, 360.
    Shen, J., Song, Z., Qian, X., Liu, W., 2009b. A preliminary investigation into the use of acid-tolerant precipitated calcium carbonate fillers in papermaking of deinked pulp derived from recycled newspaper. BioResources 4, 1178–1189. doi: 10.15376/biores.4.3.1178-1189
    Shen, J., Song, Z., Qian, X., Liu, W., 2009c. Modification of papermaking grade fillers: a brief review. BioResources 4, 1190–1209. doi: 10.15376/biores.4.3.1190-1209
    Shen, J., Song, Z., Qian, X., Liu, W., 2009d. Modification of precipitated calcium carbonate filler using sodium silicate/zinc chloride based modifiers to improve acid-resistance and use of the modified filler in papermaking. BioResources 4, 1498–1519. doi: 10.15376/biores.4.4.1498-1519
    Shen, J., Song, Z., Qian, X., Ni, Y., 2011. A review on use of fillers in cellulosic paper for functional applications. Ind. Eng. Chem. Res. 50, 661–666. doi: 10.1021/ie1021078
    Shen, J., Song, Z., Qian, X., Ni, Y., 2011c. Carbohydrate-based fillers and pigments for papermaking: a review. Carbohydr. Polym. 85, 17–22. doi: 10.1016/j.carbpol.2011.02.026
    Shen, J., Song, Z., Qian, X., Yang, F., 2010. Carboxymethyl cellulose/alum modified precipitated calcium carbonate fillers: preparation and their use in papermaking. Carbohydr. Polym. 81, 545–553. doi: 10.1016/j.carbpol.2010.03.012
    [41]
    Smook, G., 2016. Handbook for Pulp & Paper Technologists. Tappi Press, Atlanta.
    Tejado, A., van de Ven, T.G.M., 2010. Why does paper get stronger as it dries? Mater. Today 13, 42–49.
    Villalobos, L.F., Babu, D.J., Hsu, K.J., Van Goethem, C., Agrawal, K.V., 2022. Gas separation membranes with atom-thick nanopores: the potential of nanoporous single-layer graphene. Acc. Mater. Res. 3, 1073–1087. doi: 10.1021/accountsmr.2c00143
    Wan, J., Qian, X., Zhang, M., Song, S., Shen, J., 2020a. Edible additives & cellulosic paper. BioResources 15, 2114–2116. doi: 10.15376/biores.15.2.2114-2116
    Wan, J., Wang, P., Qian, X., Zhang, M., Song, S., Wang, M., Guo, Q., Shen, J., 2020b. Bioinspired paper-based nanocomposites enabled by biowax–mineral hybrids and proteins. ACS Sustain. Chem. Eng. 8, 9906–9919. doi: 10.1021/acssuschemeng.0c03187
    Wang, P., Qian, X., Shen, J., 2017a. Superhydrophobic coatings with edible biowaxes for reducing or eliminating liquid residues of foods and drinks in containers. BioResources 13, 1–2. doi: 10.15376/biores.13.1.1-2
    Wang, Y., Huo, H., Qian, X., Shen, J., 2020. Colloids, nanostructures, and supramolecular assemblies for papermaking. BioResources 15, 4646–4649. doi: 10.15376/biores.15.3.4646-4649
    Wang, Z., Sahadevan, R., Yeh, C.N., Menkhaus, T.J., Huang, J.X., Fong, H., 2017b. Hot-pressed polymer nanofiber supported graphene membrane for high-performance nanofiltration. Nanotechnology 28, 31LT02. doi: 10.1088/1361-6528/aa7ba9
    Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., Rinzler, A.G., 2004. Transparent, conductive carbon nanotube films. Science 305, 1273–1276. doi: 10.1126/science.1101243
    Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C.Y., Chee, K.J., Lee, P.S., 2014. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26, 2022–2027. doi: 10.1002/adma.201304742
    Yang, B., Wang, L., Zhang, M., Luo, J., Lu, Z., Ding, X., 2020. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 30, 2000186. doi: 10.1002/adfm.202000186
    Yeh, C. -N., Raidongia, K., Shao, J., Yang, Q. -H., Huang, J., 2014. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170.
    Yu, X., Bian, P., Xue, Y., Qian, X., Yu, H., Chen, W., Hu, X., Wang, P., Wu, D., Duan, Q., Li, L., Shen, J., Ni, Y., 2017. Combination of microsized mineral particles and rosin as a basis for converting cellulosic fibers into "sticky" superhydrophobic paper. Carbohydr. Polym. 174, 95–102. doi: 10.1016/j.carbpol.2017.06.038
    Yuan, Z., Cheng, N., Li, J., Yuan, H., Peng, J., Qian, X., Ni, Y., He, Z., Shen, J., 2024. Bridging papermaking and hydrogel production: nanoparticle-loaded cellulosic hollow fibers with pitted walls as skeleton materials for multifunctional electromagnetic hydrogels. Int. J. Biol. Macromol. 274, 133280. doi: 10.1016/j.ijbiomac.2024.133280
    Yuan, Z., Lin, H., Qian, X., Shen, J., 2019. Converting a dilute slurry of hollow tube-like papermaking fibers into dynamic hydrogels. J. Bioresour. Bioprod. 4, 214–221.
    Zhai, R., Cu, R., Qian, X., Shen, J., 2023. Separators for lithium ion batteries: a composite network of cellulosic fibers and zirconia fibers enhanced with fiber derived additives. China Pulp Paper 42, 1–10.
    Zhu, H., Li, Y., Fang, Z., Xu, J., Cao, F., Wan, J., Preston, C., Yang, B., Hu, L., 2014. Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8, 3606–3613. doi: 10.1021/nn500134m
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (111) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return