Volume 10 Issue 2
May  2025
Turn off MathJax
Article Contents
Rui Yang, Changlei Xia, Changtong Mei, Jianzhang Li. Integration of biopolymers in polyacrylic acid hydrogels: Innovations and applications in bioresources and bioproducts[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 145-169. doi: 10.1016/j.jobab.2024.12.005
Citation: Rui Yang, Changlei Xia, Changtong Mei, Jianzhang Li. Integration of biopolymers in polyacrylic acid hydrogels: Innovations and applications in bioresources and bioproducts[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 145-169. doi: 10.1016/j.jobab.2024.12.005

Integration of biopolymers in polyacrylic acid hydrogels: Innovations and applications in bioresources and bioproducts

doi: 10.1016/j.jobab.2024.12.005
Funds:

This work was supported by Young Scientists Fund of the National Natural Science Foundation of China (No. 32101459), Jiangsu Agricultural Science and Technology Innovation Fund (No. CX (22)3171), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

  • Available Online: 2025-05-09
  • Publish Date: 2025-01-02
  • The development of sustainable biomaterials has recently attracted great interest in the fields of flexible electronics and biosensing hydrogels. Hydrogels are a class of three-dimensional spatial network structure, and their structure and shape can exhibit reversible or noticeable responses to various stimuli, making them a popular choice for flexible electronic materials in recent years. Acrylic hydrogels, which possess a rich carboxylate network, can provide significant sensing and actuation properties to the hydrogels. They are often synthesized through the co-polymerization of their monomers and cross-linking agents, and they can be combined with naturally occurring biopolymers such as cellulose and chitosan to enhance biocompatibility. In this paper, we review the compounding methods and preparation process technologies of functionalized acrylic hydrogels and the application of polyacrylic acid (PAA) bioproducts in various fields. Finally, we review the current challenges and future directions for acrylic hydrogel prepared sensors and their applications.

     

  • loading
  • [1]
    Abdollahi, R., Taghizadeh, M.T., Savani, S., 2018. Thermal and mechanical properties of graphene oxide nanocomposite hydrogel based on poly(acrylic acid) grafted onto amylose. Polym. Degrad. Stab. 147, 151-158.
    [2]
    Ahmad, Z., Salman, S., Khan, S.A., Amin, A., Rahman, Z.U., Al-Ghamdi, Y.O., Akhtar, K., Bakhsh, E.M., Khan, S.B., 2022. Versatility of hydrogels: from synthetic strategies, classification, and properties to biomedical applications. Gels 8, 167.
    [3]
    Ahmed, A., Nath, J., Baruah, K., Rather, M.A., Mandal, M., Dolui, S.K., 2023. Development of mussel mimetic gelatin based adhesive hydrogel for wet surfaces with self-healing and reversible properties. Int. J. Biol. Macromol. 228, 68-77.
    [4]
    Ahmed, E.M., 2015. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6, 105-121.
    [5]
    Algamili, A.S., Khir, M.H.M., Dennis, J.O., Ahmed, A.Y., Alabsi, S.S., Ba Hashwan, S.S., Junaid, M.M., 2021. A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Res. Lett. 16, 16.
    [6]
    Altug, H., Oh, S.H., Maier, S.A., Homola, J., 2022. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5-16.
    [7]
    Anjum, S., Gurave, P., Badiger, M.V., Torris, A., Tiwari, N., Gupta, B., 2017. Design and development of trivalent aluminum ions induced self-healing polyacrylic acid novel hydrogels. Polymer 126, 196-205.
    [8]
    Arango, J.C., Williams, L.O., Shi, A.N., Singh, A., Nava, E.K., Fisher, R.V., Garfield, J.A., Claridge, S.A., 2022. Nanostructured surface functionalization of polyacrylamide hydrogels below the length scale of hydrogel heterogeneity. ACS Appl. Mater. Interfaces 14, 43937-43945.
    [9]
    Ashraf, R., Sofi, H.S., Malik, A., Beigh, M.A., Hamid, R., Sheikh, F.A., 2019. Recent trends in the fabrication of starch nanofibers: electrospinning and non-electrospinning routes and their applications in biotechnology. Appl. Biochem. Biotechnol. 187, 47-74.
    [10]
    Aydemir, N., McArdle, H., Patel, S., Whitford, W., Evans, C.W., Travas-Sejdic, J., Williams, D.E., 2015. A label-free, sensitive, real-time, semiquantitative electrochemical measurement method for DNA polymerase amplification (ePCR). Anal. Chem. 87, 5189-5197.
    [11]
    Bai, H.N., Guo, H., Wang, J., Dong, Y., Liu, B., Xie, Z.L., Guo, F.Q., Chen, D.J., Zhang, R., Zheng, Y.D., 2021. A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets. Sens. Actuat. B Chem. 337, 129783.
    [12]
    Bashir, S., Hina, M., Iqbal, J., Rajpar, A.H., Mujtaba, M.A., Alghamdi, N.A., Wageh, S., Ramesh, K., Ramesh, S., 2020. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers 12, 2702.
    [13]
    Birlutiu, R.M., Birlutiu, V., Mihalache, M., Mihalache, C., Cismasiu, R.S., 2017. Diagnosis and management of orthopedic implant-associated infection: a comprehensive review of the literature. Biomed. Res. 28, 5063-5073.
    [14]
    Bogusz, K., Zuchora, M., Sencadas, V., Tehei, M., Lerch, M., Thorpe, N., Rosenfeld, A., Dou, S.X., Liu, H.K., Konstantinov, K., 2019. Synthesis of methotrexate-loaded tantalum pentoxide-poly(acrylic acid) nanoparticles for controlled drug release applications. J. Colloid Interface Sci. 538, 286-296.
    [15]
    Bottichio, L., Keaton, A., Thomas, D., Fulton, T., Tiffany, A., Frick, A., Mattioli, M., Kahler, A., Murphy, J., Otto, M., Tesfai, A., Fields, A., Kline, K., Fiddner, J., Higa, J., Barnes, A., Arroyo, F., Salvatierra, A., Holland, A., Taylor, W., Nash, J., Morawski, B.M., Correll, S., Hinnenkamp, R., Havens, J., Patel, K., Schroeder, M.N., Gladney, L., Martin, H., Whitlock, L., Dowell, N., Newhart, C., Watkins, L.F., Hill, V., Lance, S.S., Harris, S., Wise, M., Williams, I., Basler, C., Gieraltowski, L., 2020. Shiga toxin-producing Escherichia coli infections associated with romaine lettuce-United States, 2018. Clin. Infect. Dis. 71, e323-e330.
    [16]
    Boursianis, A.D., Papadopoulou, M.S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidis, G., Wan, S.H., Goudos, S.K., 2022. Internet of Things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: a comprehensive review. Internet Things 18, 100187.
    [17]
    Boutry, C.M., Beker, L., Kaizawa, Y., Vassos, C., Tran, H., Hinckley, A.C., Pfattner, R., Niu, S.M., Li, J.H., Claverie, J., Wang, Z., Chang, J., Fox, P.M., Bao, Z.N., 2019. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47-57.
    [18]
    Castrica, M., Chiesa, L.M., Nobile, M., De Battisti, F., Siletti, E., Pessina, D., Panseri, S., Balzaretti, C.M., 2021. Rapid safety and quality control during fish shelf-life by using a portable device. J. Sci. Food Agric. 101, 315-326.
    [19]
    Cerrato, A., Cavaliere, C., Montone, C.M., Piovesana, S., 2023. New hydrophilic material based on hydrogel polymer for the selective enrichment of intact glycopeptides from serum protein digests. Anal. Chim. Acta 1245, 340862.
    [20]
    Ceylan, Ö., Kaya, M.A., Sarac, A., 2019. Preparation of partially neutralized poly(acrylic acid) microspheres via inverse Pickering suspension polymerization. Polym. Eng. Sci. 59, 162-169.
    [21]
    Chen, B.Y., Zhu, D.D., Li, Q., Wang, C.H., Cui, J.H., Zheng, Z., Wang, X.L., 2023. Mechanically reinforced and injectable universal adhesive based on a PEI-PAA/alg dual-network hydrogel designed by topological entanglement and catechol chemistry. ACS Appl. Mater. Interfaces 15, 59826-59837.
    [22]
    Chen, W.P., Hao, D.Z., Hao, W.J., Guo, X.L., Jiang, L., 2018. Hydrogel with ultrafast self-healing property both in air and underwater. ACS Appl. Mater. Interfaces 10, 1258-1265.
    [23]
    Chen, Y., Li, P., Liao, L.Y., Qin, Y.Y., Jiang, L.W., Liu, Y., 2021. Characteristic fingerprints and volatile flavor compound variations in Liuyang Douchi during fermentation via HS-GC-IMS and HS-SPME-GC-MS. Food Chem. 361, 130055.
    [24]
    Cheng, H., Shi, Z., Yue, K., Huang, X.S., Xu, Y.C., Gao, C.H., Yao, Z.Q., Zhang, Y.S., Wang, J., 2021. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater. 124, 219-232.
    [25]
    Choudhury, R.R., Gohil, J.M., Dutta, K., 2022. Eco-friendly method for preparation of cross-linked PVA/PAA thin films and membranes thereof for water treatment. Iran. Polym. J. 31, 1537-1550.
    [26]
    Corres, J. M., Arregui, F. J., Matías, I. R., Rodríguez, Y. Y., 2013. High sensitivity optical fiber pH sensor using poly(acrylic acid) nanofibers. EN 2013. IEEE SENSORS 1-4.
    [27]
    Costa, L.I., Storti, G., Lazzari, S., 2018. Solution of population balance equations by logarithmic shape preserving interpolation on finite elements. Computers & Chemical Engineering. 119, 2018,13-24.
    [28]
    Cozens, E.J., Roohpour, N., Gautrot, J.E., 2021. Comparative adhesion of chemically and physically crosslinked poly(acrylic acid)-based hydrogels to soft tissues. Eur. Polym. J. 146, 110250.
    [29]
    de Lira, D.R.P., Cavalcanti, A.M.F., Pinheiro, S.R.S., Orsi, H., Dos Santos, L.F., Hernandes, R.T., 2021. Identification of a hybrid atypical enteropathogenic and enteroaggregative Escherichia coli (aEPEC/EAEC) clone of serotype O3: H2 associated with a diarrheal outbreak in Brazil. Braz. J. Microbiol. 52, 2075-2079.
    [30]
    De Rycke, E., Stove, C., Dubruel, P., De Saeger, S., Beloglazova, N., 2020. Recent developments in electrochemical detection of illicit drugs in diverse matrices. Biosens. Bioelectron. 169, 112579.
    [31]
    Demir, S., Adımcılar, V., Cini, N., Gölcü, A., 2022. In-vitro release study of Pt (II) and Fe (III) metallocefotaxime drug candidates in pH dependent releasing mediums mimicking human biological fluids. J. Drug Deliv. Sci. Technol. 71, 103328.
    [32]
    Deng, K.F., Bellmann, C., Fu, Y.X., Rohn, M., Guenther, M., Gerlach, G., 2018. Miniaturized force-compensated hydrogel-based pH sensors. Sens. Actuat. B Chem. 255, 3495-3504.
    [33]
    Ding, Q., Li, C., Wang, H.J., Xu, C.L., Kuang, H., 2021. Electrochemical detection of heavy metal ions in water. Chem. Commun. 57, 7215-7231.
    [34]
    Ding, Q.T., Zhang, S., Liu, X.L., Zhao, Y.C., Yang, J.L., Chai, G.D., Wang, N., Ma, S., Liu, W.C., Ding, C.B., 2023. Hydrogel tissue bioengineered scaffolds in bone repair: a review. Molecules 28, 7039.
    [35]
    Fang, H., Lin, J.B., Hu, Z.X., Liu, H., Tang, Z.R., Shi, T.L., Liao, G.L., 2020. Cu (OH)2 nanowires/graphene oxide composites based QCM humidity sensor with fast-response for real-time respiration monitoring. Sens. Actuat. B Chem. 304, 127313.
    [36]
    Fazial, F.F., Tan, L.L., Zubairi, S.I., 2018. Bienzymatic creatine biosensor based on reflectance measurement for real-time monitoring of fish freshness. Sens. Actuat. B Chem. 269, 36-45.
    [37]
    Fei, X.F., Lou, Z.H., Xiao, R., Ren, Z.Q., Lv, X.N., 2022. Source analysis and source-oriented risk assessment of heavy metal pollution in agricultural soils of different cultivated land qualities. J. Clean. Prod. 341, 130942.
    [38]
    Feng, E.K., Gao, W., Yan, Z., Li, J.J., Li, Z.L., Ma, X.X., Ma, L.H., Yang, Z.M., 2020. A multifunctional hydrogel polyelectrolyte based flexible and wearable supercapacitor. J. Power Sources 479, 229100.
    [39]
    Francis, L., Ahmed, F.E., Hilal, N., 2022. Electrospun membranes for membrane distillation: The state of play and recent advances. Desalination 526, 115511.
    [40]
    Gundogdu, D., Alemdar, C., Turan, C., Hazal Husnugil, H., Banerjee, S., Erel-Goktepe, I., 2023. Tuning stimuli-responsive properties of alginate hydrogels through layer-by-layer functionalization for dual-responsive dual drug release. Colloids Surf. A Physicochem. Eng. Asp. 676, 132213.
    [41]
    Guo, M.L., Wu, Y.P., Xue, S.S., Xia, Y.M., Yang, X., Dzenis, Y., Li, Z.Y., Lei, W.W., Smith, A.T., Sun, L.Y., 2019. A highly stretchable, ultra-tough, remarkably tolerant, and robust self-healing glycerol-hydrogel for a dual-responsive soft actuator. J. Mater. Chem. A 7, 25969-25977.
    [42]
    Gupta, N.V., Shivakumar, H.G., 2012. Investigation of swelling behavior and mechanical properties of a pH-sensitive superporous hydrogel composite. Iran. J. Pharm. Res. 11, 481-493.
    [43]
    Hao, S., Li, T.C., Yang, X.M., Song, H.Z., 2023. Ultrastretchable, adhesive, fast self-healable, and three-dimensional printable photoluminescent ionic skin based on hybrid network ionogels. ACS Appl. Mater. Interfaces 14, 2029-2037.
    [44]
    He, F.L., You, X.Y., Gong, H., Yang, Y., Bai, T., Wang, W.G., Guo, W.X., Liu, X.Y., Ye, M.D., 2020. Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl. Mater. Interfaces 12, 6442-6450.
    [45]
    He, W.P., Frueh, J., Hu, N., Liu, L.P., Gai, M.Y., He, Q., 2016. Guidable thermophoretic Janus micromotors containing gold nanocolorifiers for infrared laser assisted tissue welding. Adv. Sci. 3, 1600206.
    [46]
    Hong, X.Y., Ding, H., Li, J., Xue, Y.Y., Sun, L.Y., Ding, F.C., 2021. Poly(acrylamide-co-acrylic acid)/chitosan semi-interpenetrating hydrogel for pressure sensor and controlled drug release. Polym. Adv. Technol. 32, 3050-3058.
    [47]
    Hosseinzadeh, A., Pashaei, S., Hosseinzadeh, S., Namazi, H., 2020. Surface modification of multiwalled carbon nanotubes via surface RAFT copolymerization method and capecitabine-loaded anticancer hydrogel for controlled drug delivery in stomach. Polym. Plast. Technol. Mater. 59, 1812-1821.
    [48]
    Hu L., Chee P.L., Sugiarto S., Yu Y., Shi C., Yan R., Yao Z., Shi X., Zhi J., Kai D., Yu H.D., Huang W., 2023. Hydrogel-based flexible electronics. Adv. Mater. Deerfield Beach Fla 35, e2205326.
    [49]
    Huang, C.B., Soenen, S.J., Rejman, J., Lucas, B., Braeckmans, K., Demeester, J., De Smedt, S.C., 2011. Stimuli-responsive electrospun fibers and their applications. Chem. Soc. Rev. 40, 2417-2434.
    [50]
    Hussain, S., Park, S.Y., 2023. pH-responsive circular bilayer biosensor based on the actuation of an interpenetrating polymer network comprising crosslinked nematic liquid crystals and poly(Acrylic Acid). Sens. Actuat. B Chem. 377, 133096.
    [51]
    Hussain, Y.A., Liu, T., Roberts, G.W., 2012. Synthesis of cross-linked, partially neutralized poly(acrylic acid) by suspension polymerization in supercritical carbon dioxide. Ind. Eng. Chem. Res. 51, 11401-11408.
    [52]
    Ivanov, A.S., Pershina, L.V., Nikolaev, K.G., Skorb, E.V., 2021. Recent progress of layer-by-layer assembly, free-standing film and hydrogel based on polyelectrolytes. Macromol. Biosci. 21, e2100117.
    [53]
    Jackson, A.W., Mothe, S.R., Ang, P., Chennamaneni, L.R., Herk, A.M.V., Thoniyot, P., 2022. Backbone degradable poly(acrylic acid) analogue via radical ring-opening copolymerization and enhanced biodegradability. Chemosphere 293, 133487.
    [54]
    Jacob, S., Nair, A.B., Shah, J., Sreeharsha, N., Gupta, S., Shinu, P., 2021. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics 13, 357.
    [55]
    Ji, Y.T., Sun, Y.L., Javed, M., Xiao, Y.H., Li, X.Y., Jin, K.L., Cai, Z.S., Xu, B., 2022. Skin inspired thermoresponsive polymer for constructing self-cooling system. Energy Convers. Manag. 254, 115251.
    [56]
    Jiao, G.J., Ma, J.L., Li, Y.C., Jin, D.N., Zhou, J.H., Sun, R.C., 2022. Removed heavy metal ions from wastewater reuse for chemiluminescence: successive application of lignin-based composite hydrogels. J. Hazard. Mater. 421, 126722.
    [57]
    Jiao, Y., Lu, K.Y., Lu, Y., Yue, Y.Y., Xu, X.W., Xiao, H.N., Li, J., Han, J.Q., 2021. Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel. Cellulose 28, 4295-4311.
    [58]
    Jin, Y.H., Wang, Q., Taynton, P., Zhang, W., 2014. Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. Acc. Chem. Res. 47, 1575-1586.
    [59]
    Jurczak, P., Lach, S., 2023. Hydrogels as scaffolds in bone-related tissue engineering and regeneration. Macromol. Biosci. 23, e2300152.
    [60]
    Karaouzas, I., Kapetanaki, N., Mentzafou, A., Kanellopoulos, T.D., Skoulikidis, N., 2021. Heavy metal contamination status in Greek surface waters: a review with application and evaluation of pollution indices. Chemosphere 263, 128192.
    [61]
    Kasai, R.D., Radhika, D., Archana, S., Shanavaz, H., Koutavarapu, R., Lee, D.Y., Shim, J., 2023. A review on hydrogels classification and recent developments in biomedical applications. Int. J. Polym. Mater. Polym. Biomater. 72, 1059-1069.
    [62]
    Katz, J.N., Arant, K.R., Loeser, R.F., 2021. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA 325, 568-578.
    [63]
    Kaur, B., Kumar, S., Kaushik, B.K., 2022. Recent advancements in optical biosensors for cancer detection. Biosens. Bioelectron. 197, 113805.
    [64]
    Kerr-Phillips, T.E., Aydemir, N., Chan, E.W.C., Barker, D., Malmström, J., Plesse, C., Travas-Sejdic, J., 2018. Conducting electrospun fibres with polyanionic grafts as highly selective, label-free, electrochemical biosensor with a low detection limit for non-Hodgkin lymphoma gene. Biosens. Bioelectron. 100, 549-555.
    [65]
    Khatib, M., Haick, H., 2022. Sensors for volatile organic compounds. ACS Nano, 16, 7080-7115.
    [66]
    Kim, H.J., Paquin, L., Barney, C.W., So, S., Chen, B.H., Suo, Z.G., Crosby, A.J., Hayward, R.C., 2020. Low-voltage reversible electroadhesion of ionoelastomer junctions. Adv. Mater. 32, e2000600.
    [67]
    Kou, D.H., Zhang, Y.C., Zhang, S.F., Wu, S.L., Ma, W., 2019. High-sensitive and stable photonic crystal sensors for visual detection and discrimination of volatile aromatic hydrocarbon vapors. Chem. Eng. J. 375, 121987.
    [68]
    Lee, S.M., Hamonangan, W.M., Kim, J.H., Kim, S.H., 2022. Soft and tough microcapsules with double-network hydrogel shells. Adv. Funct. Mater. 32, 2203761.
    [69]
    Leung, Y.Y., Wu, F.H.W., Chan, H.H., 2020. Ultrasonography-guided arthrocentesis versus conventional arthrocentesis in treating internal derangement of temporomandibular joint: a systematic review. Clin. Oral Investig. 24, 3771-3780.
    [70]
    Li, B., Xu, X.J., Hu, Z.G., Li, Y.J., Zhou, M.J., Liu, J.Z., Jiang, Y.J., Wang, P., 2022a. Rapid preparation of N-CNTs/P (AA- co-AM) composite hydrogel via frontal polymerization and its mechanical and conductive properties. RSC Adv. 12, 19022-19028.
    [71]
    Li, D., Yang, Y.J., Yang, J., Fang, M.M., Tang, B.Z., Li, Z., 2022b. Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color. Nat. Commun. 13, 347.
    [72]
    Li, J.R., Zou, J., Xiao, H.N., He, B.H., Hou, X.B., Qian, L.Y., 2018. Preparation of novel nano-sized hydrogel microcapsules via layer-by-layer assembly as delivery vehicles for drugs onto hygiene paper. Polymers 10, 335.
    [73]
    Li, L., Yan, B., Yang, J.Q., Chen, L.Y., Zeng, H.B., 2015. Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Adv. Mater. 27, 1294-1299.
    [74]
    Li, L., Zheng, X.Y., Pan, C.J., Pan, H., Guo, Z.Q., Liu, B.M., Liu, Y., 2021a. A pH-sensitive and sustained-release oral drug delivery system: the synthesis, characterization, adsorption and release of the xanthan gum- graft-poly(acrylic acid)/GO-DCFP composite hydrogel. RSC Adv. 11, 26229-26240.
    [75]
    Li, N., Liu, C.J., Chen, W., 2019. Facile access to guar gum based supramolecular hydrogels with rapid self-healing ability and multistimuli responsive gel-Sol transitions. J. Agric. Food Chem. 67, 746-752.
    [76]
    Li, S.H., Pan, H.Y., Wang, Y.T., Sun, J.Q., 2020. Polyelectrolyte complex-based self-healing, fatigue-resistant and anti-freezing hydrogels as highly sensitive ionic skins. J. Mater. Chem. A 8, 3667-3675.
    [77]
    Li, S.N., Yu, Z.R., Guo, B.F., Guo, K.Y., Li, Y., Gong, L.X., Zhao, L., Bae, J., Tang, L.C., 2021b. Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing. Nano Energy, 90, 106502.
    [78]
    Li, X.F., Zhao, Y.J., Li, D.P., Zhang, G.W., Long, S.J., Wang, H., 2017. Hybrid dual crosslinked polyacrylic acid hydrogels with ultrahigh mechanical strength, toughness and self-healing properties via soaking salt solution. Polymer 121, 55-63.
    [79]
    Liang, Y.P., He, J.H., Guo, B.L., 2021. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687-12722.
    [80]
    Liao, H., Guo, X.L., Wan, P.B., Yu, G.H., 2019. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 29, 1904507.
    [81]
    Ling, Q.J., Liu, W.T., Liu, J.C., Zhao, L., Ren, Z.J., Gu, H.B., 2022. Highly sensitive and robust polysaccharide-based composite hydrogel sensor integrated with underwater repeatable self-adhesion and rapid self-healing for human motion detection. ACS Appl. Mater. Interfaces 14, 24741-24754.
    [82]
    Lipton, J., Weng, G.M., Röhr, J.A., Wang, H., Taylor, A.D., 2020. Layer-by-layer assembly of two-dimensional materials: meticulous control on the nanoscale. Matter 2, 1148-1165.
    [83]
    Liu, H.Y., Wang, X., Cao, Y.X., Yang, Y.Y., Yang, Y.T., Gao, Y.F., Ma, Z.S., Wang, J.F., Wang, W.J., Wu, D.C., 2020a. Freezing-tolerant, highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links. ACS Appl. Mater. Interfaces 12, 25334-25344.
    [84]
    Liu, J., Jiang, L., He, S.R., Zhang, J., Shao, W., 2022a. Recent progress in PNIPAM-based multi-responsive actuators: a mini-review. Chem. Eng. J. 433, 133496.
    [85]
    Liu, J.J., Qu, S.X., Suo, Z.G., Yang, W., 2021a. Functional hydrogel coatings. Natl. Sci. Rev. 8, 1-19.
    [86]
    Liu, J.Q., Cui, L., Kong, N., Barrow, C.J., Yang, W.R., 2014. RAFT controlled synthesis of graphene/polymer hydrogel with enhanced mechanical property for pH-controlled drug release. Eur. Polym. J. 50, 9-17.
    [87]
    Liu, L., Meng, W.K., Li, L., Xu, G.J., Wang, X., Chen, L.Z., Wang, M.L., Lin, J.M., Zhao, R.S., 2019. Facile room-temperature synthesis of a spherical mesoporous covalent organic framework for ultrasensitive solid-phase microextraction of phenols prior to gas chromatography-tandem mass spectrometry. Chem. Eng. J. 369, 920-927.
    [88]
    Liu, Q.X., Liu, Y., Shi, J.L., Liu, Z.G., Wang, Q., Guo, C.F., 2022b. High-porosity foam-based iontronic pressure sensor with superhigh sensitivity of 9280 kPa-1. Nanomicro Lett. 14, 21.
    [89]
    Liu, Y., Zhu, Y.F., Wang, Y.S., Wang, X.C., Zong, L., Wang, A.Q., 2023. Semi-coke-enhanced eco-friendly superabsorbent composites for agricultural application. Polym. Bull. 80, 569-588.
    [90]
    Liu, Y.T., Xiong, D.S., Zhao, X.D., 2020b. Improved biotribological properties of polyetheretherketone composites for artificial joints with a ‘soft-on-hard’ structure and brushlike molecules. Tribol. Int. 145, 106165.
    [91]
    Liu, Y.X., Li, X.G., Zhang, Y.N., Zhao, Y., 2021b. Fiber-optic sensors based on Vernier effect. Measurement 167, 108451.
    [92]
    Loconsole, D., Giordano, M., Laforgia, N., Torres, D., Santangelo, L., Carbone, V., Parisi, A., Quarto, M., Scavia, G., Chironna, M., Group, B.D.A.W., 2020. Case-management protocol for bloody diarrhea as a model to reduce the clinical impact of Shiga toxin-producing Escherichia coli infections. Experience from Southern Italy. Eur. J. Clin. Microbiol. Infect. Dis. 39, 539-547.
    [93]
    Lu, Y.M., Wu, Y., Liang, J., Libera, M.R., Sukhishvili, S.A., 2015. Self-defensive antibacterial layer-by-layer hydrogel coatings with pH-triggered hydrophobicity. Biomaterials 45, 64-71.
    [94]
    Lyu, C.G., Yang, B., Tian, J.C., Jin, J., Ge, C.F., Yang, J.C., 2022. Three-fingers FBG tactile sensing system based on squeeze-and-excitation LSTM for object classification. IEEE Trans. Instrum. Meas. 71, 7004611.
    [95]
    Mao, J., Zhao, C.X., Li, Y.T., Xiang, D., Wang, Z.X., 2020. Highly stretchable, self-healing, and strain-sensitive based on double-crosslinked nanocomposite hydrogel. Compos. Commun. 17, 22-27.
    [96]
    Melocchi, A., Uboldi, M., Cerea, M., Foppoli, A., Maroni, A., Moutaharrik, S., Palugan, L., Zema, L., Gazzaniga, A., 2021. Shape memory materials and 4D printing in pharmaceutics. Adv. Drug Deliv. Rev. 173, 216-237.
    [97]
    Meng, K.Y., Xiao, X., Wei, W.X., Chen, G.R., Nashalian, A., Shen, S., Xiao, X., Chen, J., 2022. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, e2109357.
    [98]
    Miao, Y., Xu, M.D., Zhang, L.D., 2021. Electrochemistry-induced improvements of mechanical strength, self-healing, and interfacial adhesion of hydrogels. Adv. Mater. 33, e2102308.
    [99]
    Min, J.H., Sempionatto, J.R., Teymourian, H., Wang, J., Gao, W., 2021. Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 172, 112750.
    [100]
    Minami, H., Kimura, A., Kinoshita, K., Okubo, M., 2010. Preparation of poly(acrylic acid) particles by dispersion polymerization in an ionic liquid. Langmuir 26, 6303-6307.
    [101]
    Ming, X.J., Zhong, W.B., Ke, Y.M., Lu, J., Jia, K.Y., Ding, X.C., Jiang, H.Q., Li, M.F., Wang, D., 2023. Isopropanol-regulated adhesion-controllable conductive gels for robust bioelectric signal monitoring and flexible underwater robots. Chem. Eng. J. 460, 141746.
    [102]
    Mo, F.L., Jiang, K., Zhao, D., Wang, Y.Q., Song, J., Tan, W.H., 2021. DNA hydrogel-based gene editing and drug delivery systems. Adv. Drug Deliv. Rev. 168, 79-98.
    [103]
    Mohammadian, M., Sahraei, R., Ghaemy, M., 2019. Synthesis and fabrication of antibacterial hydrogel beads based on modified-gum tragacanth/poly(vinyl alcohol)/Ag0 highly efficient sorbent for hard water softening. Chemosphere 225, 259-269.
    [104]
    Morelle, X.P., Illeperuma, W.R., Tian, K., Bai, R.B., Suo, Z.G., Vlassak, J.J., 2018. Highly stretchable and tough hydrogels below water freezing temperature. Adv. Mater. 30, e1801541.
    [105]
    Naïli, I., Gardette, M., Garrivier, A., Daniel, J., Desvaux, M., Pizza, M., Gobert, A., Marchal, T., Loukiadis, E., Jubelin, G., 2020. Interplay between enterohaemorrhagic Escherichia coli and nitric oxide during the infectious process. Emerg. Microbes Infect. 9, 1065-1076.
    [106]
    Nakano, T., Saito, N., Minami, H., 2020. Preparation of cross-linked monodisperse poly(acrylic acid) particles by precipitation polymerization. Langmuir 36, 11957-11962.
    [107]
    Oh, J.Y., Bao, Z.N., 2019. Second skin enabled by advanced electronics. Adv. Sci. 6, 1900186.
    [108]
    Ohm, Y., Pan, C.F., Ford, M.J., Huang, X.N., Liao, J.H., Majidi, C., 2021. An electrically conductive silver-polyacrylamide-alginate hydrogel composite for soft electronics. Nat. Electron. 4, 185-192.
    [109]
    Palmisani, J., Nørgaard, A.W., Kofoed-Sørensen, V., Clausen, P.A., de Gennaro, G., Wolkoff, P., 2020. Formation of ozone-initiated VOCs and secondary organic aerosol following application of a carpet deodorizer. Atmos. Environ. 222, 117149.
    [110]
    Pei, Y.Y., Zhang, X.L., Hui, Z.Y., Zhou, J.Y., Huang, X., Sun, G.Z., Huang, W., 2021. Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano 15, 3996-4017.
    [111]
    Perera, A.A.P.R., Madhushani, K.A.U., Punchihewa, B.T., Kumar, A., Gupta, R.K., 2023. MXene-based nanomaterials for multifunctional applications. Materials (Basel) 16, 1138.
    [112]
    Pourbashir, S., Shahrousvand, M., Ghaffari, M., 2020. Preparation and characterization of semi-IPNs of polycaprolactone/poly(acrylic acid)/cellulosic nanowhisker as artificial articular cartilage. Int. J. Biol. Macromol. 142, 298-310.
    [113]
    Qian, Y., Zhao, Y., Wu, Q.L., Yang, Y., 2018. Review of salinity measurement technology based on optical fiber sensor. Sens. Actuat. B Chem. 260, 86-105.
    [114]
    Qin, G.W., Niu, Z.D., Yu, J.D., Li, Z.H., Ma, J.Y., Xiang, P., 2021. Soil heavy metal pollution and food safety in China: effects, sources and removing technology. Chemosphere 267, 129205.
    [115]
    Ren, J.Y., Liu, Y.H., Wang, Z.Q., Chen, S.Q., Ma, Y.F., Wei, H., Lü, S.Y., 2022. An anti-swellable hydrogel strain sensor for underwater motion detection. Adv. Funct. Mater. 32, 2107404.
    [116]
    Richardson, J.J., Björnmalm, M., Caruso, F., 2015. Multilayer assembly Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491.
    [117]
    Richardson, J.J., Cui, J.W., Björnmalm, M., Braunger, J.A., Ejima, H., Caruso, F., 2016. Innovation in layer-by-layer assembly. Chem. Rev. 116, 14828-14867.
    [118]
    Rivero, P.J., Goicoechea, J., Arregui, F.J., 2019. Layer-by-layer nano-assembly: a powerful tool for optical fiber sensing applications. Sensors (Basel) 19, 683.
    [119]
    Romih, T., Menart, E., Jovanovski, V., Jerič, A., Andrenšek, S., Hočevar, S.B., 2020. Sodium-polyacrylate-based electrochemical sensors for highly sensitive detection of gaseous phenol at room temperature. ACS Sens. 5, 2570-2577.
    [120]
    Seong, B., Lee, H., Lee, J., Lin, L.W., Jang, H.S., Byun, D., 2018. Biomimetic, flexible, and self-healable printed silver electrode by spontaneous self-layering phenomenon of a gelatin scaffold. ACS Appl. Mater. Interfaces 10, 25666-25672.
    [121]
    Shahzadi, I., Islam, M., Saeed, H., Haider, A., Shahzadi, A., Haider, J., Ahmed, N., Ul-Hamid, A., Nabgan, W., Ikram, M., Rathore, H.A., 2022. Formation of biocompatible MgO/cellulose grafted hydrogel for efficient bactericidal and controlled release of doxorubicin. Int. J. Biol. Macromol. 220, 1277-1286.
    [122]
    Shaibani, P.M., Etayash, H., Jiang, K.R., Sohrabi, A., Hassanpourfard, M., Naicker, S., Sadrzadeh, M., Thundat, T., 2018. Portable nanofiber-light addressable potentiometric sensor for rapid Escherichia coli detection in orange juice. ACS Sens. 3, 815-822.
    [123]
    Shen, K.X., Xu, K., Zhang, M.Y., Yu, J., Yang, Y.X., Zhao, X.D., Zhang, Q., Wu, Y.S., Zhang, Y.F., Cheng, Y.L., 2023. Multiple hydrogen bonds reinforced conductive hydrogels with robust elasticity and ultra-durability as multifunctional ionic skins. Chem. Eng. J. 451, 138525.
    [124]
    Shih, H., Lin, C.C., 2012. Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry. Biomacromolecules 13, 2003-2012.
    [125]
    Shin, J., Choi, S.J., Lee, I., Youn, D.Y., Park, C.O., Lee, J.H., Tuller, H.L., Kim, I.D., 2013. Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv. Funct. Mater. 23, 2357-2367.
    [126]
    Simińska-Stanny, J., Nizioł, M., Szymczyk-Ziółkowska, P., Brożyna, M., Junka, A., Shavandi, A., Podstawczyk, D., 2022. 4D printing of patterned multimaterial magnetic hydrogel actuators. Addit. Manuf. 49, 102506.
    [127]
    Skorb, E.V., Andreeva, D.V., 2013. Layer-by-Layer approaches for formation of smart self-healing materials. Polym. Chem. 4, 4834-4845.
    [128]
    Sohail, M., Mudassir-Minhas, M.U., Khan, S., Hussain, Z., de Matas, M., Shah, S.A., Khan, S., Kousar, M., Ullah, K., 2019. Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects. Drug Deliv. Transl. Res. 9, 595-614.
    [129]
    Song, E.H., Chen, M.H., Chen, Z.T., Zhou, Y.Y., Zhou, W.J., Sun, H.T., Yang, X.F., Gan, J.L., Ye, S., Zhang, Q.Y., 2022. Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor. Nat. Commun. 13, 2166.
    [130]
    Song, W.J., Xin, J.N., Zhang, J.W., 2017. One-pot synthesis of soy protein (SP)-poly(acrylic acid) (PAA) superabsorbent hydrogels via facile preparation of SP macromonomer. Ind. Crops Prod. 100, 117-125.
    [131]
    Sopoušek, J., Věžník, J., Skládal, P., Lacina, K., 2020. Blocking the nanopores in a layer of nonconductive nanoparticles: dominant effects therein and challenges for electrochemical impedimetric biosensing. ACS Appl. Mater. Interfaces 12, 14620-14628.
    [132]
    Su, G.H., Yin, S.Y., Guo, Y.H., Zhao, F., Guo, Q.Q., Zhang, X.X., Zhou, T., Yu, G.H., 2021. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Mater. Horiz. 8, 1795-1804.
    [133]
    Sui, X.J., Guo, H.S., Cai, C.C., Li, Q.S., Wen, C.Y., Zhang, X.Y., Wang, X.D., Yang, J., Zhang, L., 2021. Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chem. Eng. J. 419, 129478.
    [134]
    Swilem, A.E., Elshazly, A.H.M., Hamed, A.A., Hegazy, E.S A., Abd El-Rehim, H.A., 2020. Nanoscale poly(acrylic acid)-based hydrogels prepared via a green single-step approach for application as low-viscosity biomimetic fluid tears. Mater. Sci. Eng. C Mater. Biol. Appl. 110, 110726.
    [135]
    Tan, K., Ma, W.B., Chen, L.H., Wang, H.M., Du, Q., Du, P.J., Yan, B.K., Liu, R.Y., Li, H.D., 2021. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 401, 123288.
    [136]
    Tan, Z.Y., Li, X., Yu, C.J., Yao, M.M., Zhao, Z.M., Guo, B.Y., Liang, L., Wei, Y.P., Yao, F.L., Zhang, H., Li, J.J., 2023. A self-gelling powder based on polyacrylic acid/polyacrylamide/quaternate chitosan for rapid hemostasis. Int. J. Biol. Macromol. 232, 123449.
    [137]
    Tekoglu, S., Wielend, D., Scharber, M.C., Sariciftci, N.S., Yumusak, C., 2020. Conducting polymer-based biocomposites using deoxyribonucleic acid (DNA) as counterion. Adv. Mater. Technol. 5, 1900699.
    [138]
    Tran, M.Q., Liu, M.K., Elsisi, M., 2022. Effective multi-sensor data fusion for chatter detection in milling process. ISA Trans. 125, 514-527.
    [139]
    Tumu, K., Vorst, K., Curtzwiler, G., 2023. Endocrine modulating chemicals in food packaging: a review of phthalates and bisphenols. Compr. Rev. Food Sci. Food Saf. 22, 1337-1359.
    [140]
    Vaiano, V., Matarangolo, M., Murcia, J.J., Rojas, H., Navío, J.A., Hidalgo, M.C., 2018. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl. Catal. B Environ. 225, 197-206.
    [141]
    Viola, M., Migliorini, C., Matricardi, P., Di Meo, C., 2023. Synthesis and characterization of a novel amphiphilic polyacrylate-cholesterol derivative as promising material for pharmaceutical and cosmetic applications. Eur. Polym. J. 184, 111774.
    [142]
    Wang, F.D., Hu, S., Jia, Q.X., Zhang, L.Q., 2020. Advances in electrospinning of natural biomaterials for wound dressing. J. Nanomater. 2020, 8719859.
    [143]
    Wang, F.F., Zhang, C.L., Qu, X.T., Cheng, S.S., Xian, Y.Z., 2019. Cationic cyanine chromophore-assembled upconversion nanoparticles for sensing and imaging H2S in living cells and zebrafish. Biosens. Bioelectron. 126, 96-101.
    [144]
    Wang, H.Q., Li, J.C., Yu, X., Yan, G.H., Tang, X., Sun, Y., Zeng, X.H., Lin, L., 2021a. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Carbohydr. Polym. 255, 117443.
    [145]
    Wang, L.P., Zhou, S.X., Wang, X., Lu, Q.B., Shi, L.S., Ren, X., Zhang, H.Y., Wang, Y.F., Lin, S.H., Zhang, C.H., Geng, M.J., Zhang, X.A., Li, J., Zhao, S.W., Yi, Z.G., Chen, X., Yang, Z.S., Meng, L., Wang, X.H., Liu, Y.L., Cui, A.L., Lai, S.J., Liu, M.Y., Zhu, Y.L., Xu, W.B., Chen, Y., Wu, J.G., Yuan, Z.H., Li, M.F., Huang, L.Y., Li, Z.J., Liu, W., Fang, L.Q., Jing, H.Q., Hay, S.I., Gao, G.F., Yang, W.Z., Chinese Centers for Disease Control and Prevention Etiology of Diarrhea Surveillance Study Team, 2021b. Etiological, epidemiological, and clinical features of acute diarrhea in China. Nat. Commun. 12, 2464.
    [146]
    Wang, X.X., Yu, G.F., Zhang, J., Yu, M., Ramakrishna, S., Long, Y.Z., 2021c. Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Prog. Mater. Sci. 115, 100704.
    [147]
    Wang, Y.T., Fang, X., Li, S.H., Pan, H.Y., Sun, J.Q., 2023. Complexation of sulfonate-containing polyurethane and polyacrylic acid enables fabrication of self-healing hydrogel membranes with high mechanical strength and excellent elasticity. ACS Appl. Mater. Interfaces 15, 25082-25090.
    [148]
    Wei, J.J., Zhang, X.H., Wang, F., Shao, Y., Zhang, W.B., Wu, H., 2023. One-step preparation of highly viscoelastic, stretchable, antibacterial, biocompatible, wearable, conductive composite hydrogel with extensive adhesion. Compos. Sci. Technol. 231, 109793.
    [149]
    Wen, Y.Y., Li, R., Liu, J.H., Zhang, X., Wang, P., Zhang, X., Zhou, B., Li, H.Y., Wang, J., Li, Z.X., Sun, B.G., 2020. Promotion effect of Zn on 2D bimetallic NiZn metal organic framework nanosheets for tyrosinase immobilization and ultrasensitive detection of phenol. Anal. Chim. Acta 1127, 131-139.
    [150]
    Wijayaratna, U., Kiridena, S., Adams, J.D., Behrend, C.J., Anker, J.N., 2021. Synovial fluid pH sensor for early detection of prosthetic hip infections. Adv. Funct. Mater. 31, 2104124.
    [151]
    Wikswo, M.E., Roberts, V., Marsh, Z., Manikonda, K., Gleason, B., Kambhampati, A., Mattison, C., Calderwood, L., Balachandran, N., Cardemil, C., Hall, A.J., 2022. Enteric illness outbreaks reported through the national outbreak reporting system-United States, 2009-2019. Clin. Infect. Dis. 74, 1906-1913.
    [152]
    Wu, L.J., Zhu, W.K., Li, Z.Q., Li, H.M., Xu, J., Li, S., Chen, M.L., 2023. Urushiol modified epoxy acrylate as UV spray painting oriental lacquer ink. RSC Adv. 13, 1106-1114.
    [153]
    Xia, S., Zhang, Q., Song, S.X., Duan, L.J., Gao, G.H., 2019. Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors. Chem. Mater. 31, 9522-9531.
    [154]
    Xiao, X.Q., Mu, B.Y., Cao, G.Q., Yang, Y.Y., Wang, M., 2022. Flexible battery-free wireless electronic system for food monitoring. J. Sci. Adv. Mater. Devices 7, 100430.
    [155]
    Xu, Y., Bai, P., Zhou, X.D., Akimov, Y., Png, C.E., Ang, L.K., Knoll, W., Wu, L., 2019. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv. Opt. Mater. 7, 1801433.
    [156]
    Xuan, H.Y., Dai, W., Zhu, Y.X., Ren, J.Y., Zhang, J.H., Ge, L.Q., 2018. Self-Healing, antibacterial and sensing nanoparticle coating and its excellent optical applications. Sens. Actuat. B Chem. 257, 1110-1117.
    [157]
    Yan, Z.G., Wang, L.L., Xia, Y.F., Qiu, R.D., Liu, W.Q., Wu, M., Zhu, Y., Zhu, S.L., Jia, C.Y., Zhu, M.M., Cao, R.R., Li, Z.L., Wang, X., 2021. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv. Funct. Mater. 31, 2100709.
    [158]
    Yang, B.S., Chen, W.H., Zhou, X.H., Meng, F.D., Chen, C.Y., Liu, Q., Li, Q., Wang, X., Xu, P., Lei, Y.F., Xue, L.J., 2022. Strong and crack-resistant hydrogel derived from pomelo peel for highly sensitive wearable sensors. Chem. Eng. J. 431, 134094.
    [159]
    Yang, F.C., Zhao, J.C., Koshut, W.J., Watt, J., Riboh, J.C., Gall, K., Wiley, B.J., 2020. A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv. Funct. Mater. 30, 2003451.
    [160]
    Yang, J.C., Mun, J., Kwon, S.Y., Park, S., Bao, Z.N., Park, S., 2019. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, e1904765.
    [161]
    Yang, M., Zhang, Z.C., Yuan, F.Z., Deng, R.H., Yan, X., Mao, F.B., Chen, Y.R., Lu, H., Yu, J.K., 2023. An immunomodulatory polypeptide hydrogel for osteochondral defect repair. Bioact. Mater. 19, 678-689.
    [162]
    Yu, Z., Zhang, Y., Gao, Z.J., Ren, X.Y., Gao, G.H., 2017. Enhancing mechanical strength of hydrogels via IPN structure. J. Appl. Polym. Sci. 134: 44503.
    [163]
    Yuan, W.Y., Weng, G.M., Lipton, J., Li, C.M., Van Tassel, P.R., Taylor, A.D., 2020. Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications. Adv. Colloid Interface Sci. 282, 102200.
    [164]
    Yuan, X.F., Ou, C., Wang, Y.L., Yang, C.H., Gui, W.H., 2021a. A layer-wise data augmentation strategy for deep learning networks and its soft sensor application in an industrial hydrocracking process. IEEE Trans. Neural Netw. Learn. Syst. 32, 3296-3305.
    [165]
    Yuan, Y., Shen, S.H., Fan, D.D., 2021b. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion. Biomaterials 276, 120838.
    [166]
    Yue, X.C., Ma, N.L., Sonne, C., Guan, R.R., Lam, S.S., Van Le, Q., Chen, X.M., Yang, Y.F., Gu, H.P., Rinklebe, J., Peng, W.X., 2021. Mitigation of indoor air pollution: a review of recent advances in adsorption materials and catalytic oxidation. J. Hazard. Mater. 405, 124138.
    [167]
    Zhai, D.Y., Liu, B.R., Shi, Y., Pan, L.J., Wang, Y.Q., Li, W.B., Zhang, R., Yu, G.H., 2013. Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7, 3540-3546.
    [168]
    Zhang, H., Guo, J.H., Wang, Y., Sun, L.Y., Zhao, Y.J., 2021a. Stretchable and conductive composite structural color hydrogel films as bionic electronic skins. Adv. Sci. 8, e2102156.
    [169]
    Zhang, J.C., Zhuang, J.S., Lei, L.R., Hou, Y., 2023. Rapid preparation of a self-adhesive PAA ionic hydrogel using lignin sulfonate-Al3+ composite systems for flexible moisture-electric generators. J. Mater. Chem. A 11, 3546-3555.
    [170]
    Zhang, J.X., Gai, M.Y., Ignatov, A.V., Dyakov, S.A., Wang, J., Gippius, N.A., Frueh, J., Sukhorukov, G.B., 2020a. Stimuli-responsive microarray films for real-time sensing of surrounding media, temperature, and solution properties via diffraction patterns. ACS Appl. Mater. Interfaces 12, 19080-19091.
    [171]
    Zhang, L., Sun, L., Su, T., Chen, T.T., Hu, L.H., He, F., Xu, H., 2022a. Graphene-based hydrogel with embedded gold nanoparticles as a recyclable catalyst for the degradation of 4-nitrophenol. Colloids Surf. A Physicochem. Eng. Aspects 640, 128410.
    [172]
    Zhang, S., Zheng, Y., Lu, Y.L., Xie, B., Chen, D.Y., Wang, J.B., Chen, J., 2022b. Reduction of temperature sensitivity for resonant micro-pressure sensor using glass-silicon coupling wafer packaging. IEEE Sens. J. 22, 6410-6417.
    [173]
    Zhang, X.M., Wan, H.N., Lan, W.W., Miao, F.Y., Qin, M., Wei, Y., Hu, Y.C., Liang, Z.W., Huang, D., 2022c. Fabrication of adhesive hydrogels based on poly(acrylic acid) and modified hyaluronic acid. J. Mech. Behav. Biomed. Mater. 126, 105044.
    [174]
    Zhang, Y.N., Zhang, L.B., Han, B., Gao, P., Wu, Q.L., Zhang, A.Z., 2018. Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating. Sens. Actuat. B Chem. 272, 331-339.
    [175]
    Zhang, Y.S., Khademhosseini, A., 2017. Advances in engineering hydrogels. Science 356, eaaf3627.
    [176]
    Zhang, Z.H., Chen, Z.Y., Wang, Y., Zhao, Y.J., 2020b. Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins. Proc. Natl. Acad. Sci. USA 117, 18310-18316.
    [177]
    Zhang, Z.H., Wang, X., Wang, X.J., Li, Y.S., Hong, M., 2021b. Tris (2, 4-difluorophenyl) borane/Triisobutylphosphine lewis pair: a thermostable and Air/Moisture-tolerant organic catalyst for the living polymerization of acrylates. Macromolecules 54, 8495-8502.
    [178]
    Zhang, Z.Y., Yang, Y.H., Ding, H., Wang, D., Chen, W., Lin, H., 2021c. Design powerful predictor for mRNA subcellular location prediction in Homo sapiens. Brief. Bioinform. 22, 526-535.
    [179]
    Zhao, C., Wang, Y.J., Tang, G.Q., Ru, J., Zhu, Z.C., Li, B., Guo, C.F., Li, L.J., Zhu, D.L., 2022a. Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv. Funct. Mater. 32, 2110417.
    [180]
    Zhao, F.L., Yao, D., Guo, R.W., Deng, L.D., Dong, A.J., Zhang, J.H., 2015. Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials (Basel) 5, 2054-2130.
    [181]
    Zhao, Q., Yang, X.X., Ma, C.X., Chen, D., Bai, H., Li, T.F., Yang, W., Xie, T., 2016. A bioinspired reversible snapping hydrogel assembly. Mater. Horiz. 3, 422-428.
    [182]
    Zhao, Q.Y., Du, Q.X., Yang, Y., Zhao, Z.Y., Cheng, J., Bi, F.K., Shi, X.Y., Xu, J.C., Zhang, X.D., 2022b. Effects of regulator ratio and guest molecule diffusion on VOCs adsorption by defective UiO-67: Experimental and theoretical insights. Chem. Eng. J. 433, 134510.
    [183]
    Zhao, X.H., Chen, X.Y., Yuk, H., Lin, S.T., Liu, X.Y., Parada, G., 2021. Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121, 4309-4372.
    [184]
    Zheng, C.X., Lu, K.Y., Lu, Y., Zhu, S.L., Yue, Y.Y., Xu, X.W., Mei, C.T., Xiao, H.N., Wu, Q.L., Han, J.Q., 2020. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydr. Polym. 250, 116905.
    [185]
    Zheng, S.J., Li, W.Z., Ren, Y.Y., Liu, Z.Y., Zou, X.Y., Hu, Y., Guo, J.N., Sun, Z., Yan, F., 2022. Moisture-Wicking, breathable, and intrinsically antibacterial electronic skin based on dual-gradient poly(ionic liquid) nanofiber membranes. Adv. Mater. 34, e2106570.
    [186]
    Zhong, Y.B., Li, P.P., Hao, J.C., Wang, X., 2020. Bioinspired self-healing of kinetically inert hydrogels mediated by chemical nutrient supply. ACS Appl. Mater. Interfaces 12, 6471-6478.
    [187]
    Zhou, H.W., Wang, Z.W., Zhao, W.F., Tong, X.M., Jin, X.L., Zhang, X.C., Yu, Y., Liu, H.B., Ma, Y.C., Li, S.S., Chen, W.X., 2021. Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers. Chem. Eng. J. 403, 126307.
    [188]
    Zhou, Q.Q., Dai, H.Q., Yan, Y.K., Qin, Z.M., Zhou, M.Q., Zhang, W.L., Zhang, G.Q., Guo, R.Q., Wei, X.L., 2024. From short circuit to completed circuit: conductive hydrogel facilitating oral wound healing. Adv. Healthc. Mater. 13, e2303143.
    [189]
    Zhu, P.H., Kuang, Y.D., Wei, Y., Li, F., Ou, H.J., Jiang, F., Chen, G., 2021. Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Chem. Eng. J. 404, 127105.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return