Volume 10 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
S M Hasan Shahriar Rahat, Oluwatunmise Israel Dada, Liang Yu, Helmut Kirchhoff, Shulin Chen. Anaerobic digestion bacteria algae (ADBA): A mathematical model of mixotrophic algal growth with indigenous bacterial inhibition in anaerobic digestion effluent[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 32-50. doi: 10.1016/j.jobab.2024.12.004
Citation: S M Hasan Shahriar Rahat, Oluwatunmise Israel Dada, Liang Yu, Helmut Kirchhoff, Shulin Chen. Anaerobic digestion bacteria algae (ADBA): A mathematical model of mixotrophic algal growth with indigenous bacterial inhibition in anaerobic digestion effluent[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 32-50. doi: 10.1016/j.jobab.2024.12.004

Anaerobic digestion bacteria algae (ADBA): A mathematical model of mixotrophic algal growth with indigenous bacterial inhibition in anaerobic digestion effluent

doi: 10.1016/j.jobab.2024.12.004
More Information
  • Corresponding author: E-mail address: yuliang08@wsu.edu (L. Yu); E-mail address: chens@wsu.edu (S. Chen)
  • Available Online: 2024-12-20
  • Publish Date: 2025-02-01
  • A comprehensive kinetic model called anaerobic digestion bacteria algae (ADBA) was developed to describe and predict the complex algae-bacterial system in anaerobic digestion (AD) wastewater under mixotrophic growth conditions. The model was calibrated and validated using the experimental growth data from cultivating the algae (Chlorella vulgaris CA1) with its indigenous bacteria in Blue Green 11 (BG-11) media and different combinations of sterilized, diluted, and raw AD effluent. Key parameters were obtained, including the distinct maximum growth rate of algae on CO2 (µa, CO2, 1.23 per day) and organic carbon (µa, OC, 3.30 per day), the maximum growth rate of bacteria (µb, 1.20 per day), along with two noble parameters, i.e., the algae-bacteria interaction exponent (n, 0.03) and the growth inhibition coefficient (ae = 30 000 mg/L per AU) due to effluent turbidity. The model showed a good fit with an average R2 = 0.90 in all cases adjusted with 25 kinetic parameters. This was the first model capable of predicting algal and bacterial growth in AD effluent with their competitive interactions, assuming shifting growth modes of algae on organic and inorganic carbon under light. It could also predict the removal rate of substrate and nutrients from effluent, light inhibition due to biomass shading and effluent turbidity, mass transfer rate of O2 and CO2 from gas phase to liquid phase, and pH-driven equilibrium between dissolved inorganic carbon components (CO2, HCO3, and CO32–). Algal growth in the strongly buffered AD effluent resulted in odor removal, turbidity reduction, and the removal of ~80% of total ammonium-nitrogen and 90% of organic carbon. In addition to process parameter prediction, this study offered a practical solution to wastewater treatment, air pollution, and nutrient recycling, ensuring a holistic and practical approach to ecological balance.

     

  • The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Declaration of competing interest
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2024.12.004.
  • loading
  • Adesanya, V.O., Davey, M.P., Scott, S.A., Smith, A.G., 2014. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Bioresour. Technol. 157, 293–304. doi: 10.1016/j.biortech.2014.01.032
    Al-lwayzy, S., Yusaf, T., Al-Juboori, R., 2014. Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies. (Basel) 7, 1829–1851. doi: 10.3390/en7031829
    Aparicio, S., González-Camejo, J., Seco, A., Borrás, L., Robles, Á., Ferrer, J., 2023. Integrated microalgae-bacteria modelling: application to an outdoor membrane photobioreactor (MPBR). Sci. Total Environ. 884, 163669. doi: 10.1016/j.scitotenv.2023.163669
    Azari, A., Tavakoli, H., Barkdoll, B.D., Haddad, O.B., 2020. Predictive model of algal biofuel production based on experimental data. Algal. Res. 47, 101843. doi: 10.1016/j.algal.2020.101843
    Béchet, Q., Shilton, A., Guieysse, B., 2013. Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol. Adv. 31, 1648–1663. doi: 10.1016/j.biotechadv.2013.08.014
    Bekoe, D., Wang, L.J., Zhang, B., Scott Todd, M., Shahbazi, A., 2018. Aerobic treatment of swine manure to enhance anaerobic digestion and microalgal cultivation. J. Environ. Sci. Health B 53, 145–151. doi: 10.1080/03601234.2017.1397454
    Bentahar, J., Deschênes, J.S., 2023. A reliable multi-nutrient model for the rapid production of high-density microalgal biomass over a broad spectrum of mixotrophic conditions. Bioresour. Technol. 381, 129162. doi: 10.1016/j.biortech.2023.129162
    Bidart, C., Fröhling, M., Schultmann, F., 2014. Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge. Appl. Energy 113, 404–413. doi: 10.1016/j.apenergy.2013.07.028
    Buhr, H.O., Miller, S.B., 1983. A dynamic model of the high-rate algal-bacterial wastewater treatment pond. Water. Res. 17, 29–37. doi: 10.1016/0043-1354(83)90283-X
    Casagli, F., Rossi, S., Steyer, J.P., Bernard, O., Ficara, E., 2021a. Balancing microalgae and nitrifiers for wastewater treatment: can inorganic carbon limitation cause an environmental threat? Environ. Sci. Technol. 55, 3940–3955. doi: 10.1021/acs.est.0c05264
    Casagli, F., Zuccaro, G., Bernard, O., Steyer, J.P., Ficara, E., 2021b. ALBA: a comprehensive growth model to optimize algae-bacteria wastewater treatment in raceway ponds. Water. Res. 190, 116734. doi: 10.1016/j.watres.2020.116734
    Chen, C.Y., Chang, Y.H., Chang, H.Y., 2016. Outdoor cultivation of Chlorella vulgaris FSP-E in vertical tubular-type photobioreactors for microalgal protein production. Algal. Res. 13, 264–270. doi: 10.1016/j.algal.2015.12.006
    Chen, G.Y., Zhao, L., Qi, Y., 2015. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl. Energy 137, 282–291. doi: 10.1016/j.apenergy.2014.10.032
    Dalrymple, O.K., Halfhide, T., Udom, I., Gilles, B., Wolan, J., Zhang, Q., Ergas, S., 2013. Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquat. Biosyst. 9, 2. doi: 10.1186/2046-9063-9-2
    de Farias Silva, C.E., de Oliveira Cerqueira, R.B., de Lima Neto, C.F., de Andrade, F.P., de Oliveira Carvalho, F., Tonholo, J., 2020. Developing a kinetic model to describe wastewater treatment by microalgae based on simultaneous carbon, nitrogen and phosphorous removal. J. Environ. Chem. Eng. 8, 103792. doi: 10.1016/j.jece.2020.103792
    Deamici, K.M., Pessôa, L.C., Mata, S.N., Moreira, Í. T.A., de Jesus Assis, D., de Souza, C.O., 2024. Enhancing microalgal cultures in desalinized wastewater from semiarid regions: an assessment of growth dynamics and biomass accumulation. J. Appl. Phycol. 36, 1135–1142. doi: 10.1007/s10811-023-03175-w
    Decostere, B., De Craene, J., Van Hoey, S., Vervaeren, H., Nopens, I., Van Hulle, S.W.H., 2016. Validation of a microalgal growth model accounting with inorganic carbon and nutrient kinetics for wastewater treatment. Chem. Eng. J. 285, 189–197. doi: 10.1016/j.cej.2015.09.111
    Demirbas, A., Fatih Demirbas, M., 2011. Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 52, 163–170. doi: 10.1016/j.enconman.2010.06.055
    Doušková, I., Kaštánek, F., Maléterová, Y., Kaštánek, P., Doucha, J., Zachleder, V., 2010. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energy Convers. Manag. 51, 606–611. doi: 10.1016/j.enconman.2009.11.008
    Dragone, G., 2022. Challenges and opportunities to increase economic feasibility and sustainability of mixotrophic cultivation of green microalgae of the genus Chlorella. Renew. Sustain. Energy Rev. 160, 112284. doi: 10.1016/j.rser.2022.112284
    Endo, H., Sansawa, H., Nakajima, K., 1977. Studies on Chlorella regularis, heterotrophic fast-growing strain Ⅱ. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol. 18, 199–205. http://pcp.oxfordjournals.org/content/18/1/199.abstract
    Eze, V.C., Velasquez-Orta, S.B., Hernández-García, A., Monje-Ramírez, I., Orta-Ledesma, M.T., 2018. Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal. Res. 32, 131–141. doi: 10.1016/j.algal.2018.03.015
    Figueroa-Torres, G.M., Pittman, J.K., Theodoropoulos, C., 2017. Kinetic modelling of starch and lipid formation during mixotrophic, nutrient-limited microalgal growth. Bioresour. Technol. 241, 868–878. doi: 10.1016/j.biortech.2017.05.177
    Grover, J.P., 1991. Dynamics of competition among microalgae in variable environments: experimental tests of alternative models. Oikos. 62, 231–243. doi: 10.2307/3545269
    Henze, M., Gujer, W., Mino, T., van Loosdrecht, M., 2000. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. IWA Publishing, London.
    Heredia-Arroyo, T., Wei, W., Ruan, R., Hu, B., 2011. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. BioMass BioEnergy 35, 2245–2253. doi: 10.1016/j.biombioe.2011.02.036
    Iman Shayan, S., Zalivina, N., Wang, M., Ergas, S.J., Zhang, Q., 2022. Dynamic model of algal-bacterial shortcut nitrogen removal in photo-sequencing batch reactors. Algal. Res. 64, 102688. doi: 10.1016/j.algal.2022.102688
    John, E.H., Flynn, K.J., 2000. Modelling phosphate transport and assimilation in microalgae; how much complexity is warranted? Ecol. Model. 125, 145–157. doi: 10.1016/S0304-3800(99)00178-7
    Khan, M.I., Shin, J.H., Kim, J.D., 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17, 36. doi: 10.1186/s12934-018-0879-x
    Kong, W.W., Kong, J., Feng, S., Yang, T.T., Xu, L.F., Shen, B.X., Bi, Y.H., Lyu, H.H., 2024. Cultivation of microalgae-bacteria consortium by waste gas-waste water to achieve CO2 fixation, wastewater purification and bioproducts production. Biotechnol. Biofuels Bioprod. 17, 26. doi: 10.1186/s13068-023-02409-w
    Lee, E., Jalalizadeh, M., Zhang, Q., 2015. Growth kinetic models for microalgae cultivation: a review. Algal. Res. 12, 497–512. doi: 10.1016/j.algal.2015.10.004
    Leite, G.B., Abdelaziz, A.E.M., Hallenbeck, P.C., 2013. Algal biofuels: challenges and opportunities. Bioresour. Technol. 145, 134–141. doi: 10.1016/j.biortech.2013.02.007
    Li, Y.Q., Horsman, M., Wu, N., Lan, C.Q., Dubois-Calero, N., 2008. Biofuels from microalgae. Biotechnol. Prog. 24, 815–820. doi: 10.1021/bp070371k
    Liang, Y.N., Sarkany, N., Cui, Y., 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31, 1043–1049. doi: 10.1007/s10529-009-9975-7
    Liu, J., Chen, F., 2016. Biology and industrial applications of Chlorella: advances and prospects. In: Posten, C., Feng Chen, S. (Eds. ), Microalgae Biotechnology. Springer International Publishing, Cham, pp. 1–35.
    Liu, Y.Q., Zhou, J., Liu, D., Zeng, Y.H., Tang, S., Han, Y.L., Jiang, Y.L., Cai, Z.H., 2022. A growth-boosting synergistic mechanism of Chromochloris zofingiensis under mixotrophy. Algal. Res. 66, 102812. doi: 10.1016/j.algal.2022.102812
    Lopes, E.W.R., dos Santos Carneiro, W., de Farias Silva, C.E., de Araujo Vitorino, A.F.R., de Sá Filho, M.L.F., De Andrade, F.P., 2023. A procedure to implement kinetic modelling of wastewater treatment by microalgae considering multiple contaminant removal. Energy Ecol. Environ. 8, 556–569. doi: 10.1007/s40974-023-00279-4
    Martínez, C., Mairet, F., Bernard, O., 2018. Theory of turbid microalgae cultures. J. Theor. Biol. 456, 190–200. doi: 10.1016/j.jtbi.2018.07.016
    Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S.I., Lee, Y.C., 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 339, 69–72. doi: 10.1016/j.ab.2004.12.001
    Medipally, S.R., Yusoff, F.M., Banerjee, S., Shariff, M., 2015. Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res. Int., 519513 2015.
    Mozumder, M.S.I., Hasan Shahriar Rahat, S.M., Islam, M.M., Mehjabin, F., Mahmud, F., Basak, R., Rahman, M.M., 2024. Model development and process evaluation for algal growth and lipid production. Biochem. Eng. J. 212, 109485. doi: 10.1016/j.bej.2024.109485
    Nordio, R., Rodríguez-Miranda, E., Casagli, F., Sánchez-Zurano, A., Guzmán, J.L., Acién, G., 2024. ABACO-2: a comprehensive model for microalgae-bacteria consortia validated outdoor at pilot-scale. Water. Res. 248, 120837. doi: 10.1016/j.watres.2023.120837
    Novak, J.T., Brune, D.E., 1985. Inorganic carbon limited growth kinetics of some freshwater algae. Water. Res. 19, 215–225. doi: 10.1016/0043-1354(85)90203-9
    Palafox-Sola, M.F., Yebra-Montes, C., Orozco-Nunnelly, D.A., Carrillo-Nieves, D., González-López, M.E., Gradilla-Hernández, M.S., 2023. Modeling growth kinetics and community interactions in microalgal cultures for bioremediation of anaerobically digested swine wastewater. Algal Res. 70, 102981. doi: 10.1016/j.algal.2023.102981
    Pang, N., Bergeron, A.D., Gu, X.Y., Fu, X., Dong, T., Yao, Y.Q., Chen, S.L., 2020. Recycling of nutrients from dairy wastewater by extremophilic microalgae with high ammonia tolerance. Environ. Sci. Technol. 54, 15366–15375. doi: 10.1021/acs.est.0c02833
    Patel, A.K., Choi, Y.Y., Sim, S.J., 2020. Emerging prospects of mixotrophic microalgae: way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresour. Technol. 300, 122741. doi: 10.1016/j.biortech.2020.122741
    Pooja, K., Priyanka, V., Rao, B.C.S., Raghavender, V., 2022. Cost-effective treatment of sewage wastewater using microalgae Chlorella vulgaris and its application as bio-fertilizer. Energy Nexus. 7, 100122. doi: 10.1016/j.nexus.2022.100122
    Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyódy, L., Vanrolleghem, P., 2001. River water quality model no. 1 (RWQM1): Ⅱ. biochemical process equations. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 43, 11–30. doi: 10.2166/wst.2001.0241
    Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R., 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102, 100–112. doi: 10.1002/bit.22033
    Roy, C., Sen, P., Vurimindi, H., 2023. Kinetic modeling and experiments on removal of COD/nutrients from dairy effluent using Chlorella and co-culture. Bioprocess Biosyst. Eng. 46, 1099–1110. doi: 10.1007/s00449-023-02894-1
    Saldarriaga, L.F., Almenglo, F., Ramírez, M., Cantero, D., 2020. Kinetic characterization and modeling of a microalgae consortium isolated from landfill leachate under a high CO2 concentration in a bubble column photobioreactor. Electron. J. Biotechnol. 44, 47–57. doi: 10.1016/j.ejbt.2020.01.006
    Sarwer, A., Hamed, S.M., Osman, A.I., Jamil, F., Al-Muhtaseb, A.H., Alhajeri, N.S., Rooney, D.W., 2022. Algal biomass valorization for biofuel production and carbon sequestration: a review. Environ. Chem. Lett. 20, 2797–2851. doi: 10.1007/s10311-022-01458-1
    Shan, S.Z., Manyakhin, A.Y., Wang, C., Ge, B.S., Han, J.C., Zhang, X.Z., Zhou, C.X., Yan, X.J., Ruan, R., Cheng, P.F., 2023. Mixotrophy, a more promising culture mode: multi-faceted elaboration of carbon and energy metabolism mechanisms to optimize microalgae culture. Bioresour. Technol. 386, 129512. doi: 10.1016/j.biortech.2023.129512
    Solimeno, A., García, J., 2017. Microalgae-bacteria models evolution: from microalgae steady-state to integrated microalgae-bacteria wastewater treatment models - A comparative review. Sci. Total Environ. 607/608, 1136–1150. doi: 10.1016/j.scitotenv.2017.07.114
    Solimeno, A., Gómez-Serrano, C., Acién, F.G., 2019. BIO_ALGAE 2: improved model of microalgae and bacteria consortia for wastewater treatment. Environ. Sci. Pollut. Res. Int. 26, 25855–25868. doi: 10.1007/s11356-019-05824-5
    Solimeno, A., Parker, L., Lundquist, T., García, J., 2017. Integral microalgae-bacteria model (BIO_ALGAE): application to wastewater high rate algal ponds. Sci. Total Environ. 601, 646–657. http://www.onacademic.com/detail/journal_1000039918023810_4186.html
    Sommer, U., 1991. A comparison of the droop and the monod models of nutrient limited growth applied to natural populations of phytoplankton. Funct. Ecol. 5, 535. doi: 10.2307/2389636
    Surendhiran, D., Vijay, M., Sivaprakash, B., Sirajunnisa, A., 2015. Kinetic modeling of microalgal growth and lipid synthesis for biodiesel production. 3. Biotech. 5, 663–669. doi: 10.1007/s13205-014-0264-3
    Viruela, A., Aparicio, S., Robles, Á., Borrás Falomir, L., Serralta, J., Seco, A., Ferrer, J., 2021. Kinetic modeling of autotrophic microalgae mainline processes for sewage treatment in phosphorus-replete and-deplete culture conditions. Sci. Total Environ. 797, 149165. doi: 10.1016/j.scitotenv.2021.149165
    Wang, L., Min, M., Li, Y.C., Chen, P., Chen, Y.F., Liu, Y.H., Wang, Y.K., Ruan, R., 2010. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 162, 1174–1186. doi: 10.1007/s12010-009-8866-7
    Wolf, G., Picioreanu, C., van Loosdrecht, M.C.M., 2007. Kinetic modeling of phototrophic biofilms: the PHOBIA model. Biotechnol. Bioeng. 97, 1064–1079. doi: 10.1002/bit.21306
    Xiao, Z.Y., Zheng, Y.R., Gudi, C.R., Liu, Y., Liao, W., Tang, Y.J., 2021. Development of a kinetic model to describe six types of symbiotic interactions in a formate utilizing microalgae-bacteria cultivation system. Algal. Res. 58, 102372. doi: 10.1016/j.algal.2021.102372
    Yap, J.K., Sankaran, R., Chew, K.W., Halimatul Munawaroh, H.S., Ho, S.H., Rajesh Banu, J., Show, P.L., 2021. Advancement of green technologies: a comprehensive review on the potential application of microalgae biomass. Chemosphere 281, 130886. doi: 10.1016/j.chemosphere.2021.130886
    Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y., Oh, H.M., 2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol. 101, S71–S74. doi: 10.1016/j.biortech.2009.03.030
    Yu, L., Li, T.T., Ma, J.W., Zhao, Q.B., Wensel, P., Lian, J.N., Chen, S.L., 2022. A kinetic model of heterotrophic and mixotrophic cultivation of the potential biofuel organism microalgae Chlorella sorokiniana. Algal. Res. 64, 102701. doi: 10.1016/j.algal.2022.102701
    Zhang, X.W., Zhang, Y.M., Chen, F., 1999. Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process. Biochem. 34, 477–481. doi: 10.1016/S0032-9592(98)00114-9
    Zheng, M.M., Dai, J.X., Ji, X.W., Li, D.G., He, Y.J., Wang, M.Z., Huang, J., Chen, B.L., 2021. An integrated semi-continuous culture to treat original swine wastewater and fix carbon dioxide by an indigenous Chlorella vulgaris MBFJNU-1 in an outdoor photobioreactor. Bioresour. Technol. 340, 125703. doi: 10.1016/j.biortech.2021.125703
    Zieliński, M., Dębowski, M., Kazimierowicz, J., 2022. Outflow from a biogas plant as a medium for microalgae biomass cultivation—Pilot scale study and technical concept of a large-scale installation. Energies 15, 2912. doi: 10.3390/en15082912
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (99) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return