| Citation: | Qi Zhang, Xiaohong Tang, Qian Zhao, Xianchun Chen, Ke Wang, Qin Zhang, Qiang Fu. Multifunctional biomass materials based on electroless plating ✩[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 476-496. doi: 10.1016/j.jobab.2025.01.001 |
|
Abdelgawad, A.M., El-Naggar, M.E., Elsherbiny, D.A., Ali, S., Abdel-Aziz, M.S., Abdel-Monem, Y.K., 2020. Antibacterial carrageenan/cellulose nanocrystal system loaded with silver nanoparticles, prepared via solid-state technique. J. Environ. Chem. Eng. 8, 104276. doi: 10.1016/j.jece.2020.104276
|
|
Abdul Hakkeem, H.M., Babu, A., Shilpa, N., Venugopal, A.A., Mohamed, A.P., Kurungot, S., Pillai, S., 2022. Tailored synthesis of ultra-stable Au@Pd nanoflowers with enhanced catalytic properties using cellulose nanocrystals. Carbohydr. Polym. 292, 119723. doi: 10.1016/j.carbpol.2022.119723
|
|
Abioye, A.M., Ahmad Noorden, Z., Ani, F.N., 2017. Synthesis and characterizations of electroless oil palm shell based-activated carbon/nickel oxide nanocomposite electrodes for supercapacitor applications. Electrochim. Acta 225, 493–502. doi: 10.1016/j.electacta.2016.12.101
|
|
Afzali, A., Mottaghitalab, V., Motlagh, M.S., Haghi, A.K., 2010. The electroless plating of Cu-Ni-P alloy onto cotton fabrics. Korean J. Chem. Eng. 27, 1145–1149. doi: 10.1007/s11814-010-0221-8
|
|
Agustin, M.B., Nakatsubo, F., Yano, H., 2018. Improving the thermal stability of wood-based cellulose by esterification. Carbohydr. Polym. 192, 28–36. doi: 10.1016/j.carbpol.2018.02.071
|
|
Al-Maqdasi, Z., Hajlane, A., Renbi, A., Ouarga, A., Chouhan, S.S., Joffe, R., 2019. Conductive regenerated cellulose fibers by electroless plating. Fibers 7, 38. doi: 10.3390/fib7050038
|
|
Atinafu, D.G., Yun, B.Y., Yang, S., Yuk, H., Wi, S., Kim, S., 2021. Structurally advanced hybrid support composite phase change materials: architectural synergy. Energy Storage Mater. 42, 164–184. doi: 10.1016/j.ensm.2021.07.022
|
|
Berglund, L.A., Burgert, I., 2018. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30, e1704285. doi: 10.1002/adma.201704285
|
|
Chen, C.J., Hu, L.B., 2021. Nanoscale ion regulation in wood-based structures and their device applications. Adv. Mater. 33, 2002890. doi: 10.1002/adma.202002890
|
|
Chen, C.J., Kuang, Y.D., Zhu, S.Z., Burgert, I., Keplinger, T., Gong, A., Li, T., Berglund, L., Eichhorn, S.J., Hu, L.B., 2020a. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666. doi: 10.1038/s41578-020-0195-z
|
|
Chen, H.J., Zou, Y.H., Li, J., Zhang, K.W., Xia, Y.Z., Hui, B., Yang, D.J., 2021. Wood aerogel-derived sandwich-like layered nanoelectrodes for alkaline overall seawater electrosplitting. Appl. Catal. B293, 120215. doi: 10.1016/j.apcatb.2021.120215
|
|
Chen, J.L., Shen, B., Jia, X.C., Liu, Y.F., Zheng, W.G., 2022. Lightweight and compressible anisotropic honeycomb-like graphene composites for highly tunable electromagnetic shielding with multiple functions. Mater. Today Phys. 24, 100695. doi: 10.1016/j.mtphys.2022.100695
|
|
Chen, R.W., Yang, Y., Huang, Q.B., Ling, H., Li, X.S., Ren, J.L., Zhang, K., Sun, R.C., Wang, X.H., 2020b. A multifunctional interface design on cellulose substrate enables high performance flexible all-solid-state supercapacitors. Energy Storage Mater. 32, 208–215. doi: 10.1016/j.ensm.2020.07.030
|
|
Cheng, M.L., Ying, M.F., Zhao, R.Z., Ji, L.Z., Li, H.X., Liu, X.G., Zhang, J., Li, Y.X., Dong, X.L., Zhang, X.F., 2022. Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996–17007. doi: 10.1021/acsnano.2c07111
|
|
Chu, Z.Z., Chen, D.D., Huang, Q.Y., Li, Y.T., Wu, Z.Z., Yang, Y., Yang, Z.H., 2022a. Polymer–assisted preparation of porous wood–based metallic composites for efficient catalytic reduction of organic pollutants. Ind. Crops Prod. 187, 115387. doi: 10.1016/j.indcrop.2022.115387
|
|
Chu, Z.Z., Li, Y.T., Zhou, A.Q., Zhang, L., Zhang, X.C., Yang, Y., Yang, Z.H., 2022b. Polydimethylsiloxane-decorated magnetic cellulose nanofiber composite for highly efficient oil-water separation. Carbohydr. Polym. 277, 118787. doi: 10.1016/j.carbpol.2021.118787
|
|
Ding, X.D., Wang, Y., Xu, R., Qi, Q.B., Wang, W., Yu, D., 2019. Layered cotton/rGO/NiWP fabric prepared by electroless plating for excellent electromagnetic shielding performance. Cellulose 26, 8209–8223. doi: 10.1007/s10570-019-02669-6
|
|
Fan, Z.M., Wang, D.L., Yuan, Y., Wang, Y.S., Cheng, Z.J., Liu, Y.Y., Xie, Z.M., 2020. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696. doi: 10.1016/j.cej.2019.122696
|
|
Faraji, S., Ani, F.N., 2015. The development supercapacitor from activated carbon by electroless plating: a review. Renew. Sustain. Energy Rev. 42, 823–834. doi: 10.1016/j.rser.2014.10.068
|
|
Fathi, A.M., Handal, H.T., El-Kady, A.A., 2021. Rice straw derived activated carbon-based Ni-containing electrocatalyst for methanol oxidation. Carbon Lett. 31, 253–267. doi: 10.1007/s42823-020-00160-y
|
|
Fu, Q.L., Chen, Y., Sorieul, M., 2020. Wood-based flexible electronics. ACS Nano 14, 3528–3538. doi: 10.1021/acsnano.9b09817
|
|
Fu, X.L., Wang, Y.P., Wang, W., Yu, D., 2022. Ionic liquid regenerated cellulose membrane electroless plated by silver layer for ECG signal monitoring. Cellulose 29, 3467–3482. doi: 10.1007/s10570-022-04487-9
|
|
Gui, C.M., Li, J., Zhang, Z.F., Chen, Z.M., Huang, J.J., Li, H.L., 2024. Fabrication of electrode material for textile-based triboelectric nanogenerators: research of the relationship between output performance and dielectric material strain. Langmuir 40, 4022–4032. doi: 10.1021/acs.langmuir.3c02375
|
|
Gui, C.M., Zhang, R.X., Chen, Z.M., Wu, W.P., Li, H.L., Huang, J.J., 2022. Textile-based triboelectric nanogenerators via electroless plating for fabricating electrode material: study of the relationship between electrostatic-charge density and strain in dielectric material. Compos. Sci. Technol. 218, 109187. doi: 10.1016/j.compscitech.2021.109187
|
|
Ha, D., Fang, Z.Q., Zhitenev, N.B., 2018. Paper in electronic and optoelectronic devices. Adv. Electron. Mater. 4, 1700593. doi: 10.1002/aelm.201700593
|
|
He, D.D., Qian, L.Y., Chen, X.Y., He, B.H., Li, J.R., 2023. Durable cellulose paper by grafting thiol groups and controlling silver deposition for ultrahigh electromagnetic interference shielding. Int. J. Biol. Macromol. 248, 125972. doi: 10.1016/j.ijbiomac.2023.125972
|
|
He, Z.J., Zhang, W.R., Zhang, J., Xie, J.L., Su, F.F., Li, Y.C., Yao, D.D., Wang, Y.D., Zheng, Y.P., 2024. Enhancing the electromagnetic interference shielding of epoxy resin composites with hierarchically structured MXene/graphene aerogel. Compos. Part B274, 111230. doi: 10.1016/j.compositesb.2024.111230
|
|
Hosseini, S.E., Wahid, M.A., 2016. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57, 850–866. doi: 10.1016/j.rser.2015.12.112
|
|
Huang, J.J., Wang, S.L., Zhao, X.K., Zhang, W.Q., Chen, Z.M., Liu, R., Li, P., Li, H.L., Gui, C.M., 2023a. Fabrication of a textile-based triboelectric nanogenerator toward high-efficiency energy harvesting and material recognition. Mater. Horiz. 10, 3840–3853. doi: 10.1039/d3mh00618b
|
|
Huang, J.L., Zhao, B.T., Liu, T., Mou, J.R., Jiang, Z.J., Liu, J., Li, H.X., Liu, M.L., 2019a. Wood-derived materials for advanced electrochemical energy storage devices. Adv. Funct. Mater. 29, 1902255. doi: 10.1002/adfm.201902255
|
|
Huang, L., Luo, Z.X., Huang, X.X., Wang, Y.A., Yan, J., Liu, W., Guo, Y.F., Babu Arulmani, S.R., Shao, M.H., Zhang, H.G., 2022. Applications of biomass-based materials to remove fluoride from wastewater: a review. Chemosphere 301, 134679. doi: 10.1016/j.chemosphere.2022.134679
|
|
Huang, Y.C., Hu, L., Liu, R., Hu, Y.W., Xiong, T.Z., Qiu, W.T., Balogun, M.S., Pan, A.L., Tong, Y.X., 2019b. Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr(oxy)oxides for efficient hydrogen production in alkaline, seawater and acidic media. Appl. Catal. B251, 181–194. doi: 10.1016/j.apcatb.2019.03.037
|
|
Huang, Y.D., Wang, Q., Xu, J.P., 2023b. A Stackelberg-based biomass power trading game framework in hybrid-wind/solar/biomass system: from technological, economic, environmental and social perspectives. J. Clean. Prod. 403, 136806. doi: 10.1016/j.jclepro.2023.136806
|
|
Huang, Z.H., Nguyen, T.T., Zhou, Y.J., Qi, G.J., 2019c. A low temperature electroless nickel plating chemistry. Surf. Coat. Technol. 372, 160–165. doi: 10.1016/j.surfcoat.2019.05.019
|
|
Hui, B., Zhang, K.W., Xia, Y.Z., Zhou, C.F., 2020. Natural multi-channeled wood frameworks for electrocatalytic hydrogen evolution. Electrochim. Acta 330, 135274. doi: 10.1016/j.electacta.2019.135274
|
|
Hussain, N., Mehdi, M., Siyal, S.H., Wassan, R.K., Hashemikia, S., Sarwar, M.N., Yamaguchi, T., Kim, I.S., 2021. Conductive and antibacterial cellulose nanofibers decorated with copper nanoparticles for potential application in wearable devices. J. Appl. Polym. Sci. 138, 51381. doi: 10.1002/app.51381
|
|
Jia, L.C., Zhou, C.G., Sun, W.J., Xu, L., Yan, D.X., Li, Z.M., 2020. Water-based conductive ink for highly efficient electromagnetic interference shielding coating. Chem. Eng. J. 384, 123368. doi: 10.1016/j.cej.2019.123368
|
|
Jiang, Z., Palacios, A., Zou, B.Y., Zhao, Y.Q., Deng, W.Y., Zhang, X.S., Ding, Y.L., 2022. A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials. Renew. Sustain. Energy Rev. 159, 112134. doi: 10.1016/j.rser.2022.112134
|
|
Kesavapillai Sreedeviamma, D., Remadevi, A., Sruthi, C.V., Pillai, S., Kuzhichalil Peethambharan, S., 2020. Nickel electrodeposited textiles as wearable radar invisible fabrics. J. Ind. Eng. Chem. 88, 196–206. doi: 10.1016/j.jiec.2020.04.013
|
|
Kong, W.W., Shi, J.F., Zou, K.K., Li, N., Wang, Y.Y., Yan, D.X., Li, Z.M., 2022. Synergistically optimizing interlaminar and electromagnetic interference shielding behavior of carbon fiber composite based on interfacial reinforcement. Carbon 200, 448–455. doi: 10.1016/j.carbon.2022.08.080
|
|
Krishnasamy, P., Mylsamy, G., Arulvel, S., Rajamurugan, G., Gadekar, A., 2024. Characterization of electrical conductivity and dielectric properties of electroless NiP/rGO composite coated hemp fiber with various weight% of rGO and coating duration. Results Phys. 60, 107694. doi: 10.1016/j.rinp.2024.107694
|
|
Kumar, N., Lee, S.Y., Park, S.J., 2024. Recent progress and challenges in paper-based microsupercapacitors for flexible electronics: a comprehensive review. ACS Appl. Mater. Interfaces 16, 21367–21382. doi: 10.1021/acsami.4c01438
|
|
Lee, C., Kim, S., Cho, Y.H., 2022. Silk and paper: progress and prospects in green photonics and electronics. Adv. Sustain. Syst. 6, 2000216. doi: 10.1002/adsu.202000216
|
|
Li, F.S., Li, Y.Z., Zhuo, Q.M., Zhou, D.H., Zhao, Y.L., Zhao, Z.Q., Wu, X.J., Shan, Y., Sun, L.C., 2020a. Electroless plating of NiFeP alloy on the surface of silicon photoanode for efficient photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 12, 11479–11488. doi: 10.1021/acsami.9b19418
|
|
Li, J.G., Chen, C.J., Zhu, J.Y., Ragauskas, A.J., Hu, L.B., 2021. In situ wood delignification toward sustainable applications. Acc. Mater. Res. 2, 606–620. doi: 10.1021/accountsmr.1c00075
|
|
Li, J.J., Zhou, Y.N., Luo, Z.H., 2018. Polymeric materials with switchable superwettability for controllable oil/water separation: a comprehensive review. Prog. Polym. Sci. 87, 1–33. doi: 10.1016/j.progpolymsci.2018.06.009
|
|
Li, S.T., Li, J.Y., Ma, N., Liu, D.Y., Sui, G.X., 2019. Super-compression-resistant multiwalled carbon nanotube/nickel-coated carbonized loofah fiber/polyether ether ketone composite with excellent electromagnetic shielding performance. ACS Sustain. Chem. Eng. 7, 13970–13980. doi: 10.1021/acssuschemeng.9b02447
|
|
Li, T.T., Wang, Y.T., Peng, H.K., Zhang, X.F., Shiu, B.C., Lin, J.H., Lou, C.W., 2020b. Lightweight, flexible and superhydrophobic composite nanofiber films inspired by nacre for highly electromagnetic interference shielding. Compos. Part A 128, 105685. doi: 10.1016/j.compositesa.2019.105685
|
|
Lin, Q.Q., Jiang, P., Ren, S.H., Liu, S.Q., Ji, Y.H., Huang, Y.X., Yu, W.J., Fontaine, G., Bourbigot, S., 2022a. Advanced functional materials based on bamboo cellulose fibers with different crystal structures. Compos. Part A154, 106758. doi: 10.1016/j.compositesa.2021.106758
|
|
Lin, Q.Q., Liu, S.Q., Wang, X.Y., Huang, Y.X., Yu, W.J., 2022b. Preparation of ultra-conductive bamboo cellulose fiber via a facile pretreatment. Appl. Surf. Sci. 575, 151700. doi: 10.1016/j.apsusc.2021.151700
|
|
Lin, X.X., Chen, X.Y., Weng, L., Hu, D.H., Qiu, C.D., Liu, P.W., Zhang, Y., Fan, M.Z., Sun, W.S., Guo, X., 2022. In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage. Sol. Energy Mater. Sol. Cells 242, 111762. doi: 10.1016/j.solmat.2022.111762
|
|
Ling, H., Liu, S., Zheng, Z., Yan, F., 2018. Organic flexible electronics. Small Methods 2, 1800070. doi: 10.1002/smtd.201800070
|
|
Liu, C., Luan, P.C., Li, Q., Cheng, Z., Xiang, P.Y., Liu, D.T., Hou, Y., Yang, Y., Zhu, H.L., 2021a. Biopolymers derived from trees as sustainable multifunctional materials: a review. Adv. Mater. 33, 2001654. doi: 10.1002/adma.202001654
|
|
Liu, H., Qing, H.B., Li, Z.D., Han, Y.L., Lin, M., Yang, H., Li, A., Lu, T.J., Li, F., Xu, F., 2017. Paper: a promising material for human-friendly functional wearable electronics. Mater. Sci. Eng. R Rep. 112, 1–22. doi: 10.1016/j.mser.2017.01.001
|
|
Liu, H.Z., Xu, Y., Zhao, X.D., Han, D., Zhao, F., Yang, Q.W., 2022. Lightweight leaf-structured carbon nanotubes/graphene foam and the composites with polydimethylsiloxane for electromagnetic interference shielding. Carbon 191, 183–194. doi: 10.1016/j.carbon.2022.01.051
|
|
Liu, L.B., Yu, Y., Yan, C., Li, K., Zheng, Z.J., 2015. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun. 6, 7260. doi: 10.1038/ncomms8260
|
|
Liu, R.T., Li, T.T., Xu, J., Zhang, T.C., Xie, Y.J., Li, J., Wang, L.J., 2021b. Sandwich-structural Ni/Fe3O4/Ni/cellulose paper with a honeycomb surface for improved absorption performance of electromagnetic interference. Carbohydr. Polym. 260, 117840. doi: 10.1016/j.carbpol.2021.117840
|
|
Liu, R.T., Wang, D.Y., Xie, Y.J., Li, J., Wang, L.J., 2021c. Flexible cellulose-based material with a higher conductivity and electromagnetic shielding performance from electroless nickel plating. Wood Sci. Technol. 55, 1693–1710. doi: 10.1007/s00226-021-01297-3
|
|
Liu, S.Y., Ru, J.L., Liu, F.Z., 2021d NiP/CuO composites: electroless plating synthesis, antibiotic photodegradation and antibacterial properties. Chemosphere 267, 129220. doi: 10.1016/j.chemosphere.2020.129220
|
|
Loto, C.A., 2016. Electroless nickel plating: a review. Silicon 8, 177–186. doi: 10.1007/s12633-015-9367-7
|
|
Lu, Y., Liu, C.Z., Mei, C.T., Sun, J.S., Lee, J., Wu, Q.L., Hubbe, M.A., Li, M.C., 2022. Recent advances in metal organic framework and cellulose nanomaterial composites. Coord. Chem. Rev. 461, 214496. doi: 10.1016/j.ccr.2022.214496
|
|
Luo, J.L., Lu, H.Q., Huang, M.L., Shi, J.T., Gan, L., Peng, X.J., 2024. Recent advances of wood-derived carbon for degradation of organic pollutants in water via activating persulfate. J. Forest. Eng.9, 23–30.
|
|
Ma, X.F., Liu, S.Y., Luo, H., Guo, H.T., Jiang, S.H., Duan, G.G., Zhang, G.Y., Han, J.Q., He, S.J., Lu, W., Zhang, K., 2024. MOF@wood derived ultrathin carbon composite film for electromagnetic interference shielding with effective absorption and electrothermal management. Adv. Funct. Mater. 34, 2310126. doi: 10.1002/adfm.202310126
|
|
Mattos, B.D., Tardy, B.L., Magalhães, W.L.E., Rojas, O.J., 2017. Controlled release for crop and wood protection: recent progress toward sustainable and safe nanostructured biocidal systems. J. Control. Release 262, 139–150. doi: 10.1016/j.jconrel.2017.07.025
|
|
Modi, A., Bühler, F., Andreasen, J.G., Haglind, F., 2017. A review of solar energy based heat and power generation systems. Renew. Sustain. Energy Rev. 67, 1047–1064. doi: 10.1016/j.rser.2016.09.075
|
|
Moon, J.Y., Lee, J., Hwang, T.I., Park, C.H., Kim, C.S., 2021. A multifunctional, one-step gas foaming strategy for antimicrobial silver nanoparticle-decorated 3D cellulose nanofiber scaffolds. Carbohydr. Polym. 273, 118603. doi: 10.1016/j.carbpol.2021.118603
|
|
Muench, F., 2021. Electroless plating of metal nanomaterials. ChemElectroChem 8, 2993–3012. doi: 10.1002/celc.202100285
|
|
Negi, P., Gupta, A., Singh, M., Kumar, R., Kumar, S., Baskey, H.B., Kumar, A., 2022. Excellent microwave absorbing and electromagnetic shielding performance of grown MWCNT on activated carbon bifunctional composite. Carbon 198, 151–161. doi: 10.1016/j.carbon.2022.07.024
|
|
Nie, B.J., Palacios, A., Zou, B.Y., Liu, J.X., Zhang, T.T., Li, Y.R., 2020. Review on phase change materials for cold thermal energy storage applications. Renew. Sustain. Energy Rev. 134, 110340. doi: 10.1016/j.rser.2020.110340
|
|
Pan, Y.F., Dai, M.Y., Guo, Q., Yin, D.W., Hu, S.Q., Hu, N.G., Zheng, X., Huang, J.T., 2023. Construction of sandwich-structured Cu-Ni wood-based composites for electromagnetic interference shielding. Chem. Eng. J. 471, 144301. doi: 10.1016/j.cej.2023.144301
|
|
Pancrecious, J.K., Ulaeto, S.B., Ramya, R., Rajan, T.P.D., Pai, B.C., 2018. Metallic composite coatings by electroless technique–a critical review. Int. Mater. Rev. 63, 488–512. doi: 10.1080/09506608.2018.1506692
|
|
Qin, Y., Shen, H., Han, L., Zhu, Z.M., Pan, F., Yang, S.W., Yin, X.Z., 2020. Mechanically robust Janus poly(lactic acid) hybrid fibrous membranes toward highly efficient switchable separation of Surfactant-Stabilized Oil/Water emulsions. ACS Appl. Mater. Interfaces 12, 50879–50888. doi: 10.1021/acsami.0c15310
|
|
Ruan, J.C., Chang, Z.X., Rong, H.W., Alomar, T.S., Zhu, D.P., AlMasoud, N., Liao, Y.J., Zhao, R.Z., Zhao, X.Y., Li, Y.X., Ben, B.X., Guo, Z.H., El-Bahy, Z.M., Li, H.D., Zhang, X.F., Ge, S.B., 2023. High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213, 118208. doi: 10.1016/j.carbon.2023.118208
|
|
Sahasrabudhe, A., Dixit, H., Majee, R., Bhattacharyya, S., 2018. Value added transformation of ubiquitous substrates into highly efficient and flexible electrodes for water splitting. Nat. Commun. 9, 2014. doi: 10.1038/s41467-018-04358-7
|
|
Salehi, S., Tavakoli, M., Mirhaj, M., Varshosaz, J., Labbaf, S., Karbasi, S., Jafarpour, F., Kazemi, N., Salehi, S., Mehrjoo, M., Emami, E., 2023. A 3D printed polylactic acid-Baghdadite nanocomposite scaffold coated with microporous chitosan-VEGF for bone regeneration applications. Carbohydr. Polym. 312, 120787. doi: 10.1016/j.carbpol.2023.120787
|
|
Shen, H., Li, Y.S., Yao, W., Yang, S.W., Yang, L., Pan, F., Chen, Z.M., Yin, X.Z., 2021. Solvent-free cellulose nanocrystal fluids for simultaneous enhancement of mechanical properties, thermal conductivity, moisture permeability and antibacterial properties of polylactic acid fibrous membrane. Compos. Part B Eng. 222, 109042. doi: 10.1016/j.compositesb.2021.109042
|
|
Shi, C.H., Wang, L., Wang, L.J., 2015. Fabrication of a hydrophobic, electromagnetic interference shielding and corrosion-resistant wood composite via deposition with Ni-Mo-P alloy coating. RSC Adv. 5, 104750–104755. doi: 10.1039/C5RA16453B
|
|
Song, S.W., Li, H.T., Liu, P.W., Peng, X.H., 2022. Applications of cellulose-based composites and their derivatives for microwave absorption and electromagnetic shielding. Carbohydr. Polym. 287, 119347. doi: 10.1016/j.carbpol.2022.119347
|
|
Spear, M.J., Curling, S.F., Dimitriou, A., Ormondroyd, G.A., 2021. Review of functional treatments for modified wood. Coatings 11, 327. doi: 10.3390/coatings11030327
|
|
Sun, Y., Shi, X.L., Yang, Y.L., Suo, G.Q., Zhang, L., Lu, S.Y., Chen, Z.G., 2022. Biomass-derived carbon for high-performance batteries: from structure to properties. Adv. Funct. Mater. 32, 2201584. doi: 10.1002/adfm.202201584
|
|
Thomas, B., Raj, M.C., Athira, K.B., Rubiyah, M.H., Joy, J., Moores, A., Drisko, G.L., Sanchez, C., 2018. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118, 11575–11625. doi: 10.1021/acs.chemrev.7b00627
|
|
Wang, L., Li, J., 2013. Wood Surface Electroless Plating. Science Press, Beijing, pp. 32–36.
|
|
Wang, D.H., Sun, J.F., Xue, Q., Li, Q., Guo, Y., Zhao, Y.W., Chen, Z., Huang, Z.D., Yang, Q., Liang, G.J., Dong, B.B., Zhi, C.Y., 2021a. A universal method towards conductive textile for flexible batteries with superior softness. Energy Storage Mater.. 36, 272–278. doi: 10.1016/j.ensm.2021.01.001
|
|
Wang, D.Y., Liu, R.T., Xie, Y.J., Li, J., Wang, L.J., 2020. Fabrication of a laminated felt-like electromagnetic shielding material based on nickel-coated cellulose fibers via self-foaming effect in electroless plating process. Int. J. Biol. Macromol. 154, 954–961. doi: 10.1016/j.ijbiomac.2020.03.108
|
|
Wang, L., He, D.D., Qian, L.Y., He, B.H., Li, J.R., 2021b. Preparation of conductive cellulose fabrics with durable antibacterial properties and their application in wearable electrodes. Int. J. Biol. Macromol. 183, 651–659. doi: 10.1016/j.ijbiomac.2021.04.176
|
|
Wang, L.H., Guan, H.T., Hu, J.Q., Huang, Q., Dong, C.J., Qian, W., Wang, Y.D., 2019a. Jute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorber. J. Alloys Compd. 803, 1119–1126. doi: 10.1016/j.jallcom.2019.06.351
|
|
Wang, L.L., Chen, D., Jiang, K., Shen, G.Z., 2017. New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev. 46, 6764–6815. doi: 10.1039/C7CS00278E
|
|
Wang, Z., Malti, A., Ouyang, L.Q., Tu, D.Y., Tian, W.Q., Wågberg, L., Hamedi, M.M., 2018. Copper-plated paper for high-performance lithium-ion batteries. Small 14, e1803313. doi: 10.1002/smll.201803313
|
|
Wang, Z.Y., Fu, X.Y., Zhang, Z.D., Jiang, Y.L., Waqar, M., Xie, P.T., Bi, K., Liu, Y., Yin, X.W., Fan, R.H., 2019b. Paper-based metasurface: turning waste-paper into a solution for electromagnetic pollution. J. Clean. Prod. 234, 588–596. doi: 10.1016/j.jclepro.2019.06.239
|
|
Wei, C., Rao, R.R., Peng, J.Y., Huang, B.T., Stephens, I.E.L., Risch, M., Xu, Z.J., Shao-Horn, Y., 2019. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1806296. doi: 10.1002/adma.201806296
|
|
Wu, R.Q., Gao, W., Zhou, Y.H., Wang, Z.Q., Lin, Q.L., 2021. A novel three-dimensional network-based stearic acid/graphitized carbon foam composite as high-performance shape-stabilized phase change material for thermal energy storage. Compos. Part B225, 109318. doi: 10.1016/j.compositesb.2021.109318
|
|
Wu, Z.H., Guo, X.Y., Meng, Z.Z., Yao, C., Deng, Y., Zhou, H.F., Wang, Y.B., 2022. Nickel/porous carbon derived from rice husk with high microwave absorption performance. J. Alloys Compd. 925, 166732. doi: 10.1016/j.jallcom.2022.166732
|
|
Xia, Y.X., Gao, W.W., Gao, C., 2022. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32, 2204591. doi: 10.1002/adfm.202204591
|
|
Xiao, S.K., Hu, X.W., Jiang, L., Ma, Y., Che, Y.H., Zu, S., Jiang, X.X., 2022a. Nano-Ag modified bio-based loofah foam/polyethylene glycol composite phase change materials with higher photo-thermal conversion efficiency and thermal conductivity. J. Energy Storage 54, 105238. doi: 10.1016/j.est.2022.105238
|
|
Xiao, S.K., Hu, X.W., Jiang, X.X., Li, Q.L., 2022b. Enhanced thermal performance of phase change materials supported by hierarchical porous carbon modified with polydopamine/nano-Ag for thermal energy storage. J. Energy Storage 49, 104129. doi: 10.1016/j.est.2022.104129
|
|
Xie, Z.X., Cai, Y.F., Zhan, Y.H., Meng, Y.Y., Li, Y.C., Xie, Q., Xia, H.S., 2022. Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications. Chem. Eng. J. 435, 135118. doi: 10.1016/j.cej.2022.135118
|
|
Xing, Y.J., Xue, Y.P., Song, J.L., Sun, Y.K., Huang, L., Liu, X., Sun, J., 2018. Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding. Appl. Surf. Sci. 436, 865–872. doi: 10.1016/j.apsusc.2017.12.083
|
|
Xiong, C.Y., Xiong, Q., Zhao, M.J., Wang, B., Dai, L., Ni, Y.H., 2023. Recent advances in non-biomass and biomass-based electromagnetic shielding materials. Adv. Compos. Hybrid Mater. 6, 205. doi: 10.1007/s42114-023-00774-6
|
|
Xu, W.Y., Wang, X.J., Sandler, N., Willför, S., Xu, C.L., 2018. Three-dimensional printing of wood-derived biopolymers: a review focused on biomedical applications. ACS Sustain. Chem. Eng. 6, 5663–5680. doi: 10.1021/acssuschemeng.7b03924
|
|
Xu, Y.F., Qian, K.P., Deng, D.M., Luo, L.Q., Ye, J.H., Wu, H.M., Miao, M., Feng, X., 2020. Electroless deposition of silver nanoparticles on cellulose nanofibrils for electromagnetic interference shielding films. Carbohydr. Polym. 250, 116915. doi: 10.1016/j.carbpol.2020.116915
|
|
Xu, Y.J., Hou, M.H., Wang, J., 2024. Porous gradient composite with dependable superhydrophobic protection for multifunctional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 16, 3978–3990. doi: 10.1021/acsami.3c15242
|
|
Yang, M.N., Wang, J., Dai, P., Tang, X.F., Li, G., Yang, L., 2024a. RuNi single-atom alloy anchored on rGO as an outstanding bifunctional catalyst for efficient electrochemical water splitting. New J. Chem. 48, 3942–3951. doi: 10.1039/d3nj05436e
|
|
Yang, P.L., Li, E.M., Xiao, F., Zhou, P.C., Wang, Y., Tang, W.S., He, P., Jia, B., 2022. Nanostructure Fe-Co-B/bacterial cellulose based carbon nanofibers: an extremely efficient electrocatalyst toward oxygen evolution reaction. Int. J. Hydrog. Energy 47, 12953–12963. doi: 10.1016/j.ijhydene.2022.02.053
|
|
Yang, Q., Gao, Y., Li, T., Ma, L., Qi, Q., Yang, T., Meng, F.B., 2024b. Advances in carbon fiber-based electromagnetic shielding materials: composition, structure, and application. Carbon 226, 119203. doi: 10.1016/j.carbon.2024.119203
|
|
Yang, Y., Huang, Q.B., Payne, G.F., Sun, R.C., Wang, X.H., 2019. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 11, 725–732. doi: 10.1039/c8nr07123c
|
|
Yang, Y., Lu, Y.T., Zeng, K., Heinze, T., Groth, T., Zhang, K., 2021. Recent progress on cellulose-based ionic compounds for biomaterials. Adv. Mater. 33, 2000717. doi: 10.1002/adma.202000717
|
|
Yin, D.W., Pan, Y.F., Wang, Y., Guo, Q., Hu, S.Q., Huang, J.T., 2022. Preparation and performance of electroless silver composite films based on micro-/nano-cellulose. Wood Sci. Technol. 56, 649–668. doi: 10.1007/s00226-022-01367-0
|
|
Ying, T.P., Zhang, J., Liu, X.G., Yu, J.H., Yu, J.Y., Zhang, X.F., 2020. Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application. J. Alloys Compd. 849, 156662. doi: 10.1016/j.jallcom.2020.156662
|
|
Yu, H.Y., Zhang, H., Song, M.L., Zhou, Y., Yao, J.M., Ni, Q.Q., 2017. From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl. Mater. Interfaces 9, 43920–43938. doi: 10.1021/acsami.7b09102
|
|
Yu, L., Wu, L.B., McElhenny, B., Song, S.W., Luo, D., Zhang, F.H., Yu, Y., Chen, S., Ren, Z.F., 2020a. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 13, 3439–3446. doi: 10.1039/d0ee00921k
|
|
Yu, Q., Qin, Y., Han, M.Y., Pan, F., Han, L., Yin, X.Z., Chen, Z.M., Wang, L.X., Wang, H., 2020b. Preparation and characterization of solvent-free fluids reinforced and plasticized polylactic acid fibrous membrane. Int. J. Biol. Macromol. 161, 122–131. doi: 10.1016/j.ijbiomac.2020.06.027
|
|
Yuan, T.Z., Zeng, J.S., Wang, B., Cheng, Z., Gao, W.H., Xu, J., Chen, K.F., 2021. Silver nanoparticles immobilized on cellulose nanofibrils for starch-based nanocomposites with high antibacterial, biocompatible, and mechanical properties. Cellulose 28, 855–869. doi: 10.1007/s10570-020-03567-y
|
|
Zelinka, S.L., Altgen, M., Emmerich, L., Guigo, N., Keplinger, T., Kymäläinen, M., Thybring, E.E., Thygesen, L.G., 2022. Review of wood modification and wood functionalization technologies. Forests 13, 1004. doi: 10.3390/f13071004
|
|
Zeng, S.L., Huang, Z.X., Jiang, H., Li, Y.J., 2020. From waste to wealth: a lightweight and flexible leather solid waste/polyvinyl alcohol/silver paper for highly efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 52038–52049. doi: 10.1021/acsami.0c16169
|
|
Zhang, Q., Kang, L., Zou, J.X., Huang, C., Gong, Z.W., Zhang, J., 2021. A facile solution-based metallisation method without harsh conditions and expensive activators for paper substrate and its application in flexible supercapacitor. Mater. Des. 205, 109742. doi: 10.1016/j.matdes.2021.109742
|
|
Zhang, Q., Ning, L.P., Wang, C.Y., Wang, M., Shen, Y.Z., Yan, Y.R., 2019a. Fabrication and characterization of bio-based shielding material with dissimilar surface resistivity prepared by electroless Ni–Fe–P alloy plating on bamboo (N. affinis). J. Mater. Sci. Mater. Electron. 30, 21064–21078. doi: 10.1007/s10854-019-02476-6
|
|
Zhang, Q., Ning, L.P., Wang, C.Y., Wang, M., Shen, Y.Z., Yan, Y.R., 2019b. Study of an energy-efficient and cost-friendly electromagnetic shielding material with three-dimensional conductive network fabricated by dispersing Ni–Fe–P alloys coated bamboo fibers in a HDPE matrix. J. Mater. Sci. Mater. Electron. 30, 14631–14645. doi: 10.1007/s10854-019-01835-7
|
|
Zhang, Q., Wang, K., Chen, X.C., Tang, X.H., Zhao, Q., Fu, Q., 2022. Improving the thermal stability and functionality of bamboo fibers by electroless plating. ACS Sustain. Chem. Eng. 10, 16935–16947. doi: 10.1021/acssuschemeng.2c06017
|
|
Zhao, D.W., Zhu, Y., Cheng, W.K., Chen, W.S., Wu, Y.Q., Yu, H.P., 2021. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, e2000619. doi: 10.1002/adma.202000619
|
|
Zhao, L.Y., Yang, G.Q., Shen, C.F., Mao, Z.P., Wang, B.J., Sui, X.F., Feng, X.L., 2022. Dual-functional phase change composite based on copper plated cellulose aerogel. Compos. Sci. Technol. 227, 109615. doi: 10.1016/j.compscitech.2022.109615
|
|
Zhao, W.J., Xiao, X.Y., Pan, G.M., Ye, Z.H., 2020. Fabrication of Cu species functionalized cotton fabric with oil/water separating reusability by in situ reduction process. Surf. Coat. Technol. 385, 125405. doi: 10.1016/j.surfcoat.2020.125405
|
|
Zheng, Y., Song, Y.J., Gao, T., Yan, S.Y., Hu, H.H., Cao, F., Duan, Y.P., Zhang, X.F., 2020. Lightweight and hydrophobic three-dimensional wood-derived anisotropic magnetic porous carbon for highly efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 40802–40814. doi: 10.1021/acsami.0c11530
|
|
Zhou, J.Y., Wang, B.W., Xu, C., Xu, Y.Z., Tan, H.Y., Zhang, X.Q., Zhang, Y.H., 2022. Performance of composite materials by wood fiber/polydopamine/silver modified PLA and the antibacterial property. J. Mater. Res. Technol. 18, 428–438. doi: 10.1016/j.jmrt.2022.02.113
|
|
Zhu, H.L., Luo, W., Ciesielski, P.N., Fang, Z.Q., Zhu, J.Y., Henriksson, G., Himmel, M.E., Hu, L.B., 2016a. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116, 9305–9374. doi: 10.1021/acs.chemrev.6b00225
|
|
Zhu, L., Bi, S.Y., Zhao, H., Hou, L., Xu, Y.M., Lu, Y.X., 2018. Cu-Ni-Gd coating with improved corrosion resistance on linen fabric by electroless plating for electromagnetic interference shielding. J. Mater. Sci. Mater. Electron. 29, 16348–16358. doi: 10.1007/s10854-018-9725-5
|
|
Zhu, Y.Q., Romain, C., Williams, C.K., 2016b. Sustainable polymers from renewable resources. Nature 540, 354–362. doi: 10.1038/nature21001
|