Volume 10 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Daqian Gao, William D. Shipman, Yaping Sun, Joshua Zev Glahn, Leleda Beraki, Henry C. Hsia. Macroporous scaffolds based on biomass polymers and their applications in wound healing[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 14-31. doi: 10.1016/j.jobab.2024.12.001
Citation: Daqian Gao, William D. Shipman, Yaping Sun, Joshua Zev Glahn, Leleda Beraki, Henry C. Hsia. Macroporous scaffolds based on biomass polymers and their applications in wound healing[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 14-31. doi: 10.1016/j.jobab.2024.12.001

Macroporous scaffolds based on biomass polymers and their applications in wound healing

doi: 10.1016/j.jobab.2024.12.001
More Information
  • The rapid advancement of biomedical polymers has raised significant concerns about the disposal of medical polymer waste. Sustainable biomass materials derived from renewable sources in nature have emerged as promising alternatives to petroleum-based polymers for medical applications and tissue engineering due to their abundance, biodegradability, and environmental friendliness. In tissue engineering, interconnected macropores within biomaterials are crucial as they provide space and interfaces for cells, enhancing permeability for nutrient and waste transport. In this review, we summarize recent developments in the use of biomass materials to engineer macroporous tissue engineering scaffolds. We highlight key techniques, such as microparticles assembly, leaching template, and bioprinting that can create macropores within scaffolds composed of biomass materials and their composites. In addition, we investigate the applications of the macroporous scaffolds in wound healing, with a focus on cell behaviors within macroporous constructs and their role in treating chronic wounds. We envision that the combination of the bicontinuous macropores and biomass-based materials can create an ideal cellular environment and provide a powerful platform for wound healing and tissue regeneration.

     

  • Not applicable.
    Consent for publication
    Not applicable.
    Ethics approval and consent to participate
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Declaration of competing interest
    Daqian Gao: Conceptualization, Formal analysis, Writing – original draft, Writing – review & editing. William D. Shipman: Methodology. Yaping Sun: Formal analysis, Investigation. Joshua Zev Glahn: Writing – review & editing. Leleda Beraki: Investigation. Henry C. Hsia: Conceptualization, Writing – review & editing.
    CRediT authorship contribution statement
    Data availability
    Data sharing is not applicable to this article as no new data were created or analyzed in this study.
  • loading
  • Ahmed, S., Khan, R.A., Rashid, T.U., 2025. Cellulose nanocrystal based electrospun nanofiber for biomedical applications-a review. Carbohydr. Polym. 348, 122838. doi: 10.1016/j.carbpol.2024.122838
    Annabi, N., Nichol, J.W., Zhong, X., Ji, C.D., Koshy, S., Khademhosseini, A., Dehghani, F., 2010. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev. 16, 371–383. doi: 10.1089/ten.teb.2009.0639
    Babu, S., Shanmugavadivu, A., Selvamurugan, N., 2024. Tunable mechanical properties of chitosan-based biocomposite scaffolds for bone tissue engineering applications: a review. Int. J. Biol. Macromol. 272, 132820. doi: 10.1016/j.ijbiomac.2024.132820
    Barati, D., Kader, S., Pajoum Shariati, S.R., Moeinzadeh, S., Sawyer, R.H., Jabbari, E., 2017. Synthesis and characterization of photo-cross-linkable keratin hydrogels for stem cell encapsulation. Biomacromolecules 18, 398–412. doi: 10.1021/acs.biomac.6b01493
    Béduer, A., Piacentini, N., Aeberli, L., Da Silva, A., Verheyen, C.A., Bonini, F., Rochat, A., Filippova, A., Serex, L., Renaud, P., Braschler, T., 2018. Additive manufacturing of hierarchical injectable scaffolds for tissue engineering. Acta Biomater. 76, 71–79. doi: 10.1016/j.actbio.2018.05.056
    Bernal, P.N., Delrot, P., Loterie, D., Li, Y., Malda, J., Moser, C., Levato, R., 2019. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31, e1904209. doi: 10.1002/adma.201904209
    Birajdar, M.S., Lee, J., 2019. Hierarchically structured microgels of SPIONs, nanofibers, and alginate for copper ion removal. J. Ind. Eng. Chem. 77, 303–308. doi: 10.1016/j.jiec.2019.04.052
    Bonnans, C., Chou, J., Werb, Z., 2014. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801. doi: 10.1038/nrm3904
    Bowers, D.T., Song, W., Wang, L.H., Ma, M.L., 2019. Engineering the vasculature for islet transplantation. Acta Biomater. 95, 131–151. doi: 10.1016/j.actbio.2019.05.051
    Broguiere, N., Husch, A., Palazzolo, G., Bradke, F., Madduri, S., Zenobi-Wong, M., 2019. Macroporous hydrogels derived from aqueous dynamic phase separation. Biomaterials 200, 56–65. doi: 10.1016/j.biomaterials.2019.01.047
    Caldwell, A.S., Aguado, B.A., Anseth, K.S., 2020. Designing microgels for cell culture and controlled assembly of tissue microenvironments. Adv. Funct. Mater. 30, 1907670. doi: 10.1002/adfm.201907670
    Caldwell, A.S., Campbell, G.T., Shekiro, K.M.T., Anseth, K.S., 2017. Clickable microgel scaffolds as platforms for 3D cell encapsulation. Adv. Healthc. Mater. 6. doi: 10.1002/adhm.201700254.
    Chen, R.Y., Ma, H.Y., Zhang, L., Bryers, J.D., 2018a. Precision-porous templated scaffolds of varying pore size drive dendritic cell activation. Biotechnol. Bioeng. 115, 1086–1095. doi: 10.1002/bit.26532
    Chen, W.C., Zhou, H.Z., Weir, M.D., Bao, C.Y., Xu, H.H.K., 2012. Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater. 8, 2297–2306. doi: 10.1016/j.actbio.2012.02.021
    Chen, Y.W., Shen, Y.F., Ho, C.C., Yu, J., Wu, Y. H A., Wang, K., Shih, C.T., Shie, M.Y., 2018b. Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Mater. Sci. Eng. C Mater. Biol. Appl. 91, 679–687. doi: 10.1016/j.msec.2018.06.005
    Cheng, H., Xiao, D.D., Tang, Y.J., Wang, B.J., Feng, X.L., Lu, M.J., Vancso, G.J., Sui, X.F., 2020. Sponges with Janus character from nanocellulose: preparation and applications in the treatment of hemorrhagic wounds. Adv. Healthc. Mater. 9, e1901796. doi: 10.1002/adhm.201901796
    Cheng, W.K., Zhu, Y., Jiang, G.Y., Cao, K.Y., Zeng, S.Q., Chen, W.S., Zhao, D.W., Yu, H.P., 2023. Sustainable cellulose and its derivatives for promising biomedical applications. Prog. Mater. Sci. 138, 101152. doi: 10.1016/j.pmatsci.2023.101152
    Chhabra, R., Peshattiwar, V., Pant, T., Deshpande, A., Modi, D., Sathaye, S., Tibrewala, A., Dyawanapelly, S., Jain, R., Dandekar, P., 2020. In vivo studies of 3D starch-gelatin scaffolds for full-thickness wound healing. ACS Appl. Bio Mater. 3, 2920–2929. doi: 10.1021/acsabm.9b01139
    Chiu, Y.C., Cheng, M.H., Engel, H., Kao, S.W., Larson, J.C., Gupta, S., Brey, E.M., 2011. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials 32, 6045–6051. doi: 10.1016/j.biomaterials.2011.04.066
    Choe, G., Kim, S.W., Park, J., Park, J., Kim, S., Kim, Y.S., Ahn, Y., Jung, D.W., Williams, D.R., Lee, J.Y., 2019. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials 225, 119513. doi: 10.1016/j.biomaterials.2019.119513
    Choi, S.W., Yeh, Y.C., Zhang, Y., Sung, H.W., Xia, Y.N., 2010. Uniform beads with controllable pore sizes for biomedical applications. Small 6, 1492–1498. doi: 10.1002/smll.201000544
    Contessi Negrini, N., Bonnetier, M., Giatsidis, G., Orgill, D.P., Farè, S., Marelli, B., 2019. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Acta Biomater. 87, 61–75. doi: 10.1016/j.actbio.2019.01.018
    Daly, A.C., Riley, L., Segura, T., Burdick, J.A., 2020. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 5, 20–43.
    De France, K.J., Xu, F., Hoare, T., 2018. Structured macroporous hydrogels: progress, challenges, and opportunities. Adv. Healthc. Mater. 7, 1700927. doi: 10.1002/adhm.201700927
    Deo, K.A., Murali, A., Tronolone, J.J., Mandrona, C., Lee, H.P., Rajput, S., Hargett, S.E., Selahi, A., Sun, Y.X., Alge, D.L., Jain, A., Gaharwar, A.K., 2024. Granular biphasic colloidal hydrogels for 3D bioprinting. Adv. Healthc. Mater. 13, e2303810.
    Ding, X.Y., Yu, Y.R., Li, W.Z., Zhao, Y.J., 2023. In situ 3D-bioprinting MoS2 accelerated gelling hydrogel scaffold for promoting chronic diabetic wound healing. Matter 6, 1000–1014. doi: 10.1016/j.matt.2023.01.001
    Eggermont, L.J., Rogers, Z.J., Colombani, T., Memic, A., Bencherif, S.A., 2020. Injectable cryogels for biomedical applications. Trend. Biotechnol. 38, 418–431. doi: 10.1016/j.tibtech.2019.09.008
    Fan, C.J., Wang, D.A., 2017. Macroporous hydrogel scaffolds for three-dimensional cell culture and tissue engineering. Tissue. Eng. Part B Rev. 23, 451–461. doi: 10.1089/ten.teb.2016.0465
    Fernández-Colino, A., Wolf, F., Keijdener, H., Rütten, S., Schmitz-Rode, T., Jockenhoevel, S., Rodríguez-Cabello, J.C., Mela, P., 2018. Macroporous click-elastin-like hydrogels for tissue engineering applications. Mater. Sci. Eng. C Mater. Biol. Appl. 88, 140–147. doi: 10.1016/j.msec.2018.03.013
    Flégeau, K., Pace, R., Gautier, H., Rethore, G., Guicheux, J., Le Visage, C., Weiss, P., 2017. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Adv. Colloid Interface. Sci. 247, 589–609. doi: 10.1016/j.cis.2017.07.012
    Gao, D.Q., Ernst, A.U., Wang, X., Wang, L.H., Liu, W.J., Ma, M.L., 2022. Engineering a hierarchical biphasic gel for subcutaneous vascularization. Adv. Healthc. Mater. 11, e2200922. doi: 10.1002/adhm.202200922
    Gao, D.Q., Zhang, Y.D., Bowers, D.T., Liu, W.J., Ma, M.L., 2021. Functional hydrogels for diabetic wound management. APL Bioeng. 5, 031503. doi: 10.1063/5.0046682
    Geraghty, T., LaPorta, G., 2019. Current health and economic burden of chronic diabetic osteomyelitis. Expert Rev. Pharmacoecon. Outcome. Res. 19, 279–286. doi: 10.1080/14737167.2019.1567337
    Ghosal, K., Ghosh, S., 2023. Biodegradable polymers from lignocellulosic biomass and synthetic plastic waste: an emerging alternative for biomedical applications. Mater. Sci. Eng. R Rep. 156, 100761. doi: 10.1016/j.mser.2023.100761
    Goh, M., Kim, Y., Gwon, K., Min, K., Hwang, Y., Tae, G., 2017. situ formation of injectable and porous heparin-based hydrogel. Carbohydr. Polym. 174, 990–998. doi: 10.1016/j.carbpol.2017.06.126
    Griffin, D.R., Weaver, W.M., Scumpia, P.O., Di Carlo, D., Segura, T., 2015. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744. doi: 10.1038/nmat4294
    Guo, P., Yuan, Y.S., Chi, F.L., 2014. Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis. Mater. Sci. Eng. C Mater. Biol. Appl. 42, 622–628. doi: 10.1016/j.msec.2014.06.013
    Gupte, M.J., Swanson, W.B., Hu, J., Jin, X.B., Ma, H.Y., Zhang, Z.P., Liu, Z.N., Feng, K., Feng, G.J., Xiao, G.Y., Hatch, N., Mishina, Y., Ma, P.X., 2018. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater. 82, 1–11. doi: 10.1016/j.actbio.2018.10.016
    Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T., 2008. Wound repair and regeneration. Nature 453, 314–321. doi: 10.1038/nature07039
    Hammer, J., Han, L.H., Tong, X.M., Yang, F., 2014. A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering. Tissue Eng. Part C Methods 20, 169–176. doi: 10.1089/ten.tec.2013.0176
    Han, G., Ceilley, R., 2017. Chronic wound healing: a review of current management and treatments. Adv. Ther. 34, 599–610. doi: 10.1007/s12325-017-0478-y
    Han, L.H., Lai, J.H., Yu, S., Yang, F., 2013a. Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation. Biomaterials 34, 4251–4258. doi: 10.1016/j.biomaterials.2013.02.051
    Han, L.H., Yu, S., Wang, T.Y., Behn, A.W., Yang, F., 2013b. Microribbon-like elastomers for fabricating macroporous and highly flexible scaffolds that support cell proliferation in 3D. Adv. Funct. Mater. 23, 346–358. doi: 10.1002/adfm.201201212
    Heinrich, M.A., Liu, W.J., Jimenez, A., Yang, J.Z., Akpek, A., Liu, X., Pi, Q.M., Mu, X., Hu, N., Schiffelers, R.M., Prakash, J., Xie, J.W., Zhang, Y.S., 2019. 3D bioprinting: from benches to translational applications. Small 15, e1805510.
    Hernández-González, A.C., Téllez-Jurado, L., Rodríguez-Lorenzo, L.M., 2020. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: a review. Carbohydr. Polym. 229, 115514. doi: 10.1016/j.carbpol.2019.115514
    Hinton, T.J., Jallerat, Q., Palchesko, R.N., Park, J.H., Grodzicki, M.S., Shue, H.J., Ramadan, M.H., Hudson, A.R., Feinberg, A.W., 2015. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1, e1500758. doi: 10.1126/sciadv.1500758
    Hori, A., Watabe, Y., Yamada, M., Yajima, Y., Utoh, R., Seki, M., 2019. One-step formation of microporous hydrogel sponges encapsulating living cells by utilizing bicontinuous dispersion of aqueous polymer solutions. ACS Appl. Bio Mater. 2, 2237–2245. doi: 10.1021/acsabm.9b00194
    Hou, S.J., Lake, R., Park, S., Edwards, S., Jones, C., Jeong, K.J., 2018. Injectable macroporous hydrogel formed by enzymatic cross-linking of gelatin microgels. ACS Appl. Bio Mater. 1, 1430–1439. doi: 10.1021/acsabm.8b00380
    Hou, S.W., Xia, Z.P., Pan, J.J., Wang, N., Gao, H.C., Ren, J.L., Xia, X.K., 2024. Bacterial cellulose applied in wound dressing materials: production and functional modification - A review. Macromol. Biosci. 24, e2300333. doi: 10.1002/mabi.202300333
    Huang, W.C., Ying, R., Wang, W., Guo, Y.N., He, Y.J., Mo, X.Y., Xue, C.H., Mao, X.Z., 2020. A macroporous hydrogel dressing with enhanced antibacterial and anti-inflammatory capabilities for accelerated wound healing. Adv. Funct. Mater. 30, 2000644. doi: 10.1002/adfm.202000644
    Huang, X.X., Ma, C., Xu, Y.C., Cao, J.F., Li, J.C., Li, J.Z., Shi, S.Q., Gao, Q., 2022. A tannin-functionalized soy protein-based adhesive hydrogel as a wound dressing. Ind. Crop. Prod. 182, 114945. doi: 10.1016/j.indcrop.2022.114945
    Huebsch, N., Lippens, E., Lee, K., Mehta, M., Koshy, S.T., Darnell, M.C., Desai, R.M., Madl, C.M., Xu, M., Zhao, X.H., Chaudhuri, O., Verbeke, C., Kim, W.S., Alim, K., Mammoto, A., Ingber, D.E., Duda, G.N., Mooney, D.J., 2015. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 14, 1269–1277. doi: 10.1038/nmat4407
    Hunt, T.K., Hopf, H.W., 1997. Wound healing and wound infection. What surgeons and anesthesiologists can do. Surg. Clin. North Am. 77, 587–606. doi: 10.1016/S0039-6109(05)70570-3
    Ianovici, I., Zagury, Y., Redenski, I., Lavon, N., Levenberg, S., 2022. 3D-printable plant protein-enriched scaffolds for cultivated meat development. Biomaterials 284, 121487. doi: 10.1016/j.biomaterials.2022.121487
    Jeon, O., Bin Lee, Y., Hinton, T.J., Feinberg, A.W., Alsberg, E., 2019. Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Mater. Today Chem. 12, 61–70. doi: 10.1016/j.mtchem.2018.11.009
    Jiang, B., Akar, B., Waller, T.M., Larson, J.C., Appel, A.A., Brey, E.M., 2014. Design of a composite biomaterial system for tissue engineering applications. Acta Biomater. 10, 1177–1186. doi: 10.1016/j.actbio.2013.11.029
    Ke, M.F., Wang, Z.J., Dong, Q., Chen, F.X., He, L., Huselstein, C., Wang, X.H., Chen, Y., 2021. Facile fabrication of soy protein isolate-functionalized nanofibers with enhanced biocompatibility and hemostatic effect on full-thickness skin injury. Nanoscale 13, 15743–15754. doi: 10.1039/d1nr03430h
    Kérourédan, O., Washio, A., Handschin, C., Devillard, R., Kokabu, S., Kitamura, C., Tabata, Y., 2024. Bioactive gelatin-sheets as novel biopapers to support prevascularization organized by laser-assisted bioprinting for bone tissue engineering. Biomed. Mater. 19, 025038. doi: 10.1088/1748-605x/ad270a
    Kim, W., Kim, G., 2019. Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration. Biofabrication 12, 015007. doi: 10.1088/1758-5090/ab436d
    Koffler, J., Zhu, W., Qu, X., Platoshyn, O., Dulin, J.N., Brock, J., Graham, L., Lu, P., Sakamoto, J., Marsala, M., Chen, S.C., Tuszynski, M.H., 2019. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med. 25, 263–269. doi: 10.1038/s41591-018-0296-z
    Koh, J., Griffin, D.R., Archang, M.M., Feng, A.C., Horn, T., Margolis, M., Zalazar, D., Segura, T., Scumpia, P.O., Di Carlo, D., 2019. Enhanced in vivo delivery of stem cells using microporous annealed particle scaffolds. Small 15, e1903147. doi: 10.1002/smll.201903147
    Lan, D.W., Wu, B.Q., Zhang, H.Q., Chen, X., Li, Z., Dai, F.Y., 2023. Novel bioinspired nerve scaffold with high synchrony between biodegradation and nerve regeneration for repair of peripheral nerve injury. Biomacromolecules 24, 5451–5466. doi: 10.1021/acs.biomac.3c00920
    Las Heras, K., Garcia-Orue, I., Aguirre, J.J., de la Caba, K., Guerrero, P., Igartua, M., Santos-Vizcaino, E., Hernandez, R.M., 2023. Soy protein/𝛽-chitin sponge-like scaffolds laden with human mesenchymal stromal cells from hair follicle or adipose tissue promote diabetic chronic wound healing. Biomater. Adv. 155, 213682. doi: 10.1016/j.bioadv.2023.213682
    Las Heras, K., Santos-Vizcaino, E., Garrido, T., Borja Gutierrez, F., Aguirre, J.J., de la Caba, K., Guerrero, P., Igartua, M., Hernandez, R.M., 2020. Soy protein and chitin sponge-like scaffolds: from natural by-products to cell delivery systems for biomedical applications. Green Chem 22, 3445–3460. doi: 10.1039/d0gc00089b
    Lee, A., Hudson, A.R., Shiwarski, D.J., Tashman, J.W., Hinton, T.J., Yerneni, S., Bliley, J.M., Campbell, P.G., Feinberg, A.W., 2019. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487. doi: 10.1126/science.aav9051
    Lee, J., Choi, H.N., Cha, H.J., Yang, Y.J., 2023. Microporous hemostatic sponge based on silk fibroin and starch with increased structural retentivity for contact activation of the coagulation cascade. Biomacromolecules 24, 1763–1773. doi: 10.1021/acs.biomac.2c01512
    Leem, Y.H., Lee, K.S., Kim, J.H., Seok, H.K., Chang, J.S., Lee, D.H., 2016. Magnesium ions facilitate integrin alpha 2- and alpha 3-mediated proliferation and enhance alkaline phosphatase expression and activity in hBMSCs. J. Tissue Eng. Regen. Med. 10, E527–E536. doi: 10.1002/term.1861
    Leijten, J., Seo, J., Yue, K., Santiago, G.T.D., Tamayol, A., Ruiz-Esparza, G.U., Shin, S.R., Sharifi, R., Noshadi, I., Álvarez, M.M., Zhang, Y.S., Khademhosseini, A., 2017. Spatially and temporally controlled hydrogels for tissue engineering. Mater. Sci. Eng. R Rep. 119, 1–35. doi: 10.1016/j.mser.2017.07.001
    Leonard, A.R., Cumming, M.H., Ali, M.A., Cabral, J.D., 2024. Fish collagen cross-linking strategies to improve mechanical and bioactive capabilities for tissue engineering and regenerative medicine. Adv. Funct. Mater. 34, 2405335. doi: 10.1002/adfm.202405335
    Lewis, P.L., Green, R.M., Shah, R.N., 2018. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater. 69, 63–70. doi: 10.1016/j.actbio.2017.12.042
    Li, H.F., He, W.J., Feng, Q., Chen, J.L., Xu, X.B., Lv, C.H., Zhu, C.C., Dong, H., 2024a. Engineering superstable islets-laden chitosan microgels with carboxymethyl cellulose coating for long-term blood glucose regulation in vivo. Carbohydr. Polym. 323, 121425. doi: 10.1016/j.carbpol.2023.121425
    Li, J.Y., Li, Y.T., Guo, C.L., Wu, X.C., 2024b. Development of quercetin loaded silk fibroin/soybean protein isolate hydrogels for burn wound healing. Chem. Eng. J. 481, 148458. doi: 10.1016/j.cej.2023.148458
    Li, M.Y., Qu, H.F., Li, Q., Lu, S.C., Wu, Y., Tang, Z.W., Liu, X.L., Yuan, Z.H., Huang, L.L., Chen, L.H., Wu, H., 2024c. A carboxymethyl cellulose/chitosan-based hydrogel harvests robust adhesive, on-demand detachment and self-healing performances for deep burn healing. Chem. Eng. J. 498, 155552. doi: 10.1016/j.cej.2024.155552
    Li, R., Li, J.M., Xu, J.B., Hong Wong, D.S., Chen, X.Y., Yuan, W.H., Bian, L.M., 2018. Multiscale reconstruction of a synthetic biomimetic micro-niche for enhancing and monitoring the differentiation of stem cells. Biomaterials 173, 87–99. doi: 10.1016/j.biomaterials.2018.05.001
    Li, S.J., Dan, X., Chen, H., Li, T., Liu, B., Ju, Y.K., Li, Y., Lei, L.J., Fan, X., 2024d. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact. Mater. 40, 597–623.
    Li, X.M., Chen, Y., Kawazoe, N., Chen, G.P., 2017. Influence of microporous gelatin hydrogels on chondrocyte functions. J. Mater. Chem. B 5, 5753–5762. doi: 10.1039/C7TB01350G
    Li, Y. C E., 2019. Sustainable biomass materials for biomedical applications. ACS Biomater. Sci. Eng. 5, 2079–2092. doi: 10.1021/acsbiomaterials.8b01634
    Liu, G., Abraham, E., 2013. MicroRNAs in immune response and macrophage polarization. Arterioscler. Thromb. Vasc. Biol. 33, 170–177. doi: 10.1161/ATVBAHA.112.300068
    Liu, H.F., Chen, F.X., Zhang, Y.F., Wu, P., Yang, Z.Q., Zhang, S., Xiao, L.F., Deng, Z.M., Cai, L., Wu, M.H., 2022. Facile fabrication of biomimetic silicified gelatin scaffolds for angiogenesis and bone regeneration by a bioinspired polymer-induced liquid precursor. Mater. Des. 222, 111070. doi: 10.1016/j.matdes.2022.111070
    Liu, Q.S., Chiu, A., Wang, L.H., An, D., Zhong, M., Smink, A.M., de Haan, B.J., de Vos, P., Keane, K., Vegge, A., Chen, E.Y., Song, W., Liu, W.F., Flanders, J., Rescan, C., Grunnet, L.G., Wang, X., Ma, M.L., 2019. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nat. Commun. 10, 5262. doi: 10.1038/s41467-019-13238-7
    Liu, R., Dai, L., Xu, C.L., Wang, K., Zheng, C.Y., Si, C.L., 2020. Lignin-based micro- and nanomaterials and their composites in biomedical applications. ChemSusChem 13, 4266–4283. doi: 10.1002/cssc.202000783
    Loh, Q.L., Choong, C., 2013. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. Part B Rev. 19, 485–502. doi: 10.1089/ten.teb.2012.0437
    Magno, V., Meinhardt, A., Werner, C., 2020. Polymer hydrogels to guide organotypic and organoid cultures. Adv. Funct. Mater. 30, 2000097. doi: 10.1002/adfm.202000097
    Martin, P., Nunan, R., 2015. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br. J. Dermatol. 173, 370–378. doi: 10.1111/bjd.13954
    Matoori, S., Veves, A., Mooney, D.J., 2021. Advanced bandages for diabetic wound healing. Sci. Transl. Med. 13, eabe4839. doi: 10.1126/scitranslmed.abe4839
    Matveeva, V.G., Bronstein, L.M., 2022. From renewable biomass to nanomaterials: does biomass origin matter? Prog. Mater. Sci. 130, 100999. doi: 10.1016/j.pmatsci.2022.100999
    Mittal, H., Al Alili, A., Alhassan, S.M., 2020. Adsorption isotherm and kinetics of water vapors on novel superporous hydrogel composites. Microporous Mesoporous Mater 299, 110106. doi: 10.1016/j.micromeso.2020.110106
    Mobaraki, M., Ghaffari, M., Yazdanpanah, A., Luo, Y.Y., Mills, D.K., 2020. Bioinks and bioprinting: a focused review. Bioprinting 18, e00080. doi: 10.1016/j.bprint.2020.e00080
    Mohamed, M.A., Fallahi, A., El-Sokkary, A.M.A., Salehi, S., Akl, M.A., Jafari, A., Tamayol, A., Fenniri, H., Khademhosseini, A., Andreadis, S.T., Cheng, C., 2019. Stimuli-responsive hydrogels for manipulation of cell microenvironment: from chemistry to biofabrication technology. Prog. Polym. Sci. 98, 101147. doi: 10.1016/j.progpolymsci.2019.101147
    Mu, Q.F., Zhang, Q.S., Gao, L., Chu, Z.Y., Cai, Z.Y., Zhang, X.Y., Wang, K., Wei, Y., 2017. Structural evolution and formation mechanism of the soft colloidal arrays in the core of PAAm nanofibers by electrospun packing. Langmuir 33, 10291–10301. doi: 10.1021/acs.langmuir.7b02275
    Murphy, S.V., Atala, A., 2014. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785. doi: 10.1038/nbt.2958
    Murphy, S.V., De Coppi, P., Atala, A., 2020. Opportunities and challenges of translational 3D bioprinting. Nat. Biomed. Eng. 4, 370–380.
    Nepal, A., Tran, H.D.N., Nguyen, N.T., Ta, H.T., 2023. Advances in haemostatic sponges: characteristics and the underlying mechanisms for rapid haemostasis. Bioact. Mater. 27, 231–256.
    Nih, L.R., Sideris, E., Carmichael, S.T., Segura, T., 2017. Injection of microporous annealing particle (MAP) hydrogels in the stroke cavity reduces gliosis and inflammation and promotes NPC migration to the lesion. Adv. Mater. 29, 1606471. doi: 10.1002/adma.201606471
    Ribeiro, V.P., da Silva Morais, A., Maia, F.R., Canadas, R.F., Costa, J.B., Oliveira, A.L., Oliveira, J.M., Reis, R.L., 2018. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Acta Biomater. 72, 167–181. doi: 10.1016/j.actbio.2018.03.047
    Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.M., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., Unger, K.K., 1994. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 66, 1739–1758. doi: 10.1351/pac199466081739
    Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., Unger, K., 2011. Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report). Pure Appl. Chem. 84, 107–136. doi: 10.1351/pac-rep-10-11-19
    Savoji, H., Davenport Huyer, L., Mohammadi, M.H., Lai, B.F.L., Rafatian, N., Bannerman, D., Shoaib, M., Bobicki, E.R., Ramachandran, A., Radisic, M., 2020. 3D printing of vascular tubes using bioelastomer prepolymers by freeform reversible embedding. ACS Biomater. Sci. Eng. 6, 1333–1343. doi: 10.1021/acsbiomaterials.9b00676
    Scotti, A., Brugnoni, M., Lopez, C.G., Bochenek, S., Crassous, J.J., Richtering, W., 2020. Flow properties reveal the particle-to-polymer transition of ultra-low crosslinked microgels. Soft Matter 16, 668–678. doi: 10.1039/c9sm01451a
    Sergeeva, A., Feoktistova, N., Prokopovic, V., Gorin, D., Volodkin, D., 2015a. Design of porous alginate hydrogels by sacrificial CaCO3 templates: pore formation mechanism. Adv. Mater. Interfaces 2, 1500386. doi: 10.1002/admi.201500386
    Sergeeva, A.S., Gorin, D.A., Volodkin, D.V., 2015b. In-situ assembly of Ca-alginate gels with controlled pore loading/release capability. Langmuir 31, 10813–10821. doi: 10.1021/acs.langmuir.5b01529
    Shang, L.J., Wang, S., Mao, Y.J., 2024. Recent advances in plant-derived polysaccharide scaffolds in tissue engineering: a review. Int. J. Biol. Macromol. 277, 133830. doi: 10.1016/j.ijbiomac.2024.133830
    Sheffield, P., 1988. Tissue oxygen measurements. In: Davis, J.C. (Ed. ), Problem Wounds. Elsevier, New York.
    Sheikhi, A., de Rutte, J., Haghniaz, R., Akouissi, O., Sohrabi, A., Di Carlo, D., Khademhosseini, A., 2019. Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Biomaterials 192, 560–568. doi: 10.1016/j.biomaterials.2018.10.040
    Shin, D.S., Tokuda, E.Y., Leight, J.L., Miksch, C.E., Brown, T.E., Anseth, K.S., 2018. Synthesis of microgel sensors for spatial and temporal monitoring of protease activity. ACS Biomater. Sci. Eng. 4, 378–387. doi: 10.1021/acsbiomaterials.7b00017
    Shin, S.R., Jung, S.M., Zalabany, M., Kim, K., Zorlutuna, P., Kim, S.B., Nikkhah, M., Khabiry, M., Azize, M., Kong, J., Wan, K.T., Palacios, T., Dokmeci, M.R., Bae, H., Tang, X.S., Khademhosseini, A., 2013. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7, 2369–2380. doi: 10.1021/nn305559j
    Sideris, E., Griffin, D.R., Ding, Y.C., Li, S.R., Weaver, W.M., Di Carlo, D., Hsiai, T., Segura, T., 2016. Particle hydrogels based on hyaluronic acid building blocks. ACS Biomater. Sci. Eng. 2, 2034–2041. doi: 10.1021/acsbiomaterials.6b00444
    Sing, K.S., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquerol, J., Siemieniewska, T., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603–619. doi: 10.1351/pac198557040603
    Sreedharan, M., Vijayamma, R., Liyaskina, E., Revin, V.V., Ullah, M.W., Shi, Z.J., Yang, G., Grohens, Y., Kalarikkal, N., Ali Khan, K., Thomas, S., 2024. Nanocellulose-based hybrid scaffolds for skin and bone tissue engineering: a 10-year overview. Biomacromolecules 25, 2136–2155. doi: 10.1021/acs.biomac.3c00975
    Sussman, E.M., Halpin, M.C., Muster, J., Moon, R.T., Ratner, B.D., 2014. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42, 1508–1516. doi: 10.1007/s10439-013-0933-0
    Tamay, D.G., Dursun Usal, T., Alagoz, A.S., Yucel, D., Hasirci, N., Hasirci, V., 2019. 3D and 4D printing of polymers for tissue engineering applications. Front. Bioeng. Biotechnol. 7, 164. doi: 10.3389/fbioe.2019.00164
    Tang, Y.M., Lin, S.H., Yin, S., Jiang, F., Zhou, M.L., Yang, G.Z., Sun, N.J., Zhang, W.J., Jiang, X.Q., 2020. situ gas foaming based on magnesium particle degradation: a novel approach to fabricate injectable macroporous hydrogels. Biomaterials 232, 119727. doi: 10.1016/j.biomaterials.2019.119727
    Tang-Schomer, M.D., White, J.D., Tien, L.W., Schmitt, L.I., Valentin, T.M., Graziano, D.J., Hopkins, A.M., Omenetto, F.G., Haydon, P.G., Kaplan, D.L., 2014. Bioengineered functional brain-like cortical tissue. Proc. Natl. Acad. Sci. USA 111, 13811–13816. doi: 10.1073/pnas.1324214111
    Tasoglu, S., Diller, E., Guven, S., Sitti, M., Demirci, U., 2014. Untethered micro-robotic coding of three-dimensional material composition. Nat. Commun. 5, 3124. doi: 10.1038/ncomms4124
    Thomas, A.M., Shea, L.D., 2014. Cryotemplation for the rapid fabrication of porous, patternable photopolymerized hydrogels. J. Mater. Chem. B 2, 4521–4530. doi: 10.1039/C4TB00585F
    Tokatlian, T., Cam, C., Segura, T., 2015. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv. Healthc. Mater. 4, 1084–1091. doi: 10.1002/adhm.201400783
    Truong, N.F., Kurt, E., Tahmizyan, N., Lesher-Pérez, S.C., Chen, M., Darling, N.J., Xi, W.X., Segura, T., 2019a. Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer. Acta Biomater. 94, 160–172. doi: 10.1016/j.actbio.2019.02.054
    Truong, N.F., Lesher-Pérez, S.C., Kurt, E., Segura, T., 2019b. Pathways governing polyethylenimine polyplex transfection in microporous annealed particle scaffolds. Bioconjug. Chem. 30, 476–486. doi: 10.1021/acs.bioconjchem.8b00696
    Van Den Bulcke, A.I., Bogdanov, B., De Rooze, N., Schacht, E.H., Cornelissen, M., Berghmans, H., 2000. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1, 31–38. doi: 10.1021/bm990017d
    Varshney, N., Sahi, A.K., Poddar, S., Vishwakarma, N.K., Kavimandan, G., Prakash, A., Mahto, S.K., 2022. Freeze-thaw-induced physically cross-linked superabsorbent polyvinyl alcohol/soy protein isolate hydrogels for skin wound dressing: in vitro and in vivo characterization. ACS Appl. Mater. Interface. 14, 14033–14048. doi: 10.1021/acsami.1c23024
    Vo, T.N., Shah, S.R., Lu, S., Tatara, A.M., Lee, E.J., Roh, T.T., Tabata, Y., Mikos, A.G., 2016. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials 83, 1–11. doi: 10.1016/j.biomaterials.2015.12.026
    Wang, S., Li, L., Su, D., Robin, K., Brown, K.A., 2018. Patterning porosity in hydrogels by arresting phase separation. ACS Appl. Mater. Interface. 10, 34604–34610. doi: 10.1021/acsami.8b11530
    Wang, Y.X., Qi, J.J., Zhang, M., Xu, T., Zheng, C.Y., Yuan, Z.H., Si, C.L., 2024. Cellulose-based aerogels, films, and fibers for advanced biomedical applications. Chem. Eng. J. 497, 154434. doi: 10.1016/j.cej.2024.154434
    Wang, Z.K., Ganewatta, M.S., Tang, C.B., 2020. Sustainable polymers from biomass: bridging chemistry with materials and processing. Prog. Polym. Sci. 101, 101197. doi: 10.1016/j.progpolymsci.2019.101197
    Webb, C.W.B., D'Costa, K., Tawagi, E., Antonyshyn, J.A., Hofer, O.P.S., Santerre, J.P., 2024. Electrospun methacrylated natural/synthetic composite membranes for gingival tissue engineering. Acta Biomater. 173, 336–350. doi: 10.1016/j.actbio.2023.11.021
    Wei, X.Y., Luo, Y.X., Huang, P., 2019. 3D bioprinting of alginate scaffolds with controlled micropores by leaching of recrystallized salts. Polym. Bull. 76, 6077–6088. doi: 10.1007/s00289-019-02690-6
    Wu, J., Wu, Y., Tang, H., Li, W., Zhao, Z., Shi, X.W., Jiang, H., Yu, L.L., Deng, H.B., 2024. Self-adapting biomass hydrogel embodied with miRNA immunoregulation and long-term bacterial eradiation for synergistic chronic wound therapy. ACS Nano 18, 18379–18392. doi: 10.1021/acsnano.4c02736
    Xu, F., Dodd, M., Sheardown, H., Hoare, T., 2018. Single-step reactive electrospinning of cell-loaded nanofibrous scaffolds as ready-to-use tissue patches. Biomacromolecules 19, 4182–4192. doi: 10.1021/acs.biomac.8b00770
    Xu, F., Gough, I., Dorogin, J., Sheardown, H., Hoare, T., 2020. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning. Acta Biomater. 104, 135–146. doi: 10.1016/j.actbio.2019.12.038
    Xu, K., Sun, X.Y., Chong, C.Y., Ren, L., Tan, L.L., Sun, H.N., Wang, X., Li, L.H., Xia, J.F., Zhang, R.X., Wang, L., 2024. Green starch-based hydrogels with excellent injectability, self-healing, adhesion, photothermal effect, and antibacterial activity for promoting wound healing. ACS Appl. Mater. Interface. 16, 2027–2040. doi: 10.1021/acsami.3c13551
    Xue, J.Q., Bai, W., Duan, H.Y., Nie, J.J., Du, B.Y., Sun, J.Z., Tang, B.Z., 2018. Tetraphenylethene cross-linked thermosensitive microgels via acylhydrazone bonds: aggregation-induced emission in nanoconfined environments and the cononsolvency effect. Macromolecules 51, 5762–5772. doi: 10.1021/acs.macromol.8b01100
    Xun, X.W., Li, Y.Q., Ni, M., Xu, Y., Li, J.X., Zhang, D.X., Chen, G.C., Ao, H.Y., Luo, H.L., Wan, Y.Z., Yu, T., 2024. Calcium crosslinked macroporous bacterial cellulose scaffolds with enhanced in situ mineralization and osteoinductivity for cranial bone regeneration. Compos. Part B Eng. 275, 111277. doi: 10.1016/j.compositesb.2024.111277
    Yang, J.R., Li, Y.Q., Liu, Y.B., Li, D.X., Zhang, L., Wang, Q.G., Xiao, Y.M., Zhang, X.D., 2019a. Influence of hydrogel network microstructures on mesenchymal stem cell chondrogenesis in vitro and in vivo. Acta Biomater. 91, 159–172. doi: 10.1016/j.actbio.2019.04.054
    Yang, W.J., Fortunati, E., Gao, D.Q., Balestra, G.M., Giovanale, G., He, X.Y., Torre, L., Kenny, J.M., Puglia, D., 2018. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials. ACS Sustain. Chem. Eng. 6, 3502–3514. doi: 10.1021/acssuschemeng.7b03782
    Yang, X., Liu, W., Xi, G.H., Wang, M.S., Liang, B., Shi, Y.F., Feng, Y.K., Ren, X.K., Shi, C.C., 2019b. Fabricating antimicrobial peptide-immobilized starch sponges for hemorrhage control and antibacterial treatment. Carbohydr. Polym. 222, 115012. doi: 10.1016/j.carbpol.2019.115012
    Yang, Y., Ding, N., Du, X.Y., Gao, D.Q., Puglia, D., Wang, F.N., Yang, X., Xu, F., Yang, W.J., 2024. Grafting vitamin B onto lignin to produce highly bioactive materials for wound dressing hydrogels. ACS Sustain. Chem. Eng. 12, 14854–14865. doi: 10.1021/acssuschemeng.4c05891
    Ying, G.L., Jiang, N., Maharjan, S., Yin, Y.X., Chai, R.R., Cao, X., Yang, J.Z., Miri, A.K., Hassan, S., Zhang, Y.S., 2018. Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv. Mater. 30, e1805460. doi: 10.1002/adma.201805460
    Yoshizawa, S., Brown, A., Barchowsky, A., Sfeir, C., 2014. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 10, 2834–2842. doi: 10.1016/j.actbio.2014.02.002
    Yu, C., Schimelman, J., Wang, P.R., Miller, K.L., Ma, X.Y., You, S.T., Guan, J.A., Sun, B.J., Zhu, W., Chen, S.C., 2020. Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem. Rev. 120, 10695–10743. doi: 10.1021/acs.chemrev.9b00810
    Yue, K., Trujillo-de Santiago, G., Alvarez, M.M., Tamayol, A., Annabi, N., Khademhosseini, A., 2015. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271. doi: 10.1016/j.biomaterials.2015.08.045
    Zhang, A.P., Qu, X., Soman, P., Hribar, K.C., Lee, J.W., Chen, S.C., He, S.L., 2012. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater. 24, 4266–4270. doi: 10.1002/adma.201202024
    Zhang, J.H., Wehrle, E., Vetsch, J.R., Paul, G.R., Rubert, M., Müller, R., 2019. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Biomed. Mater. 14, 065009. doi: 10.1088/1748-605x/ab3c74
    Zhang, K., Shi, Z.Q., Zhou, J.K., Xing, Q., Ma, S.S., Li, Q.H., Zhang, Y.T., Yao, M.H., Wang, X.F., Li, Q., Li, J.G., Guan, F.X., 2018. Potential application of an injectable hydrogel scaffold loaded with mesenchymal stem cells for treating traumatic brain injury. J. Mater. Chem. B 6, 2982–2992. doi: 10.1039/c7tb03213g
    Zhao, W., Yang, X.Y., Li, L., 2024. Soy protein-based wound dressings: a review of their preparation, properties, and perspectives. ACS Appl. Mater. Interface. 16, 40356–40370. doi: 10.1021/acsami.4c05106
    Zhu, Y., Hideyoshi, S., Jiang, H.B., Matsumura, Y., Dziki, J.L., LoPresti, S.T., Huleihel, L., Faria, G.N.F., Fuhrman, L.C., Lodono, R., Badylak, S.F., Wagner, W.R., 2018. Injectable, porous, biohybrid hydrogels incorporating decellularized tissue components for soft tissue applications. Acta Biomater. 73, 112–126. doi: 10.1016/j.actbio.2018.04.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (122) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return