Volume 10 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Yuxin Yu, Wenhui Pei, Xiaoxue Zhao, Aldo Joao Cárdenas-Oscanoa, Caoxing Huang. Global evolution of research on autohydrolysis (hydrothermal) pretreatment as a green technology for biorefineries: A bibliometric analysis[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 92-110. doi: 10.1016/j.jobab.2024.12.002
Citation: Yuxin Yu, Wenhui Pei, Xiaoxue Zhao, Aldo Joao Cárdenas-Oscanoa, Caoxing Huang. Global evolution of research on autohydrolysis (hydrothermal) pretreatment as a green technology for biorefineries: A bibliometric analysis[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 92-110. doi: 10.1016/j.jobab.2024.12.002

Global evolution of research on autohydrolysis (hydrothermal) pretreatment as a green technology for biorefineries: A bibliometric analysis

doi: 10.1016/j.jobab.2024.12.002
More Information
  • Corresponding author: E-mail address: hcx@njfu.edu.cn (C. Huang)
  • Available Online: 2024-12-15
  • Publish Date: 2025-02-01
  • Based on 6 403 research articles in the Web of Science database from 2000 to 2023, information visualization technology is employed to analyze the literature year distribution, keyword co-occurrence and research hot spots, author cooperation network, institutional and national cooperation network, published journals, and co-cited literature in the middle of hydrothermal pretreatment. Our results show that the number of applied research publications related to hydrothermal pretreatment has increased every year in the past two decades. Among these publications, China (36.5%) is the most active country in the world, followed by the United States (14.6%) and Japan (8.2%), with increasing global cooperation. The Chinese Academy of Sciences ranks first among the institutions in the light of total publication output (245 articles, accounting for 3.82%). Among 955 journals, Bioresource Technology is cited the most frequently. The study is centered on the enhancement and potential evolution of lignocellulosic biomass raw materials via hydrothermal pretreatment for subsequent bioenergy transformation. Concurrently, the domain of hydrothermal pretreatment has progressively become more cross-disciplinary, intertwining with the sectors of microbial populations and genomes.

     

  • Caoxing Huang: supervision, funding acquisition, conceptualization, review and editing.
    Yuxin Yu: writing original draft, visualization, data analysis.
    CRediT authorship contribution statement
    Aldo Joao Cárdenas-Oscanoa: conceptualization, review and editing.
    Wenhui Pei: software, data analysis.Xiaoxue Zhao: review and editing, validation.
    Declaration of competing interest
    The authors declare that there is no competing financial interests or personal relationships that could have appeared to influence this work.
    Data Availability
    Data will be made available on request.
  • loading
  • Acharya, S., Liyanage, S., Parajuli, P., Rumi, S.S., Shamshina, J.L., Abidi, N., 2021. Utilization of cellulose to its full potential: a review on cellulose dissolution, regeneration, and applications. Polymers (Basel) 13, 4344. doi: 10.3390/polym13244344
    Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B., 2011. Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29, 675–685. doi: 10.1016/j.biotechadv.2011.05.005
    Ahmad, F., Silva, E.L., Varesche, M.B.A., 2018. Hydrothermal processing of biomass for anaerobic digestion–A review. Renew. Sustain. Energy Rev. 98, 108–124. doi: 10.1016/j.rser.2018.09.008
    Alcazar-Ruiz, A., Villardon, A., Dorado, F., Sanchez-Silva, L., 2023. Hydrothermal carbonization coupled with fast pyrolysis of almond shells: valorization and production of valuable chemicals. Waste Manag. 169, 112–124. doi: 10.1016/j.wasman.2023.07.004
    Álvaro, A.G., Palomar, C.R., Redondo, D.H., Torre, R.M., de Godos Crespo, I., 2023. Simultaneous production of biogas and volatile fatty acids through anaerobic digestion using cereal straw as substrate. Environ. Technol. Innov. 31, 103215. doi: 10.1016/j.eti.2023.103215
    Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J., 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861. doi: 10.1016/j.biortech.2009.11.093
    Aria, M., Cuccurullo, C., 2017. Bibliometrix: an R-tool for comprehensive science mapping analysis. J. Informetr. 11, 959–975. doi: 10.1016/j.joi.2017.08.007
    Arpia, A.A., Chen, W.H., Lam, S.S., Rousset, P., de Luna, M.D.G., 2021. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: a comprehensive review. Chem. Eng. J. 403, 126233. doi: 10.1016/j.cej.2020.126233
    Arun, J., Varshini, P., Prithvinath, P.K., Priyadarshini, V., Gopinath, K.P., 2018. Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: bio-char and post HTL wastewater utilization studies. Bioresour. Technol. 261, 182–187. doi: 10.1016/j.biortech.2018.04.029
    Ashokkumar, V., Chandramughi, V.P., Kumar, G., Ngamcharussrivichai, C., Piechota, G., Igliński, B., Kothari, R., Chen, W.H., 2024. Advancements in lignocellulosic biomass: a critical appraisal of fourth-generation biofuels and value-added bioproduct. Fuel 365, 130751. doi: 10.1016/j.fuel.2023.130751
    Azmoon, P., Farhadian, M., Pendashteh, A., Navarchian, A.H., 2024. Synergistic effect of adsorption and photocatalytic degradation of oilfield-produced water by electrospun photocatalytic fibers of Polystyrene/Nanorod-Graphitic carbon nitride. J. Environ. Sci. 141, 287–303. doi: 10.1016/j.jes.2023.05.041
    Banu Jamaldheen, S., Kurade, M.B., Basak, B., Yoo, C.G., Oh, K.K., Jeon, B.H., Kim, T.H., 2022. A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour. Technol. 346, 126591. doi: 10.1016/j.biortech.2021.126591
    Batista, G., Souza, R.B.A., Pratto, B., Dos Santos-Rocha, M.S.R., Cruz, A.J.G., 2019. Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresour. Technol. 275, 321–327. doi: 10.1016/j.biortech.2018.12.073
    Bhutto, A.W., Qureshi, K., Harijan, K., Abro, R., Abbas, T., Bazmi, A.A., Karim, S., Yu, G.R., 2017. Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122, 724–745. doi: 10.1016/j.energy.2017.01.005
    Bornmann, L., Leydesdorff, L., 2014. Scientometrics in a changing research landscape: bibliometrics has become an integral part of research quality evaluation and has been changing the practice of research. EMBO Rep. 15, 1228–1232. doi: 10.15252/embr.201439608
    Broadus, R.N., 1987. Toward a definition of "bibliometrics". Scientometrics 12, 373–379. doi: 10.1007/BF02016680
    Carvalheiro, F., Duarte, L.C., Gírio, F., Moniz, P., 2016. Hydrothermal/liquid hot water pretreatment (autohydrolysis). In: Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery. Elsevier, Amsterdam, pp. 315–347.
    Castañeda, K., Sánchez, O., Herrera, R.F., Mejía, G., 2022. Highway planning trends: a bibliometric analysis. Sustainability 14, 5544. doi: 10.3390/su14095544
    Champadang, O., Boonsombuti, A., Luengnaruemitchai, A., 2022. Enhanced enzymatic digestibility of water lettuce by liquid hot water pretreatment. Bioresour. Technol. Rep. 18, 101100. doi: 10.1016/j.biteb.2022.101100
    Chen, C.M., 2006. CiteSpace Ⅱ: detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. 57, 359–377. doi: 10.1002/asi.20317
    Chen, C.M., Leydesdorff, L., 2014. Patterns of connections and movements in dual-map overlays: a new method of publication portfolio analysis. J. Assoc. Inf. Sci. Technol. 65, 334–351. doi: 10.1002/asi.22968
    Chen, W.H., Nižetić, S., Sirohi, R., Huang, Z.H., Luque, R., M Papadopoulos, A., Sakthivel, R., Phuong Nguyen, X., Hoang, A.T., 2022. Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: a review. Bioresour. Technol. 344, 126207. doi: 10.1016/j.biortech.2021.126207
    Cheng, F., 2018. Hydrothermal Liquefaction of Microalgae in Batch and Continuous Flow Reactors. New Mexico State University, Las Cruces.
    Cherwoo, L., Gupta, I., Flora, G., Verma, R., Kapil, M., Arya, S.K., Ravindran, B., Khoo, K.S., Bhatia, S.K., Chang, S.W., Ngamcharussrivichai, C., Ashokkumar, V., 2023. Biofuels an alternative to traditional fossil fuels: a comprehensive review. Sustain. Energy Technol. Assess. 60, 103503.
    Chi, P.S., Glänzel, W., 2017. An empirical investigation of the associations among usage, scientific collaboration and citation impact. Scientometrics 112, 403–412. doi: 10.1007/s11192-017-2356-4
    Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., Herrera, F., 2011. An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field. J. Informetr. 5, 146–166. doi: 10.1016/j.joi.2010.10.002
    da Fonseca, Y.A., Silva, N.C.S., de Camargos, A.B., de Queiroz Silva, S., Wandurraga, H.J.L., Gurgel, L.V.A., Baêta, B.E.L., 2021. Influence of hydrothermal pretreatment conditions, typology of anaerobic digestion system, and microbial profile in the production of volatile fatty acids from olive mill solid waste. J. Environ. Chem. Eng. 9, 105055. doi: 10.1016/j.jece.2021.105055
    Dalal, R., Sangwan, A., Khari, M., 2023. The bibliometrics assessment of opportunistic network protocols & simulation tools. Telematics Inform. Rep. 11, 100082. doi: 10.1016/j.teler.2023.100082
    Das, N., Jena, P.K., Padhi, D., Kumar Mohanty, M., Sahoo, G., 2023. A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production. Biomass Convers. Biorefin. 13, 1503–1527. doi: 10.1007/s13399-021-01294-3
    Dávila, I., Gordobil, O., Labidi, J., Gullón, P., 2016. Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing. Bioresour. Technol. 211, 636–644. doi: 10.1016/j.biortech.2016.03.153
    de Sá, L.R.V., de Oliveira Faber, M., da Silva, A.S., Cammarota, M.C., Ferreira-Leitão, V.S., 2020. Biohydrogen production using xylose or xylooligosaccharides derived from sugarcane bagasse obtained by hydrothermal and acid pretreatments. Renew. Energy 146, 2408–2415. doi: 10.1016/j.renene.2019.08.089
    Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W.M., 2021. How to conduct a bibliometric analysis: an overview and guidelines. J. Bus. Res. 133, 285–296. doi: 10.1016/j.jbusres.2021.04.070
    Du, B.Y., Li, W.J., Chai, L.F., Li, W., Wang, X., Chen, X.H., Zhou, J.H., Sun, R.C., 2023. Preparation of versatile lignin-based adsorbent for the removal of organic dyes and its application in wound healing. J. Mol. Liq. 377, 121566. doi: 10.1016/j.molliq.2023.121566
    Egghe, L., Rousseau, R., 1990. Introduction to informetrics. Quantitative methods in library, Documentation and Information Science. Elsevier, Amsterdam.
    Elliott, D.C., Biller, P., Ross, A.B., Schmidt, A.J., Jones, S.B., 2015. Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour. Technol. 178, 147–156. doi: 10.1016/j.biortech.2014.09.132
    Ercan, B., Alper, K., Ucar, S., Karagoz, S., 2023. Comparative studies of hydrochars and biochars produced from lignocellulosic biomass via hydrothermal carbonization, torrefaction and pyrolysis. J. Energy Inst. 109, 101298. doi: 10.1016/j.joei.2023.101298
    Eswari, A.P., Ravi, Y.K., Kavitha, S., Banu, J.R., 2023. Recent insight into anaerobic digestion of lignocellulosic biomass for cost effective bioenergy generation. E Prime Adv. Electr. Eng. Electron. Energy 3, 100119. doi: 10.1016/j.prime.2023.100119
    Ewanick, S., Bura, R., 2010. Hydrothermal pretreatment of lignocellulosic biomass. In: Bioalcohol Production. Elsevier, Amsterdam, pp. 3–23.
    Fan, Y.J., Hornung, U., Dahmen, N., 2022. Hydrothermal liquefaction of sewage sludge for biofuel application: a review on fundamentals, current challenges and strategies. Biomass Bioenergy 165, 106570. doi: 10.1016/j.biombioe.2022.106570
    Fang, L.Y., Su, Y., Wang, P., Lai, C.H., Huang, C.X., Ling, Z., Yong, Q., 2022. Co-production of xylooligosaccharides and glucose from birch sawdust by hot water pretreatment and enzymatic hydrolysis. Bioresour. Technol. 348, 126795. doi: 10.1016/j.biortech.2022.126795
    Fang, Y., Yin, J., Wu, B.H., 2018. Climate change and tourism: a scientometric analysis usingCiteSpace. J. Sustain. Tour. 26, 108–126. doi: 10.1080/09669582.2017.1329310
    Farghali, M., Shimahata, A., Mohamed, I.M.A., Iwasaki, M., Lu, J.X., Ihara, I., Umetsu, K., 2022. Integrating anaerobic digestion with hydrothermal pretreatment for bioenergy production: waste valorization of plastic containing food waste and rice husk. Biochem. Eng. J. 186, 108546. doi: 10.1016/j.bej.2022.108546
    Flórez-Fernández, N., Rodríguez-Coello, A., Latire, T., Bourgougnon, N., Torres, M.D., Buján, M., Muíños, A., Muiños, A., Meijide-Faílde, R., Blanco, F.J., Vaamonde-García, C., Domínguez, H., 2023. Anti-inflammatory potential of ulvan. Int. J. Biol. Macromol. 253, 126936. doi: 10.1016/j.ijbiomac.2023.126936
    Gandam, P.K., Chinta, M.L., Pabbathi, N.P.P., Baadhe, R.R., Sharma, M., Thakur, V.K., Sharma, G.D., Ranjitha, J., Gupta, V.K., 2022. Second-generation bioethanol production from corncob–A comprehensive review on pretreatment and bioconversion strategies, including techno-economic and lifecycle perspective. Ind. Crops Prod. 186, 115245. doi: 10.1016/j.indcrop.2022.115245
    Gao, D.H., Haarmeyer, C., Balan, V., Whitehead, T.A., Dale, B.E., Chundawat, S.P., 2014. Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification. Biotechnol. Biofuels 7, 175. doi: 10.1186/s13068-014-0175-x
    Gökkaya, D.S., Saglam, M., Yuksel, M., Ballice, L., 2016. Hydrothermal gasification of xylose: effects of reaction temperature, pressure, and K2CO3 as a catalyst on product distribution. Biomass Bioenergy 91, 26–36. doi: 10.1016/j.biombioe.2016.04.013
    Gollakota, A.R.K., Kishore, N., Gu, S., 2018. A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 81, 1378–1392. doi: 10.1016/j.rser.2017.05.178
    He, C.J., Hu, J.G., Shen, F., Huang, M., Zhao, L., Zou, J.M., Tian, D., Jiang, Q., Zeng, Y.M., 2022. Tuning hydrothermal pretreatment severity of wheat straw to match energy application scenarios. Ind. Crops Prod. 176, 114326. doi: 10.1016/j.indcrop.2021.114326
    Hirsch, J.E., 2005. An index to quantify an individual's scientific research output. Proc. Natl. Acad. Sci. USA 102, 16569–16572. doi: 10.1073/pnas.0507655102
    Hoang, A.T., Nguyen, X.P., Duong, X.Q., Ağbulut, Ü., Len, C., Nguyen, P.Q.P., Kchaou, M., Chen, W.H., 2023. Steam explosion as sustainable biomass pretreatment technique for biofuel production: characteristics and challenges. Bioresour. Technol. 385, 129398. doi: 10.1016/j.biortech.2023.129398
    Jacsó, P., 2011. The h-index, h-core citation rate and the bibliometric profile of the Web of Science database in three configurations. Online Inf. Rev. 35, 821–833. doi: 10.1108/14684521111176525
    Jönsson, L.J., Martín, C., 2016. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199, 103–112. doi: 10.1016/j.biortech.2015.10.009
    Kumar, M., Olajire Oyedun, A., Kumar, A., 2018. A review on the current status of various hydrothermal technologies on biomass feedstock. Renew. Sustain. Energy Rev. 81, 1742–1770. doi: 10.1016/j.rser.2017.05.270
    Kundu, R., Kunnoth, B., Pilli, S., Polisetty, V.R., Tyagi, R.D., 2023. Biochar symbiosis in anaerobic digestion to enhance biogas production: a comprehensive review. J. Environ. Manage. 344, 118743. doi: 10.1016/j.jenvman.2023.118743
    Lachos-Perez, D., César Torres-Mayanga, P., Abaide, E.R., Zabot, G.L., De Castilhos, F., 2022. Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and opportunities. Bioresour. Technol. 343, 126084. doi: 10.1016/j.biortech.2021.126084
    Lan, K., Xu, Y.L., Kim, H., Ham, C., Kelley, S.S., Park, S., 2021. Techno-economic analysis of producing xylo-oligosaccharides and cellulose microfibers from lignocellulosic biomass. Bioresour. Technol. 340, 125726. doi: 10.1016/j.biortech.2021.125726
    Lang, S., Zhang, S.Y., Cao, Z.Y., Yang, J.F., Zhou, Y., Liu, S.M., Xu, J.Q., Yang, C.K., 2023. Improvement of hydrochar/biochar pellets prepared from cotton stalk by hydrothermal pretreatment process. J. Anal. Appl. Pyrolysis 176, 106263. doi: 10.1016/j.jaap.2023.106263
    Laser, M.S., 2001. Hydrothermal Pretreatment of Cellulosic Biomass for Bioconversion to Ethanol. Dartmouth College, Hanover.
    Lee, K.T., Chen, W.H., Sarles, P., Park, Y.K., Ok, Y.S., 2022. Recover energy and materials from agricultural waste via thermochemical conversion. One Earth 5, 1200–1204. doi: 10.1016/j.oneear.2022.10.010
    Leng, L.J., Yuan, X.Z., Huang, H.J., Wang, H., Wu, Z.B., Fu, L.H., Peng, X., Chen, X.H., Zeng, G.M., 2015. Characterization and application of bio-chars from liquefaction of microalgae, lignocellulosic biomass and sewage sludge. Fuel Process. Technol. 129, 8–14. doi: 10.1016/j.fuproc.2014.08.016
    Li, B.Y., Tan, W., Wang, Z.C., Zhou, H.X., Zou, J.L., Li, Y., Yoshida, S., Zhou, Y.D., 2023a. Progress and prospects of gene therapy in ophthalmology from 2000 to 2022: a bibliometric analysis. Heliyon 9, e18228. doi: 10.1016/j.heliyon.2023.e18228
    Li, M., Wang, Y., Shen, Z.F., Chi, M.S., Lv, C., Li, C.Y., Bai, L., Thabet, H.K., El-Bahy, S.M., Ibrahim, M.M., Chuah, L.F., Show, P.L., Zhao, X.L., 2022. Investigation on the evolution of hydrothermal biochar. Chemosphere 307, 135774. doi: 10.1016/j.chemosphere.2022.135774
    Li, Q.W., Long, R.Y., Chen, H., Chen, F.Y., Wang, J.Q., 2020. Visualized analysis of global green buildings: development, barriers and future directions. J. Clean. Prod. 245, 118775. doi: 10.1016/j.jclepro.2019.118775
    Li, Y., Du, Q., Zhang, J.S., Jiang, Y., Zhou, J.J., Ye, Z.N., 2023b. Visualizing the intellectual landscape and evolution of transportation system resilience: a bibliometric analysis in CiteSpace. Dev. Built Environ. 14, 100149. doi: 10.1016/j.dibe.2023.100149
    Liu, F.H., Yu, C.H., Chang, Y.C., 2022. Bibliometric analysis of articles published in journal of dental sciences from 2009 to 2020. J. Dent. Sci. 17, 642–646. doi: 10.1016/j.jds.2021.08.002
    Liu, W., Wang, Q., Xu, W.Z., Xu, G.H., Li, W.P., Tang, L.N., Liu, K., 2024. Applications of lignin molecules in energy storage devices. J. For. Eng. 9, 1–20.
    Liu, X.Z., Zhang, J.S., Guo, C., 2013. Full-text citation analysis: a new method to enhance scholarly networks. J. Am. Soc. Inf. Sci. Technol. 64, 1852–1863. doi: 10.1002/asi.22883
    Lu, H.S., Liu, S.Y., Zhang, M.H., Meng, F.M., Shi, X.F., Yan, L., 2016. Investigation of the strengthening process for liquid hot water pretreatments. Energy Fuels 30, 1103–1108.
    Lü, H.S., Zhou, J.Y., Liu, J.T., Lü, C.L., Lian, F., Li, Y.H., 2019. Optimization of hydrothermal pretreatment for co-utilization of xylose and glucose of cassava anaerobic residue for producing ethanol. Chin. J. Chem. Eng. 27, 920–927. doi: 10.1016/j.cjche.2018.08.025
    Lu, Y., Sun, Y.Y., Zhang, L., Zuo, X.Y., Li, X.J., Yuan, H.R., 2023. Substance bioconversion, hydrolases activity, and metagenomic analysis to unravel the enhanced biomethanation of corn stover with urea-hydrothermal pretreatment. J. Environ. Manage. 333, 117466. doi: 10.1016/j.jenvman.2023.117466
    Lyu, P.H., Liu, X.L., Yao, T., 2023. A bibliometric analysis of literature on bibliometrics in recent half-century. J. Inf. Sci. 01655515231191233.
    Ma, X.J., Zhang, H., Chen, Q.Y., Huang, H., Cheng, H.T., Huang, L.L., Chen, L.H., Ni, Y.H., Cao, S.L., 2020. Comparison of single-stage and two-stage hydrothermal pretreatments for improving hemicellulose separation from bamboo chips. Wood Sci. Technol. 54, 547–557. doi: 10.1007/s00226-020-01165-6
    Magina, S., Marques, S., Gírio, F., Lourenço, A., Barros-Timmons, A., Evtuguin, D.V., 2024. Chemical composition and structural features of cellolignin from steam explosion followed by enzymatic hydrolysis of Eucalyptus globulus bark. Ind. Crops Prod. 211, 118217. doi: 10.1016/j.indcrop.2024.118217
    Mahmoodi, P., Karimi, K., Taherzadeh, M.J., 2018. Hydrothermal processing as pretreatment for efficient production of ethanol and biogas from municipal solid waste. Bioresour. Technol. 261, 166–175. doi: 10.1016/j.biortech.2018.03.115
    Mathimani, T., Mallick, N., 2019. A review on the hydrothermal processing of microalgal biomass to bio-oil - Knowledge gaps and recent advances. J. Clean. Prod. 217, 69–84. doi: 10.1016/j.jclepro.2019.01.129
    McCance, K.R., Suarez, A., McAlexander, S.L., Davis, G., Blanchard, M.R., Venditti, R.A., 2021. Modeling a biorefinery: converting pineapple waste to bioproducts and biofuel. J. Chem. Educ. 98, 2047–2054. doi: 10.1021/acs.jchemed.1c00020
    Morales, A., Labidi, J., Gullón, P., 2021. Hydrothermal treatments of walnut shells: a potential pretreatment for subsequent product obtaining. Sci. Total Environ. 764, 142800. doi: 10.1016/j.scitotenv.2020.142800
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686. doi: 10.1016/j.biortech.2004.06.025
    Ninkov, A., Frank, J.R., Maggio, L.A., 2022. Bibliometrics: methods for studying academic publishing. Perspect. Med. Educ. 11, 173–176.
    Nitsos, C.K., Matis, K.A., Triantafyllidis, K.S., 2013. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. ChemSusChem 6, 110–122. doi: 10.1002/cssc.201200546
    Okolie, J.A., Nanda, S., Dalai, A.K., Kozinski, J.A., 2021. Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valorization 12, 2145–2169. doi: 10.1007/s12649-020-01123-0
    Peters, H.P.F., van Raan, A.F.J., 1993. Co-word-based science maps of chemical engineering. part Ⅰ: representations by direct multidimensional scaling. Res. Policy 22, 23–45. doi: 10.1016/0048-7333(93)90031-C
    Prado, J.M., Lachos-Perez, D., Forster-Carneiro, T., Rostagno, M., 2016. Sub- and supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: a review. Food Bioprod. Process. 98, 95–123. doi: 10.1016/j.fbp.2015.11.004
    Radhakrishnan, S., Erbis, S., Isaacs, J.A., Kamarthi, S., 2017. Novel keyword co-occurrence network-based methods to foster systematic reviews of scientific literature. PLoS One 12, e0172778. doi: 10.1371/journal.pone.0172778
    Rau, P., Bourrel, L., Labat, D., Melo, P., Dewitte, B., Frappart, F., Felipe, O., 2017. Regionalization of rainfall over the Peruvian Pacific slope and coast. Int. J. Climatol. 37, 143–158. doi: 10.1002/joc.4693
    Rodionova, M.V., Bozieva, A.M., Zharmukhamedov, S.K., Leong, Y.K., Lan, J.C.W., Veziroglu, A., Allakhverdiev, S.I., 2022. A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production. Int. J. Hydrogen Energy 47, 1481–1498. doi: 10.1016/j.ijhydene.2021.10.122
    Roldan-Valadez, E., Salazar-Ruiz, S.Y., Ibarra-Contreras, R., Rios, C., 2019. Current concepts on bibliometrics: a brief review about impact factor, Eigenfactor score, CiteScore, SCImago Journal Rank, Source-Normalised Impact per Paper, H-index, and alternative metrics. Ir. J. Med. Sci. 188, 939–951. doi: 10.1007/s11845-018-1936-5
    Ruiz, H.A., Conrad, M., Sun, S.N., Sanchez, A., Rocha, G.J.M., Romaní, A., Castro, E., Torres, A., Rodríguez-Jasso, R.M., Andrade, L.P., Smirnova, I., Sun, R.C., Meyer, A.S., 2020. Engineering aspects of hydrothermal pretreatment: from batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour. Technol. 299, 122685. doi: 10.1016/j.biortech.2019.122685
    Ruiz, H.A., Rodríguez-Jasso, R.M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A., 2013. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew. Sustain. Energy Rev. 21, 35–51. doi: 10.1016/j.rser.2012.11.069
    Saha, B.C., 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279–291. doi: 10.1007/s10295-003-0049-x
    Saravanakumar, A., Sudha, M.R., Chen, W.H., Pradeshwaran, V., Ashokkumar, V., Selvarajoo, A., 2023. Biomethane production as a green energy source from anaerobic digestion of municipal solid waste: a state-of-the-art review. Biocatal. Agric. Biotechnol. 53, 102866. doi: 10.1016/j.bcab.2023.102866
    Sarker, T.R., Pattnaik, F., Nanda, S., Dalai, A.K., Meda, V., Naik, S., 2021. Hydrothermal pretreatment technologies for lignocellulosic biomass: a review of steam explosion and subcritical water hydrolysis. Chemosphere 284, 131372. doi: 10.1016/j.chemosphere.2021.131372
    Sevilla, M., Fuertes, A.B., 2009. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon N Y 47, 2281–2289. doi: 10.1016/j.carbon.2009.04.026
    Shangdiar, S., Lin, Y.C., Ponnusamy, V.K., Wu, T.Y., 2022. Pretreatment of lignocellulosic biomass from sugar bagasse under microwave assisted dilute acid hydrolysis for biobutanol production. Bioresour. Technol. 361, 127724. doi: 10.1016/j.biortech.2022.127724
    Shinde, S.D., Meng, X.Z., Kumar, R., Ragauskas, A.J., 2018. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem. 20, 2192–2205. doi: 10.1039/c8gc00353j
    Sillet, A., 2013. Definition and use of bibliometrics in research. Soins, 29–30.
    Singh, A., Tsai, M.L., Chen, C.W., Rani Singhania, R., Kumar Patel, A., Tambat, V., Dong, C.D., 2023a. Role of hydrothermal pretreatment towards sustainable biorefinery. Bioresour. Technol. 367, 128271. doi: 10.1016/j.biortech.2022.128271
    Singh, R., Kumar, R., Sarangi, P.K., Kovalev, A.A., Vivekanand, V., 2023b. Effect of physical and thermal pretreatment of lignocellulosic biomass on biohydrogen production by thermochemical route: a critical review. Bioresour. Technol. 369, 128458. doi: 10.1016/j.biortech.2022.128458
    Singhvi, M.S., Gokhale, D.V., 2019. Lignocellulosic biomass: hurdles and challenges in its valorization. Appl. Microbiol. Biotechnol. 103, 9305–9320. doi: 10.1007/s00253-019-10212-7
    Sun, D., Lv, Z.W., Rao, J., Tian, R., Sun, S.N., Peng, F., 2022. Effects of hydrothermal pretreatment on the dissolution and structural evolution of hemicelluloses and lignin: a review. Carbohydr. Polym. 281, 119050. doi: 10.1016/j.carbpol.2021.119050
    Sun, H.N., Lee, P.C., 2010. Maping knowledge structure by keyword co-occurrence: a first look at journal papers in technology foresight. Scientometrics 85, 65–79. doi: 10.1007/978-1-59745-363-9_5
    Sun, Q., Chen, W.J., Pang, B., Sun, Z.H., Lam, S.S., Sonne, C., Yuan, T.Q., 2021. Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. Bioresour. Technol. 341, 125807. doi: 10.1016/j.biortech.2021.125807
    Sun, S.F., Wan, H.F., Zhao, X., Gao, C., Xiao, L.P., Sun, R.C., 2023. Facile construction of lignin-based network composite hydrogel for efficient adsorption of methylene blue from wastewater. Int. J. Biol. Macromol. 253, 126688. doi: 10.1016/j.ijbiomac.2023.126688
    Sun, S.N., Sun, S.L., Cao, X.F., Sun, R.C., 2016. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 199, 49–58. doi: 10.1016/j.biortech.2015.08.061
    Tan, H.T., Lee, K.T., 2012. Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chem. Eng. J. 183, 448–458. doi: 10.1016/j.cej.2011.12.086
    Tang, Y., Chandra, R.P., Sokhansanj, S., Saddler, J.N., 2018. Influence of steam explosion processes on the durability and enzymatic digestibility of wood pellets. Fuel 211, 87–94. doi: 10.1166/jbt.2018.1717
    Tomaszewski, R., 2023. Visibility, impact, and applications of bibliometric software tools through citation analysis. Scientometrics 128, 4007–4028. doi: 10.1007/s11192-023-04725-2
    Tooyserkani, Z., Kumar, L., Sokhansanj, S., Saddler, J., Bi, X.T., Lim, C.J., Lau, A., Melin, S., 2013. SO2-catalyzed steam pretreatment enhances the strength and stability of softwood pellets. Bioresour. Technol. 130, 59–68. doi: 10.1016/j.biortech.2012.12.004
    Torres-Mayanga, P.C., Lachos-Perez, D., Mudhoo, A., Kumar, S., Brown, A.B., Tyufekchiev, M., Dragone, G., Mussatto, S.I., Rostagno, M.A., Timko, M., Forster-Carneiro, T., 2019. Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: a review. Biomass Bioenergy 130, 105397. doi: 10.1016/j.biombioe.2019.105397
    Vaamonde-García, C., Capelo-Mera, E., Flórez-Fernández, N., Torres, M.D., Rivas-Murias, B., Mejide-Faílde, R., Blanco, F.J., Domínguez, H., 2022. In vitro study of the therapeutic potential of brown crude fucoidans in osteoarthritis treatment. Int. J. Mol. Sci. 23, 14236. doi: 10.3390/ijms232214236
    van Eck, N.J., Waltman, L., 2010. Software survey: vOSviewer, a computer program for bibliometric mapping. Scientometrics 84, 523–538. doi: 10.1007/s11192-009-0146-3
    Wang, D., Shen, F., Yang, G., Zhang, Y.Z., Deng, S.H., Zhang, J., Zeng, Y.M., Luo, T., Mei, Z.L., 2018a. Can hydrothermal pretreatment improve anaerobic digestion for biogas from lignocellulosic biomass?Bioresour. Technol. 249, 117–124. doi: 10.1016/j.biortech.2017.09.197
    Wang, L.P., Chang, Y.Z., Zhang, X.J., Yang, F., Li, Y., Yang, X.R., Dong, S.G., 2020. Hydrothermal co-carbonization of sewage sludge and high concentration phenolic wastewater for production of solid biofuel with increased calorific value. J. Clean. Prod. 255, 120317. doi: 10.1016/j.jclepro.2020.120317
    Wang, T.F., Zhai, Y.B., Zhu, Y., Li, C.T., Zeng, G.M., 2018b. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 90, 223–247. doi: 10.1016/j.rser.2018.03.071
    Wang, T.L., Xiao, Z.S., Li, T.G., Guo, G., Chen, S.Y., Huang, X.Q., 2023. Improving the quality of soluble dietary fiber from Poria cocos peel residue following steam explosion. Food Chem. X 19, 100829. doi: 10.1016/j.fochx.2023.100829
    Willson N.L., Van T.T.H., Bhattarai S.P., Courtice J.M., McIntyre J.R., Prasai T.P., Moore R.J., Walsh K., Stanley D., 2019. Feed supplementation with biochar may reduce poultry pathogens, including Campylobacter hepaticus, the causative agent of Spotty Liver Disease. PLoS One 14, e0214471. doi: 10.1371/journal.pone.0214471
    Xiao M.Z., Chen W.J., Hong S., Pang B., Cao X.F., Wang Y.Y., Yuan T.Q., Sun R.C., 2019. Structural characterization of lignin in heartwood, sapwood, and bark of Eucalyptus. Int. J. Biol. Macromol. 138, 519–527. doi: 10.1016/j.ijbiomac.2019.07.137
    Xie, L., Meng, Y., Wang, Q.R., Zhang, G.Z., Xie, H.M., Zhou, G.L., 2022. Zanthoxylum bungeanum branches activated carbons with rich micropore structure prepared by low temperature H3PO4 hydrothermal pretreatment method for toluene adsorption. Diam. Relat. Mater. 130, 109474. doi: 10.1016/j.diamond.2022.109474
    Xiong, B.L., Ma, S., Chen, B.L., Feng, Y.C., Peng, Z.Q., Tang, X., Yang, S.L., Sun, Y., Lin, L., Zeng, X.H., Chen, Y., 2023. Formic acid-facilitated hydrothermal pretreatment of raw biomass for co-producing xylo-oligosaccharides, glucose, and lignin. Ind. Crops Prod. 193, 116195. doi: 10.1016/j.indcrop.2022.116195
    Xu, C.Z., Tong, S.S., Sun, L.Q., Gu, X.L., 2023a. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: an all-inclusive review. Carbohydr. Polym. 321, 121319. doi: 10.1016/j.carbpol.2023.121319
    Xu, L., Zhang, A.T., Liao, R.J., Pang, Y.X., Yang, D.J., Lou, H.M., Qiu, X.Q., 2023b. Copolymer with tunable cation content as an efficient promoter in enzymatic saccharification of lignocellulose. ACS Appl. Polym. Mater. 5, 8997–9006. doi: 10.1021/acsapm.3c01466
    Xu, Y.Y., Boeing, W.J., 2013. Mapping biofuel field: a bibliometric evaluation of research output. Renew. Sustain. Energy Rev. 28, 82–91. doi: 10.12966/jmir.11.03.2013
    Yan, L.F., Li, W., Yang, J.L., Zhu, Q.S., 2004. Direct visualization of straw cell walls by AFM. Macromol. Biosci. 4, 112–118. doi: 10.1002/mabi.200300032
    Yan, L.S., Ma, R.S., Li, L.Z., Fu, J.L., 2016. Hot water pretreatment of lignocellulosic biomass: an effective and environmentally friendly approach to enhance biofuel production. Chem. Eng. Technol. 39, 1759–1770. doi: 10.1002/ceat.201600394
    Yang, B., Tao, L., Wyman, C.E., 2018. Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels Bioprod. Biorefin. 12, 125–138. doi: 10.1002/bbb.1825
    Yang, J.T., Zhang, Z.M., Wang, J.Y., Zhao, X.L., Zhao, Y., Qian, J.Q., Wang, T.F., 2023. Pyrolysis and hydrothermal carbonization of biowaste: a comparative review on the conversion pathways and potential applications of char product. Sustain. Chem. Pharm. 33, 101106. doi: 10.1016/j.scp.2023.101106
    Yao, F., Ye, G.Z., Peng, W.X., Zhao, G.Y., Wang, X.H., Wang, Y.Q., Zhu, W.F., Jiao, Y.J., Huang, H.M., Ye, D.Q., 2023. Preparation of activated biochar with adjustable pore structure by hydrothermal carbonization for efficient adsorption of VOCs and its practical application prospects. J. Environ. Chem. Eng. 11, 109611. doi: 10.1016/j.jece.2023.109611
    Ying, W.J., Shi, Z.J., Yang, H.Y., Xu, G.F., Zheng, Z.F., Yang, J., 2018. Effect of alkaline lignin modification on cellulase-lignin interactions and enzymatic saccharification yield. Biotechnol. Biofuels 11, 214. doi: 10.1186/s13068-018-1217-6
    Yue, P.P., Hu, Y.J., Tian, R., Bian, J., Peng, F., 2022. Hydrothermal pretreatment for the production of oligosaccharides: a review. Bioresour. Technol. 343, 126075. doi: 10.1016/j.biortech.2021.126075
    Zhang, J.H., Wen, P.Y., Lin, Z.H., Ying, W.J., 2024. A review of enhancement of lignocellulose enzymatic hydrolysis via hydrogen peroxide pretreatments. J. For. Eng. 9, 1–13.
    Zhang, Q., Rong, G., Meng, Q.G., Yu, M., Xie, Q.Y., Fang, J., 2020. Outlining the keyword co-occurrence trends in Shuanghuanglian injection research: a bibliometric study using CiteSpace Ⅲ. J. Tradit. Chin. Med. Sci. 7, 189–198.
    Zhang, Z.M., Yang, J.T., Qian, J.Q., Zhao, Y., Wang, T.F., Zhai, Y.B., 2021. Biowaste hydrothermal carbonization for hydrochar valorization: skeleton structure, conversion pathways and clean biofuel applications. Bioresour. Technol. 324, 124686. doi: 10.1016/j.biortech.2021.124686
    Zhao, Y., Shakeel, U., Saif Ur Rehman, M., Li, H.Q., Xu, X., Xu, J., 2020. Lignin-carbohydrate complexes (LCCs) and its role in biorefinery. J. Clean. Prod. 253, 120076. doi: 10.1016/j.jclepro.2020.120076
    Zhao, Z.Z., Shao, Z.J., Qu, Q., Ji, M.Q., Cheng, D.M., Guo, X.H., 2023. Promoting the overall energy profit through using the liquid hydrolysate during microwave hydrothermal pretreatment of wheat straw as co-substrate for anaerobic digestion. Sci. Total Environ. 857, 159463. doi: 10.1016/j.scitotenv.2022.159463
    Zhou, R.J., Lin, X.L., Liu, D.M., Li, Z., Zeng, J.C., Lin, X.D., Liang, X.D., 2022. Research hotspots and trends analysis of TFEB: a bibliometric and scientometric analysis. Front. Mol. Neurosci. 15, 854954. doi: 10.3389/fnmol.2022.854954
    Zhuang, X.Z., Liu, J.G., Wang, C.G., Zhang, Q., Ma, L.L., 2022. Microwave-assisted hydrothermal liquefaction for biomass valorization: insights into the fuel properties of biocrude and its liquefaction mechanism. Fuel 317, 123462. doi: 10.1016/j.fuel.2022.123462
    Zou, S.L., Xiao, L.P., Li, X.Y., Yin, W.Z., Sun, R.C., 2023. Lignin-based composites with enhanced mechanical properties by acetone fractionation and epoxidation modification. iScience 26, 106187. doi: 10.1016/j.isci.2023.106187
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(7)

    Article Metrics

    Article views (91) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return