Citation: | Meiyan Wu, Lei Ding, Xiaoying Bai, Yuxiang Cao, Mehdi Rahmaninia, Bing Li, Bin Li. Cellulose-based suture: State of art, challenge, and future outlook[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 295-309. doi: 10.1016/j.jobab.2024.11.006 |
Al-Attar, N., de Jonge, E., Kocharian, R., Ilie, B., Barnett, E., Berrevoet, F., 2023. Safety and hemostatic effectiveness of SURGICEL® powder in mild and moderate intraoperative bleeding. Clin. Appl. Thromb. Hemost. 29, 1–10.
|
Azimi, B., Maleki, H., Gigante, V., Bagherzadeh, R., Mezzetta, A., Milazzo, M., Guazzelli, L., Cinelli, P., Lazzeri, A., Danti, S., 2022. Cellulose-based fiber spinning processes using ionic liquids. Cellulose 29, 3079–3129. doi: 10.1007/s10570-022-04473-1
|
Barud, H.S., Barrios, C., Regiani, T., Marques, R.F.C., Verelst, M., Dexpert-Ghys, J., Messaddeq, Y., Ribeiro, S.J.L., 2008. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater. Sci. Eng. C 28, 515–518.
|
Byrne, M., Aly, A., 2019. The surgical suture. Aesthet. Surg. J. 39 (S2), S67–S72. doi: 10.1093/asj/sjz036
|
Cai, Y.H., Geng, L.H., Chen, S., Shi, S., Hsiao, B.S., Peng, X.F., 2020. Hierarchical assembly of nanocellulose into filaments by flow-assisted alignment and interfacial complexation: conquering the conflicts between strength and toughness. ACS Appl. Mater. Interfaces 12, 32090–32098. doi: 10.1021/acsami.0c04504
|
Castelli, W.A., Nasjleti, C.E., Caffesse, R.E., Diaz-Perez, R., 1978. Gingival response to silk, cotton, and nylon suture materials. Oral Surg. Oral Med. Oral Pathol. 45, 179–185.
|
Chen, Y.G., Li, C.X., Zhang, Y., Qi, Y.D., Liu, X.H., Feng, J., Zhang, X.Z., 2022. Hybrid suture coating for dual-staged control over antibacterial actions to match well wound healing progression. Mater. Horiz. 9, 2824–2834. doi: 10.1039/d2mh00591c
|
Chu, C.C., 2013. Types and Properties of Surgical sutures. Biotextiles as Medical Implants. Elsevier, Amsterdam, pp. 231–273.
|
Dimitrijevich, S.D., Tatarko, M., Gracy, R.W., Linsky, C.B., Olsen, C., 1990. Biodegradation of oxidized regenerated cellulose. Carbohydr. Res. 195, 247–256.
|
Dufresne, A., Cavaillé, J.Y., Vignon, M.R., 1997. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J. Appl. Polym. Sci. 64, 1185–1194.
|
Edlich, R.F., Gubler, K., Wallis, A.G., Clark, J.J., Dahlstrom, J.J., Long 3rd, W.B., 2010. Wound closure sutures and needles: a new perspective. J. Environ. Pathol. Toxicol. Oncol. 29, 339–361.
|
Edlich, R.F., Rodeheaver, G.T., Thacker, J.G., 1987. Considerations in the choice of sutures for wound closure of the genitourinary tract. J. Urol. 137, 373–379. doi: 10.1016/s0022-5347(17)44038-9
|
Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M., Garnier, C., 2023. A comprehensive review of natural fibers and their composites: an eco-friendly alternative to conventional materials. Results Eng. 19, 101271.
|
Frank, B.P., Smith, C., Caudill, E.R., Lankone, R.S., Carlin, K., Benware, S., Pedersen, J.A., Fairbrother, D.H., 2021. Biodegradation of functionalized nanocellulose. Environ. Sci. Technol. 55, 10744–10757. doi: 10.1021/acs.est.0c07253
|
Geng, L.H., Chen, B.Y., Peng, X.F., Kuang, T.R., 2017. Strength and modulus improvement of wet-spun cellulose I filaments by sequential physical and chemical cross-linking. Mater. Des. 136, 45–53.
|
Goel, A., 2016. Surgical sutures: a review. Delhi J. Ophthalmol. 26, 159–162. doi: 10.7869/djo.161
|
Grande, R., Trovatti, E., Carvalho, A.J.F., Gandini, A., 2017. Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. J. Mater. Chem. A 5, 13098–13103.
|
Guambo, M.P.R., Spencer, L., Vispo, N.S., Vizuete, K., Debut, A., Whitehead, D.C., Santos-Oliveira, R., Alexis, F., 2020. Natural cellulose fibers for surgical suture applications. Polymers 12, 3042. doi: 10.3390/polym12123042
|
Guan, Q.F., Han, Z.M., Zhu, Y.B., Xu, W.L., Yang, H.B., Ling, Z.C., Yan, B.B., Yang, K.P., Yin, C.H., Wu, H.G., Yu, S.H., 2021. Bio-inspired Lotus-fiber-like spiral hydrogel bacterial cellulose fibers. Nano Lett. 21, 952–958. doi: 10.1021/acs.nanolett.0c03707
|
Guo, S.C., Li, X., Zhao, R.M., Gong, Y., 2021. Comparison of life cycle assessment between lyocell fiber and viscose fiber in China. Int. J. Life Cycle Assess. 26, 1545–1555. doi: 10.1007/s11367-021-01916-y
|
Håkansson, K.M.O., Fall, A.B., Lundell, F., Yu, S., Krywka, C., Roth, S.V., Santoro, G., Kvick, M., Prahl Wittberg, L., Wågberg, L., Söderberg, L.D., 2014. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5, 4018.
|
Hu, Y., Catchmark, J.M., 2011. In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater. 7, 2835–2845.
|
Hutchinson, R.W., George, K., Johns, D., Craven, L., Zhang, G., Shnoda, P., 2013. Hemostatic efficacy and tissue reaction of oxidized regenerated cellulose hemostats. Cellulose 20, 537–545. doi: 10.1007/s10570-012-9828-8
|
Imura, Y., Hogan, R.M.C., Jaffe, M., 2014. Dry spinning of synthetic polymer fibers. In: Advances in Filament Yarn Spinning of Textiles and Polymers. Elsevier,
Amsterdam, pp. 187–202.
|
Iwamoto, S., Isogai, A., Iwata, T., 2011. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12, 831–836. doi: 10.1021/bm101510r
|
Jiang, X.Y., Bai, Y.Y., Chen, X.F., Liu, W., 2020. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod. 5, 16–25. doi: 10.1016/j.jobab.2020.03.002
|
Kalita, H., Hazarika, A., Kandimalla, R., Kalita, S., Devi, R., 2018. Development of banana (Musa balbisiana) pseudo stem fiber as a surgical bio-tool to avert post-operative wound infections. RSC Adv, 8, pp. 36791–36801.
|
Kandimalla, R., Kalita, S., Choudhury, B., Devi, D., Kalita, D., Kalita, K., Dash, S., Kotoky, J., 2016. Fiber from ramie plant (Boehmeria nivea): a novel suture biomaterial. Mater. Sci. Eng. C Mater. Biol. Appl. 62, 816–822.
|
Kontturi, E., Laaksonen, P., Linder, M.B., Nonappa, Gröschel, A.H., Rojas, O.J., Ikkala, O., 2018. Advanced materials through assembly of nanocelluloses. Adv. Mater. 30, e1703779.
|
Lee, W.J., Clancy, A.J., Kontturi, E., Bismarck, A., Shaffer, M.S.P., 2016. Strong and stiff: high-performance cellulose nanocrystal/poly(vinyl alcohol) composite fibers. ACS Appl. Mater. Interfaces 8, 31500–31504. doi: 10.1021/acsami.6b11578
|
Lekic, N., Dodds, S.D., 2022. Suture materials, needles, and methods of skin closure: what every hand surgeon should know. J. Hand Surg. Am 47, 160–171.
|
Li, H.B., Cheng, F., Chávez-Madero, C., Choi, J., Wei, X.J., Yi, X.T., Zheng, T., He, J.M., 2019. Manufacturing and physical characterization of absorbable oxidized regenerated cellulose braided surgical sutures. Int. J. Biol. Macromol. 134, 56–62. doi: 10.1117/12.2528644
|
Li, H.C., Sun, X.M., Huang, Y.R., Peng, Y.H., Liu, J., Ren, L., 2022. Synthetic crosslinker based on amino–yne click to enhance the suture tension of collagen-based corneal repair materials. ACS Appl. Polym. Mater. 4, 4495–4507. doi: 10.1021/acsapm.2c00472
|
Li, J., Wan, Y.Z., Li, L.F., Liang, H., Wang, J.H., 2009. Preparation and characterization of 2, 3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng. C 29, 1635–1642.
|
Li, T., Chen, C.J., Brozena, A.H., Zhu, J.Y., Xu, L.X., Driemeier, C., Dai, J.Q., Rojas, O.J., Isogai, A., Wågberg, L., Hu, L.B., 2021. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56. doi: 10.1038/s41586-020-03167-7
|
Li, T.C., Cooke, I.D., 1994. The value of an absorbable adhesion barrier, Interceed, in the prevention of adhesion reformation following microsurgical adhesiolysis. Br. J. Obstet. Gynaecol. 101, 335–339. doi: 10.1111/j.1471-0528.1994.tb13621.x
|
Li, Y.R., Meng, Q., Chen, S.J., Ling, P.X., Kuss, M.A., Duan, B., Wu, S.H., 2023. Advances, challenges, and prospects for surgical suture materials. Acta Biomater. 168, 78–112.
|
Liu, C., Du, H.S., Dong, L., Wang, X., Zhang, Y.D., Yu, G., Li, B., Mu, X.D., Peng, H., Liu, H.Z., 2017. Properties of nanocelluloses and their application as rheology modifier in paper coating. Ind. Eng. Chem. Res. 56, 8264–8273. doi: 10.1021/acs.iecr.7b01804
|
Liu, W., Liu, K., Du, H.S., Zheng, T., Zhang, N., Xu, T., Pang, B., Zhang, X.Y., Si, C.L., Zhang, K., 2022. Cellulose nanopaper: fabrication, functionalization, and applications. Nanomicro Lett. 14, 104.
|
Liu, Y.Y., Fan, Q., Huo, Y., Liu, C., Li, B., Li, Y.M., 2020. Construction of a mesoporous Polydopamine@GO/cellulose nanofibril composite hydrogel with an encapsulation structure for controllable drug release and toxicity shielding. ACS Appl. Mater. Interfaces 12, 57410–57420. doi: 10.1021/acsami.0c15465
|
Lundahl, M.J., Klar, V., Wang, L., Ago, M., Rojas, O.J., 2017. Spinning of cellulose nanofibrils into filaments: a review. Ind. Eng. Chem. Res. 56, 8–19. doi: 10.1021/acs.iecr.6b04010
|
Ma, Z.W., Yang, Z., Gao, Q.M., Bao, G.Y., Valiei, A., Yang, F., Huo, R., Wang, C., Song, G.L., Ma, D.L., Gao, Z.H., Li, J.Y., 2021. Bioinspired tough gel sheath for robust and versatile surface functionalization. Sci. Adv. 7, eabc3012.
|
Marais, A., Erlandsson, J., Söderberg, L.D., Wågberg, L., 2020. Coaxial spinning of oriented nanocellulose filaments and core–shell structures for interactive materials and fiber-reinforced composites. ACS Appl. Nano Mater. 3, 10246–10251. doi: 10.1021/acsanm.0c02192
|
Meade, W.H., Ochsner, A., 1939. Spool cotton as a suture material. J. Am. Med. Assoc. 113, 2230–2231.
|
Melick, W.F., 1946. The advantages of cotton as a suture material in urological surgery. J. Urol. 56, 602–608. doi: 10.1016/s0022-5347(17)69849-5
|
Mertaniemi, H., Escobedo-Lucea, C., Sanz-Garcia, A., Gandía, C., Mäkitie, A., Partanen, J., Ikkala, O., Yliperttula, M., 2016. Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82, 208–220.
|
Mittal, N., Ansari, F., Gowda V.K., Brouzet, C., Chen, P., Larsson, P.T., Roth, S.V., Lundell, F., Wågberg, L., Kotov, N.A., Söderberg, L.D., 2018. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12, 6378–6388. doi: 10.1021/acsnano.8b01084
|
Nechyporchuk, O., Håkansson, K.M.O., Gowda V.K., Lundell, F., Hagström, B., Köhnke, T., 2019. Continuous assembly of cellulose nanofibrils and nanocrystals into strong macrofibers through microfluidic spinning. Adv. Mater. Technol. 4, 1800557.
|
Pillai C.K., Sharma C.P., 2010. Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J. Biomater. Appl. 25, 291–366. doi: 10.1177/0885328210384890
|
Prabha, S., Sowndarya, J., Ram, P.J.V.S., Rubini, D., Hari, B.V., Aruni, W., Nithyanand, P., 2021. Chitosan-coated surgical sutures prevent adherence and biofilms of mixed microbial communities. Curr. Microbiol. 78, 502–512. doi: 10.1007/s00284-020-02306-7
|
Ren, N., Qiao, A.H., Cui, M., Huang, R.L., Qi, W., Su, R.X., 2023. Design and fabrication of nanocellulose-based microfibers by wet spinning. Chem. Eng. Sci. 282, 119320.
|
Rosén, T., Hsiao, B.S., Söderberg, L.D., 2021. Elucidating the opportunities and challenges for nanocellulose spinning. Adv. Mater. 33, e2001238.
|
Sayyed, A.J., Deshmukh, N.A., Pinjari, D.V., 2019. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26, 2913–2940. doi: 10.1007/s10570-019-02318-y
|
Scott Taylor, M., Shalaby, S.W., 2013. Sutures. Biomaterials Science. Elsevier, Amsterdam, pp. 1010–1024.
|
Sneha, K.R., Steny, P.S., Sailaja, G.S., 2021. Intrinsically radiopaque and antimicrobial cellulose based surgical sutures from mechanically powerful Agave sisalana plant leaf fibers. Biomater. Sci. 9, 7944–7961. doi: 10.1039/d1bm01316e
|
Solhi, L., Guccini, V., Heise, K., Solala, I., Niinivaara, E., Xu, W.Y., Mihhels, K., Kröger, M., Meng, Z.J., Wohlert, J., Tao, H., Cranston, E.D., Kontturi, E., 2023. Understanding nanocellulose-water interactions: turning a detriment into an asset. Chem. Rev. 123, 1925–2015. doi: 10.1021/acs.chemrev.2c00611
|
Spangler, D., Rothenburger, S., Nguyen, K., Jampani, H., Weiss, S., Bhende, S., 2003. In vitro antimicrobial activity of oxidized regenerated cellulose against antibiotic-resistant microorganisms. Surg. Infect. 4, 255–262. doi: 10.1089/109629603322419599
|
Suzuki, S., Ikada, Y., 2011. Barriers to prevent tissue adhesion. In: Biomaterials for Surgical Operation. Humana Press, Totowa, pp. 91–130.
|
Thomas, B., Raj, M.C., Athira, K.B., Rubiyah, M.H., Joy, J., Moores, A., Drisko, G.L., Sanchez, C., 2018. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118, 11575–11625. doi: 10.1021/acs.chemrev.7b00627
|
Thorek, P., Gradman, R., Glaess, A., 1943. Additional experiences with spool cotton as a suture material. Am. J. Surg. 59, 68–71.
|
Toivonen, M.S., Kurki-Suonio, S., Wagermaier, W., Hynninen, V., Hietala, S., Ikkala, O., 2017. Interfacial polyelectrolyte complex spinning of cellulose nanofibrils for advanced bicomponent fibers. Biomacromolecules 18, 1293–1301. doi: 10.1021/acs.biomac.7b00059
|
Torgbo, S., Sukyai, P., 2020. Biodegradation and thermal stability of bacterial cellulose as biomaterial: the relevance in biomedical applications. Polym. Degrad. Stab. 179, 109232.
|
Wan, A.C.A., Cutiongco, M.F.A., Tai, B.C.U., Leong, M.F., Lu, H.F., Yim, E.K.F., 2016. Fibers by interfacial polyelectrolyte complexation–processes, materials and applications. Mater. Today 19, 437–450.
|
Wan, A.C.A., Liao, I.C., Yim, E.K.F., Leong, K.W., 2004. Mechanism of fiber formation by interfacial polyelectrolyte complexation. Macromolecules 37, 7019–7025.
|
Wang, B.X., Lv, X.G., Chen, S.Y., Li, Z., Sun, X.X., Feng, C., Wang, H.P., Xu, Y.M., 2016a. In vitro biodegradability of bacterial cellulose by cellulase in simulated body fluid and compatibility in vivo. Cellulose 23, 3187–3198. doi: 10.1007/s10570-016-0993-z
|
Wang, L., Lundahl, M.J., Greca, L.G., Papageorgiou, A.C., Borghei, M., Rojas, O.J., 2019. Effects of non-solvents and electrolytes on the formation and properties of cellulose I filaments. Sci. Rep. 9, 16691.
|
Wang, S., Lu, A., Zhang, L.N., 2016b. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206.
|
Wu, M.Y., Liu, Y.N., Liu, C., Cui, Q., Zheng, X., Fatehi, P., Li, B., 2023a. Core-shell filament with excellent wound healing property made of cellulose nanofibrils and guar gum via interfacial polyelectrolyte complexation spinning. Small 19, e2205867.
|
Wu, M.Y., Sukyai, P., Lv, D., Zhang, F., Wang, P.D., Liu, C., Li, B., 2020. Water and humidity-induced shape memory cellulose nanopaper with quick response, excellent wet strength and folding resistance. Chem. Eng. J. 392, 123673.
|
Wu, M.Y., Zhang, P., Li, M., Xu, R., Zheng, X., Cui, Q., Cha, R.T., Li, B., 2023b. Bioinspired, robust, and absorbable cellulose nanofibrils/chitosan filament with remarkable cytocompatibility and wound healing properties. ACS Appl. Mater. Interfaces 15, 43468–43478. doi: 10.1021/acsami.3c08525
|
Xie, Y.Y., Hu, X.H., Zhang, Y.W., Wahid, F., Chu, L.Q., Jia, S.R., Zhong, C., 2020. Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. Carbohydr. Polym. 229, 115456.
|
Xu, Q.Q., Li, Q., Yu, H.P., Li, J., Chen, W.S., 2024. Nanocellulose building block for the construction of hygroscopic aerogels. Acc. Mater. Res. 5, 846–856. doi: 10.1021/accountsmr.4c00085
|
Yamane, C., Mori, M., Saito, M., Okajima, K., 1996. Structures and mechanical properties of cellulose filament spun from cellulose/aqueous NaOH solution system. Polym. J. 28, 1039–1047. doi: 10.1295/polymj.28.1039
|
Yi, Y.D., Zhang, Y., Mansel, B., Wang, Y.N., Prabakar, S., Shi, B., 2022. Effect of dialdehyde carboxymethyl cellulose cross-linking on the porous structure of the collagen matrix. Biomacromolecules 23, 1723–1732. doi: 10.1021/acs.biomac.1c01641
|
Yu, X.S., Cheng, C., Peng, X., Zhang, K.X., Yu, X.X., 2022. A self-healing and injectable oxidized quaternized guar gum/carboxymethyl chitosan hydrogel with efficient hemostatic and antibacterial properties for wound dressing. Colloids Surf. B Biointerfaces 209, 112207.
|
Zhang, K.T., Ketterle, L., Järvinen, T., Hong, S., Liimatainen, H., 2020a. Conductive hybrid filaments of carbon nanotubes, chitin nanocrystals and cellulose nanofibers formed by interfacial nanoparticle complexation. Mater. Des. 191, 108594.
|
Zhang, K.T., Ketterle, L., Järvinen, T., Lorite, G.S., Hong, S., Liimatainen, H., 2020b. Self-assembly of graphene oxide and cellulose nanocrystals into continuous filament via interfacial nanoparticle complexation. Mater. Des. 193, 108791.
|
Zhang, K.T., Liimatainen, H., 2018. Hierarchical assembly of nanocellulose-based filaments by interfacial complexation. Small 14, e1801937.
|
Zhang, S.H., Li, J.W., Chen, S.J., Zhang, X.Y., Ma, J.W., He, J.M., 2020c. Oxidized cellulose-based hemostatic materials. Carbohydr. Polym. 230, 115585.
|
Zhou, N., Gao, Y.F., Huo, Y., Zhang, K., Zhu, J., Chen, M.Y., Zhu, L., Dong, Y.H., Gao, H.G., Kim, I.S., Zhang, K.Q., Chen, R.X., Wang, H.L., 2023. Biodegradable micro-nanofiber medical tape with antibacterial and unidirectional moisture permeability. Chem. Eng. J. 474, 145793.
|