Volume 10 Issue 4
Nov.  2025
Turn off MathJax
Article Contents
Qi Zhang, Xiaohong Tang, Qian Zhao, Xianchun Chen, Ke Wang, Qin Zhang, Qiang Fu. Multifunctional biomass materials based on electroless plating ✩[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 476-496. doi: 10.1016/j.jobab.2025.01.001
Citation: Qi Zhang, Xiaohong Tang, Qian Zhao, Xianchun Chen, Ke Wang, Qin Zhang, Qiang Fu. Multifunctional biomass materials based on electroless plating [J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 476-496. doi: 10.1016/j.jobab.2025.01.001

Multifunctional biomass materials based on electroless plating

doi: 10.1016/j.jobab.2025.01.001
More Information
  • Corresponding author: E-mail address: qiangfu@scu.edu.cn (Q. Fu)
  • Received Date: 2024-10-14
  • Accepted Date: 2024-12-13
  • Rev Recd Date: 2024-12-06
  • Available Online: 2025-01-08
  • Publish Date: 2025-11-01
  • The multifunctional utilization of biomass materials represents an effective strategy to address global resource shortages, mitigate environmental challenges, and support sustainable human development. However, the inherent insulating properties of most natural biomass materials significantly limit their applicability in advanced electronic technologies, including electromagnetic shielding, electrode capacitors, and triboelectric generators. Electroless plating (ELP), a versatile technique for metallization and functionalization, has attracted considerable attention over the past decade for its potential to endow biomass materials with tailored properties. This review provides a comprehensive analysis of ELP technology in the development of multidimensional functionalized biomass materials, emphasizing surface chemistry and functional applications. It outlines the underlying principles and recent technological advancements of ELP, as well as the properties and applications of metallized biomass materials. By achieving an optimal balance between functionality and ease of fabrication, the ELP demonstrates significant potential to expand the applications of biomass materials across various domains.

     

  • Declaration of competing interest
    The authors declare no competing financial interest.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Abdelgawad, A.M., El-Naggar, M.E., Elsherbiny, D.A., Ali, S., Abdel-Aziz, M.S., Abdel-Monem, Y.K., 2020. Antibacterial carrageenan/cellulose nanocrystal system loaded with silver nanoparticles, prepared via solid-state technique. J. Environ. Chem. Eng. 8, 104276. doi: 10.1016/j.jece.2020.104276
    Abdul Hakkeem, H.M., Babu, A., Shilpa, N., Venugopal, A.A., Mohamed, A.P., Kurungot, S., Pillai, S., 2022. Tailored synthesis of ultra-stable Au@Pd nanoflowers with enhanced catalytic properties using cellulose nanocrystals. Carbohydr. Polym. 292, 119723. doi: 10.1016/j.carbpol.2022.119723
    Abioye, A.M., Ahmad Noorden, Z., Ani, F.N., 2017. Synthesis and characterizations of electroless oil palm shell based-activated carbon/nickel oxide nanocomposite electrodes for supercapacitor applications. Electrochim. Acta 225, 493–502. doi: 10.1016/j.electacta.2016.12.101
    Afzali, A., Mottaghitalab, V., Motlagh, M.S., Haghi, A.K., 2010. The electroless plating of Cu-Ni-P alloy onto cotton fabrics. Korean J. Chem. Eng. 27, 1145–1149. doi: 10.1007/s11814-010-0221-8
    Agustin, M.B., Nakatsubo, F., Yano, H., 2018. Improving the thermal stability of wood-based cellulose by esterification. Carbohydr. Polym. 192, 28–36. doi: 10.1016/j.carbpol.2018.02.071
    Al-Maqdasi, Z., Hajlane, A., Renbi, A., Ouarga, A., Chouhan, S.S., Joffe, R., 2019. Conductive regenerated cellulose fibers by electroless plating. Fibers 7, 38. doi: 10.3390/fib7050038
    Atinafu, D.G., Yun, B.Y., Yang, S., Yuk, H., Wi, S., Kim, S., 2021. Structurally advanced hybrid support composite phase change materials: architectural synergy. Energy Storage Mater. 42, 164–184. doi: 10.1016/j.ensm.2021.07.022
    Berglund, L.A., Burgert, I., 2018. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30, e1704285. doi: 10.1002/adma.201704285
    Chen, C.J., Hu, L.B., 2021. Nanoscale ion regulation in wood-based structures and their device applications. Adv. Mater. 33, 2002890. doi: 10.1002/adma.202002890
    Chen, C.J., Kuang, Y.D., Zhu, S.Z., Burgert, I., Keplinger, T., Gong, A., Li, T., Berglund, L., Eichhorn, S.J., Hu, L.B., 2020a. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666. doi: 10.1038/s41578-020-0195-z
    Chen, H.J., Zou, Y.H., Li, J., Zhang, K.W., Xia, Y.Z., Hui, B., Yang, D.J., 2021. Wood aerogel-derived sandwich-like layered nanoelectrodes for alkaline overall seawater electrosplitting. Appl. Catal. B293, 120215. doi: 10.1016/j.apcatb.2021.120215
    Chen, J.L., Shen, B., Jia, X.C., Liu, Y.F., Zheng, W.G., 2022. Lightweight and compressible anisotropic honeycomb-like graphene composites for highly tunable electromagnetic shielding with multiple functions. Mater. Today Phys. 24, 100695. doi: 10.1016/j.mtphys.2022.100695
    Chen, R.W., Yang, Y., Huang, Q.B., Ling, H., Li, X.S., Ren, J.L., Zhang, K., Sun, R.C., Wang, X.H., 2020b. A multifunctional interface design on cellulose substrate enables high performance flexible all-solid-state supercapacitors. Energy Storage Mater. 32, 208–215. doi: 10.1016/j.ensm.2020.07.030
    Cheng, M.L., Ying, M.F., Zhao, R.Z., Ji, L.Z., Li, H.X., Liu, X.G., Zhang, J., Li, Y.X., Dong, X.L., Zhang, X.F., 2022. Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996–17007. doi: 10.1021/acsnano.2c07111
    Chu, Z.Z., Chen, D.D., Huang, Q.Y., Li, Y.T., Wu, Z.Z., Yang, Y., Yang, Z.H., 2022a. Polymer–assisted preparation of porous wood–based metallic composites for efficient catalytic reduction of organic pollutants. Ind. Crops Prod. 187, 115387. doi: 10.1016/j.indcrop.2022.115387
    Chu, Z.Z., Li, Y.T., Zhou, A.Q., Zhang, L., Zhang, X.C., Yang, Y., Yang, Z.H., 2022b. Polydimethylsiloxane-decorated magnetic cellulose nanofiber composite for highly efficient oil-water separation. Carbohydr. Polym. 277, 118787. doi: 10.1016/j.carbpol.2021.118787
    Ding, X.D., Wang, Y., Xu, R., Qi, Q.B., Wang, W., Yu, D., 2019. Layered cotton/rGO/NiWP fabric prepared by electroless plating for excellent electromagnetic shielding performance. Cellulose 26, 8209–8223. doi: 10.1007/s10570-019-02669-6
    Fan, Z.M., Wang, D.L., Yuan, Y., Wang, Y.S., Cheng, Z.J., Liu, Y.Y., Xie, Z.M., 2020. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696. doi: 10.1016/j.cej.2019.122696
    Faraji, S., Ani, F.N., 2015. The development supercapacitor from activated carbon by electroless plating: a review. Renew. Sustain. Energy Rev. 42, 823–834. doi: 10.1016/j.rser.2014.10.068
    Fathi, A.M., Handal, H.T., El-Kady, A.A., 2021. Rice straw derived activated carbon-based Ni-containing electrocatalyst for methanol oxidation. Carbon Lett. 31, 253–267. doi: 10.1007/s42823-020-00160-y
    Fu, Q.L., Chen, Y., Sorieul, M., 2020. Wood-based flexible electronics. ACS Nano 14, 3528–3538. doi: 10.1021/acsnano.9b09817
    Fu, X.L., Wang, Y.P., Wang, W., Yu, D., 2022. Ionic liquid regenerated cellulose membrane electroless plated by silver layer for ECG signal monitoring. Cellulose 29, 3467–3482. doi: 10.1007/s10570-022-04487-9
    Gui, C.M., Li, J., Zhang, Z.F., Chen, Z.M., Huang, J.J., Li, H.L., 2024. Fabrication of electrode material for textile-based triboelectric nanogenerators: research of the relationship between output performance and dielectric material strain. Langmuir 40, 4022–4032. doi: 10.1021/acs.langmuir.3c02375
    Gui, C.M., Zhang, R.X., Chen, Z.M., Wu, W.P., Li, H.L., Huang, J.J., 2022. Textile-based triboelectric nanogenerators via electroless plating for fabricating electrode material: study of the relationship between electrostatic-charge density and strain in dielectric material. Compos. Sci. Technol. 218, 109187. doi: 10.1016/j.compscitech.2021.109187
    Ha, D., Fang, Z.Q., Zhitenev, N.B., 2018. Paper in electronic and optoelectronic devices. Adv. Electron. Mater. 4, 1700593. doi: 10.1002/aelm.201700593
    He, D.D., Qian, L.Y., Chen, X.Y., He, B.H., Li, J.R., 2023. Durable cellulose paper by grafting thiol groups and controlling silver deposition for ultrahigh electromagnetic interference shielding. Int. J. Biol. Macromol. 248, 125972. doi: 10.1016/j.ijbiomac.2023.125972
    He, Z.J., Zhang, W.R., Zhang, J., Xie, J.L., Su, F.F., Li, Y.C., Yao, D.D., Wang, Y.D., Zheng, Y.P., 2024. Enhancing the electromagnetic interference shielding of epoxy resin composites with hierarchically structured MXene/graphene aerogel. Compos. Part B274, 111230. doi: 10.1016/j.compositesb.2024.111230
    Hosseini, S.E., Wahid, M.A., 2016. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57, 850–866. doi: 10.1016/j.rser.2015.12.112
    Huang, J.J., Wang, S.L., Zhao, X.K., Zhang, W.Q., Chen, Z.M., Liu, R., Li, P., Li, H.L., Gui, C.M., 2023a. Fabrication of a textile-based triboelectric nanogenerator toward high-efficiency energy harvesting and material recognition. Mater. Horiz. 10, 3840–3853. doi: 10.1039/d3mh00618b
    Huang, J.L., Zhao, B.T., Liu, T., Mou, J.R., Jiang, Z.J., Liu, J., Li, H.X., Liu, M.L., 2019a. Wood-derived materials for advanced electrochemical energy storage devices. Adv. Funct. Mater. 29, 1902255. doi: 10.1002/adfm.201902255
    Huang, L., Luo, Z.X., Huang, X.X., Wang, Y.A., Yan, J., Liu, W., Guo, Y.F., Babu Arulmani, S.R., Shao, M.H., Zhang, H.G., 2022. Applications of biomass-based materials to remove fluoride from wastewater: a review. Chemosphere 301, 134679. doi: 10.1016/j.chemosphere.2022.134679
    Huang, Y.C., Hu, L., Liu, R., Hu, Y.W., Xiong, T.Z., Qiu, W.T., Balogun, M.S., Pan, A.L., Tong, Y.X., 2019b. Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr(oxy)oxides for efficient hydrogen production in alkaline, seawater and acidic media. Appl. Catal. B251, 181–194. doi: 10.1016/j.apcatb.2019.03.037
    Huang, Y.D., Wang, Q., Xu, J.P., 2023b. A Stackelberg-based biomass power trading game framework in hybrid-wind/solar/biomass system: from technological, economic, environmental and social perspectives. J. Clean. Prod. 403, 136806. doi: 10.1016/j.jclepro.2023.136806
    Huang, Z.H., Nguyen, T.T., Zhou, Y.J., Qi, G.J., 2019c. A low temperature electroless nickel plating chemistry. Surf. Coat. Technol. 372, 160–165. doi: 10.1016/j.surfcoat.2019.05.019
    Hui, B., Zhang, K.W., Xia, Y.Z., Zhou, C.F., 2020. Natural multi-channeled wood frameworks for electrocatalytic hydrogen evolution. Electrochim. Acta 330, 135274. doi: 10.1016/j.electacta.2019.135274
    Hussain, N., Mehdi, M., Siyal, S.H., Wassan, R.K., Hashemikia, S., Sarwar, M.N., Yamaguchi, T., Kim, I.S., 2021. Conductive and antibacterial cellulose nanofibers decorated with copper nanoparticles for potential application in wearable devices. J. Appl. Polym. Sci. 138, 51381. doi: 10.1002/app.51381
    Jia, L.C., Zhou, C.G., Sun, W.J., Xu, L., Yan, D.X., Li, Z.M., 2020. Water-based conductive ink for highly efficient electromagnetic interference shielding coating. Chem. Eng. J. 384, 123368. doi: 10.1016/j.cej.2019.123368
    Jiang, Z., Palacios, A., Zou, B.Y., Zhao, Y.Q., Deng, W.Y., Zhang, X.S., Ding, Y.L., 2022. A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials. Renew. Sustain. Energy Rev. 159, 112134. doi: 10.1016/j.rser.2022.112134
    Kesavapillai Sreedeviamma, D., Remadevi, A., Sruthi, C.V., Pillai, S., Kuzhichalil Peethambharan, S., 2020. Nickel electrodeposited textiles as wearable radar invisible fabrics. J. Ind. Eng. Chem. 88, 196–206. doi: 10.1016/j.jiec.2020.04.013
    Kong, W.W., Shi, J.F., Zou, K.K., Li, N., Wang, Y.Y., Yan, D.X., Li, Z.M., 2022. Synergistically optimizing interlaminar and electromagnetic interference shielding behavior of carbon fiber composite based on interfacial reinforcement. Carbon 200, 448–455. doi: 10.1016/j.carbon.2022.08.080
    Krishnasamy, P., Mylsamy, G., Arulvel, S., Rajamurugan, G., Gadekar, A., 2024. Characterization of electrical conductivity and dielectric properties of electroless NiP/rGO composite coated hemp fiber with various weight% of rGO and coating duration. Results Phys. 60, 107694. doi: 10.1016/j.rinp.2024.107694
    Kumar, N., Lee, S.Y., Park, S.J., 2024. Recent progress and challenges in paper-based microsupercapacitors for flexible electronics: a comprehensive review. ACS Appl. Mater. Interfaces 16, 21367–21382. doi: 10.1021/acsami.4c01438
    Lee, C., Kim, S., Cho, Y.H., 2022. Silk and paper: progress and prospects in green photonics and electronics. Adv. Sustain. Syst. 6, 2000216. doi: 10.1002/adsu.202000216
    Li, F.S., Li, Y.Z., Zhuo, Q.M., Zhou, D.H., Zhao, Y.L., Zhao, Z.Q., Wu, X.J., Shan, Y., Sun, L.C., 2020a. Electroless plating of NiFeP alloy on the surface of silicon photoanode for efficient photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 12, 11479–11488. doi: 10.1021/acsami.9b19418
    Li, J.G., Chen, C.J., Zhu, J.Y., Ragauskas, A.J., Hu, L.B., 2021. In situ wood delignification toward sustainable applications. Acc. Mater. Res. 2, 606–620. doi: 10.1021/accountsmr.1c00075
    Li, J.J., Zhou, Y.N., Luo, Z.H., 2018. Polymeric materials with switchable superwettability for controllable oil/water separation: a comprehensive review. Prog. Polym. Sci. 87, 1–33. doi: 10.1016/j.progpolymsci.2018.06.009
    Li, S.T., Li, J.Y., Ma, N., Liu, D.Y., Sui, G.X., 2019. Super-compression-resistant multiwalled carbon nanotube/nickel-coated carbonized loofah fiber/polyether ether ketone composite with excellent electromagnetic shielding performance. ACS Sustain. Chem. Eng. 7, 13970–13980. doi: 10.1021/acssuschemeng.9b02447
    Li, T.T., Wang, Y.T., Peng, H.K., Zhang, X.F., Shiu, B.C., Lin, J.H., Lou, C.W., 2020b. Lightweight, flexible and superhydrophobic composite nanofiber films inspired by nacre for highly electromagnetic interference shielding. Compos. Part A 128, 105685. doi: 10.1016/j.compositesa.2019.105685
    Lin, Q.Q., Jiang, P., Ren, S.H., Liu, S.Q., Ji, Y.H., Huang, Y.X., Yu, W.J., Fontaine, G., Bourbigot, S., 2022a. Advanced functional materials based on bamboo cellulose fibers with different crystal structures. Compos. Part A154, 106758. doi: 10.1016/j.compositesa.2021.106758
    Lin, Q.Q., Liu, S.Q., Wang, X.Y., Huang, Y.X., Yu, W.J., 2022b. Preparation of ultra-conductive bamboo cellulose fiber via a facile pretreatment. Appl. Surf. Sci. 575, 151700. doi: 10.1016/j.apsusc.2021.151700
    Lin, X.X., Chen, X.Y., Weng, L., Hu, D.H., Qiu, C.D., Liu, P.W., Zhang, Y., Fan, M.Z., Sun, W.S., Guo, X., 2022. In-situ copper ion reduction and micro encapsulation of wood-based composite PCM with effective anisotropic thermal conductivity and energy storage. Sol. Energy Mater. Sol. Cells 242, 111762. doi: 10.1016/j.solmat.2022.111762
    Ling, H., Liu, S., Zheng, Z., Yan, F., 2018. Organic flexible electronics. Small Methods 2, 1800070. doi: 10.1002/smtd.201800070
    Liu, C., Luan, P.C., Li, Q., Cheng, Z., Xiang, P.Y., Liu, D.T., Hou, Y., Yang, Y., Zhu, H.L., 2021a. Biopolymers derived from trees as sustainable multifunctional materials: a review. Adv. Mater. 33, 2001654. doi: 10.1002/adma.202001654
    Liu, H., Qing, H.B., Li, Z.D., Han, Y.L., Lin, M., Yang, H., Li, A., Lu, T.J., Li, F., Xu, F., 2017. Paper: a promising material for human-friendly functional wearable electronics. Mater. Sci. Eng. R Rep. 112, 1–22. doi: 10.1016/j.mser.2017.01.001
    Liu, H.Z., Xu, Y., Zhao, X.D., Han, D., Zhao, F., Yang, Q.W., 2022. Lightweight leaf-structured carbon nanotubes/graphene foam and the composites with polydimethylsiloxane for electromagnetic interference shielding. Carbon 191, 183–194. doi: 10.1016/j.carbon.2022.01.051
    Liu, L.B., Yu, Y., Yan, C., Li, K., Zheng, Z.J., 2015. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun. 6, 7260. doi: 10.1038/ncomms8260
    Liu, R.T., Li, T.T., Xu, J., Zhang, T.C., Xie, Y.J., Li, J., Wang, L.J., 2021b. Sandwich-structural Ni/Fe3O4/Ni/cellulose paper with a honeycomb surface for improved absorption performance of electromagnetic interference. Carbohydr. Polym. 260, 117840. doi: 10.1016/j.carbpol.2021.117840
    Liu, R.T., Wang, D.Y., Xie, Y.J., Li, J., Wang, L.J., 2021c. Flexible cellulose-based material with a higher conductivity and electromagnetic shielding performance from electroless nickel plating. Wood Sci. Technol. 55, 1693–1710. doi: 10.1007/s00226-021-01297-3
    Liu, S.Y., Ru, J.L., Liu, F.Z., 2021d NiP/CuO composites: electroless plating synthesis, antibiotic photodegradation and antibacterial properties. Chemosphere 267, 129220. doi: 10.1016/j.chemosphere.2020.129220
    Loto, C.A., 2016. Electroless nickel plating: a review. Silicon 8, 177–186. doi: 10.1007/s12633-015-9367-7
    Lu, Y., Liu, C.Z., Mei, C.T., Sun, J.S., Lee, J., Wu, Q.L., Hubbe, M.A., Li, M.C., 2022. Recent advances in metal organic framework and cellulose nanomaterial composites. Coord. Chem. Rev. 461, 214496. doi: 10.1016/j.ccr.2022.214496
    Luo, J.L., Lu, H.Q., Huang, M.L., Shi, J.T., Gan, L., Peng, X.J., 2024. Recent advances of wood-derived carbon for degradation of organic pollutants in water via activating persulfate. J. Forest. Eng.9, 23–30.
    Ma, X.F., Liu, S.Y., Luo, H., Guo, H.T., Jiang, S.H., Duan, G.G., Zhang, G.Y., Han, J.Q., He, S.J., Lu, W., Zhang, K., 2024. MOF@wood derived ultrathin carbon composite film for electromagnetic interference shielding with effective absorption and electrothermal management. Adv. Funct. Mater. 34, 2310126. doi: 10.1002/adfm.202310126
    Mattos, B.D., Tardy, B.L., Magalhães, W.L.E., Rojas, O.J., 2017. Controlled release for crop and wood protection: recent progress toward sustainable and safe nanostructured biocidal systems. J. Control. Release 262, 139–150. doi: 10.1016/j.jconrel.2017.07.025
    Modi, A., Bühler, F., Andreasen, J.G., Haglind, F., 2017. A review of solar energy based heat and power generation systems. Renew. Sustain. Energy Rev. 67, 1047–1064. doi: 10.1016/j.rser.2016.09.075
    Moon, J.Y., Lee, J., Hwang, T.I., Park, C.H., Kim, C.S., 2021. A multifunctional, one-step gas foaming strategy for antimicrobial silver nanoparticle-decorated 3D cellulose nanofiber scaffolds. Carbohydr. Polym. 273, 118603. doi: 10.1016/j.carbpol.2021.118603
    Muench, F., 2021. Electroless plating of metal nanomaterials. ChemElectroChem 8, 2993–3012. doi: 10.1002/celc.202100285
    Negi, P., Gupta, A., Singh, M., Kumar, R., Kumar, S., Baskey, H.B., Kumar, A., 2022. Excellent microwave absorbing and electromagnetic shielding performance of grown MWCNT on activated carbon bifunctional composite. Carbon 198, 151–161. doi: 10.1016/j.carbon.2022.07.024
    Nie, B.J., Palacios, A., Zou, B.Y., Liu, J.X., Zhang, T.T., Li, Y.R., 2020. Review on phase change materials for cold thermal energy storage applications. Renew. Sustain. Energy Rev. 134, 110340. doi: 10.1016/j.rser.2020.110340
    Pan, Y.F., Dai, M.Y., Guo, Q., Yin, D.W., Hu, S.Q., Hu, N.G., Zheng, X., Huang, J.T., 2023. Construction of sandwich-structured Cu-Ni wood-based composites for electromagnetic interference shielding. Chem. Eng. J. 471, 144301. doi: 10.1016/j.cej.2023.144301
    Pancrecious, J.K., Ulaeto, S.B., Ramya, R., Rajan, T.P.D., Pai, B.C., 2018. Metallic composite coatings by electroless technique–a critical review. Int. Mater. Rev. 63, 488–512. doi: 10.1080/09506608.2018.1506692
    Qin, Y., Shen, H., Han, L., Zhu, Z.M., Pan, F., Yang, S.W., Yin, X.Z., 2020. Mechanically robust Janus poly(lactic acid) hybrid fibrous membranes toward highly efficient switchable separation of Surfactant-Stabilized Oil/Water emulsions. ACS Appl. Mater. Interfaces 12, 50879–50888. doi: 10.1021/acsami.0c15310
    Ruan, J.C., Chang, Z.X., Rong, H.W., Alomar, T.S., Zhu, D.P., AlMasoud, N., Liao, Y.J., Zhao, R.Z., Zhao, X.Y., Li, Y.X., Ben, B.X., Guo, Z.H., El-Bahy, Z.M., Li, H.D., Zhang, X.F., Ge, S.B., 2023. High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213, 118208. doi: 10.1016/j.carbon.2023.118208
    Sahasrabudhe, A., Dixit, H., Majee, R., Bhattacharyya, S., 2018. Value added transformation of ubiquitous substrates into highly efficient and flexible electrodes for water splitting. Nat. Commun. 9, 2014. doi: 10.1038/s41467-018-04358-7
    Salehi, S., Tavakoli, M., Mirhaj, M., Varshosaz, J., Labbaf, S., Karbasi, S., Jafarpour, F., Kazemi, N., Salehi, S., Mehrjoo, M., Emami, E., 2023. A 3D printed polylactic acid-Baghdadite nanocomposite scaffold coated with microporous chitosan-VEGF for bone regeneration applications. Carbohydr. Polym. 312, 120787. doi: 10.1016/j.carbpol.2023.120787
    Shen, H., Li, Y.S., Yao, W., Yang, S.W., Yang, L., Pan, F., Chen, Z.M., Yin, X.Z., 2021. Solvent-free cellulose nanocrystal fluids for simultaneous enhancement of mechanical properties, thermal conductivity, moisture permeability and antibacterial properties of polylactic acid fibrous membrane. Compos. Part B Eng. 222, 109042. doi: 10.1016/j.compositesb.2021.109042
    Shi, C.H., Wang, L., Wang, L.J., 2015. Fabrication of a hydrophobic, electromagnetic interference shielding and corrosion-resistant wood composite via deposition with Ni-Mo-P alloy coating. RSC Adv. 5, 104750–104755. doi: 10.1039/C5RA16453B
    Song, S.W., Li, H.T., Liu, P.W., Peng, X.H., 2022. Applications of cellulose-based composites and their derivatives for microwave absorption and electromagnetic shielding. Carbohydr. Polym. 287, 119347. doi: 10.1016/j.carbpol.2022.119347
    Spear, M.J., Curling, S.F., Dimitriou, A., Ormondroyd, G.A., 2021. Review of functional treatments for modified wood. Coatings 11, 327. doi: 10.3390/coatings11030327
    Sun, Y., Shi, X.L., Yang, Y.L., Suo, G.Q., Zhang, L., Lu, S.Y., Chen, Z.G., 2022. Biomass-derived carbon for high-performance batteries: from structure to properties. Adv. Funct. Mater. 32, 2201584. doi: 10.1002/adfm.202201584
    Thomas, B., Raj, M.C., Athira, K.B., Rubiyah, M.H., Joy, J., Moores, A., Drisko, G.L., Sanchez, C., 2018. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118, 11575–11625. doi: 10.1021/acs.chemrev.7b00627
    Wang, L., Li, J., 2013. Wood Surface Electroless Plating. Science Press, Beijing, pp. 32–36.
    Wang, D.H., Sun, J.F., Xue, Q., Li, Q., Guo, Y., Zhao, Y.W., Chen, Z., Huang, Z.D., Yang, Q., Liang, G.J., Dong, B.B., Zhi, C.Y., 2021a. A universal method towards conductive textile for flexible batteries with superior softness. Energy Storage Mater.. 36, 272–278. doi: 10.1016/j.ensm.2021.01.001
    Wang, D.Y., Liu, R.T., Xie, Y.J., Li, J., Wang, L.J., 2020. Fabrication of a laminated felt-like electromagnetic shielding material based on nickel-coated cellulose fibers via self-foaming effect in electroless plating process. Int. J. Biol. Macromol. 154, 954–961. doi: 10.1016/j.ijbiomac.2020.03.108
    Wang, L., He, D.D., Qian, L.Y., He, B.H., Li, J.R., 2021b. Preparation of conductive cellulose fabrics with durable antibacterial properties and their application in wearable electrodes. Int. J. Biol. Macromol. 183, 651–659. doi: 10.1016/j.ijbiomac.2021.04.176
    Wang, L.H., Guan, H.T., Hu, J.Q., Huang, Q., Dong, C.J., Qian, W., Wang, Y.D., 2019a. Jute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorber. J. Alloys Compd. 803, 1119–1126. doi: 10.1016/j.jallcom.2019.06.351
    Wang, L.L., Chen, D., Jiang, K., Shen, G.Z., 2017. New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev. 46, 6764–6815. doi: 10.1039/C7CS00278E
    Wang, Z., Malti, A., Ouyang, L.Q., Tu, D.Y., Tian, W.Q., Wågberg, L., Hamedi, M.M., 2018. Copper-plated paper for high-performance lithium-ion batteries. Small 14, e1803313. doi: 10.1002/smll.201803313
    Wang, Z.Y., Fu, X.Y., Zhang, Z.D., Jiang, Y.L., Waqar, M., Xie, P.T., Bi, K., Liu, Y., Yin, X.W., Fan, R.H., 2019b. Paper-based metasurface: turning waste-paper into a solution for electromagnetic pollution. J. Clean. Prod. 234, 588–596. doi: 10.1016/j.jclepro.2019.06.239
    Wei, C., Rao, R.R., Peng, J.Y., Huang, B.T., Stephens, I.E.L., Risch, M., Xu, Z.J., Shao-Horn, Y., 2019. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1806296. doi: 10.1002/adma.201806296
    Wu, R.Q., Gao, W., Zhou, Y.H., Wang, Z.Q., Lin, Q.L., 2021. A novel three-dimensional network-based stearic acid/graphitized carbon foam composite as high-performance shape-stabilized phase change material for thermal energy storage. Compos. Part B225, 109318. doi: 10.1016/j.compositesb.2021.109318
    Wu, Z.H., Guo, X.Y., Meng, Z.Z., Yao, C., Deng, Y., Zhou, H.F., Wang, Y.B., 2022. Nickel/porous carbon derived from rice husk with high microwave absorption performance. J. Alloys Compd. 925, 166732. doi: 10.1016/j.jallcom.2022.166732
    Xia, Y.X., Gao, W.W., Gao, C., 2022. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32, 2204591. doi: 10.1002/adfm.202204591
    Xiao, S.K., Hu, X.W., Jiang, L., Ma, Y., Che, Y.H., Zu, S., Jiang, X.X., 2022a. Nano-Ag modified bio-based loofah foam/polyethylene glycol composite phase change materials with higher photo-thermal conversion efficiency and thermal conductivity. J. Energy Storage 54, 105238. doi: 10.1016/j.est.2022.105238
    Xiao, S.K., Hu, X.W., Jiang, X.X., Li, Q.L., 2022b. Enhanced thermal performance of phase change materials supported by hierarchical porous carbon modified with polydopamine/nano-Ag for thermal energy storage. J. Energy Storage 49, 104129. doi: 10.1016/j.est.2022.104129
    Xie, Z.X., Cai, Y.F., Zhan, Y.H., Meng, Y.Y., Li, Y.C., Xie, Q., Xia, H.S., 2022. Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications. Chem. Eng. J. 435, 135118. doi: 10.1016/j.cej.2022.135118
    Xing, Y.J., Xue, Y.P., Song, J.L., Sun, Y.K., Huang, L., Liu, X., Sun, J., 2018. Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding. Appl. Surf. Sci. 436, 865–872. doi: 10.1016/j.apsusc.2017.12.083
    Xiong, C.Y., Xiong, Q., Zhao, M.J., Wang, B., Dai, L., Ni, Y.H., 2023. Recent advances in non-biomass and biomass-based electromagnetic shielding materials. Adv. Compos. Hybrid Mater. 6, 205. doi: 10.1007/s42114-023-00774-6
    Xu, W.Y., Wang, X.J., Sandler, N., Willför, S., Xu, C.L., 2018. Three-dimensional printing of wood-derived biopolymers: a review focused on biomedical applications. ACS Sustain. Chem. Eng. 6, 5663–5680. doi: 10.1021/acssuschemeng.7b03924
    Xu, Y.F., Qian, K.P., Deng, D.M., Luo, L.Q., Ye, J.H., Wu, H.M., Miao, M., Feng, X., 2020. Electroless deposition of silver nanoparticles on cellulose nanofibrils for electromagnetic interference shielding films. Carbohydr. Polym. 250, 116915. doi: 10.1016/j.carbpol.2020.116915
    Xu, Y.J., Hou, M.H., Wang, J., 2024. Porous gradient composite with dependable superhydrophobic protection for multifunctional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 16, 3978–3990. doi: 10.1021/acsami.3c15242
    Yang, M.N., Wang, J., Dai, P., Tang, X.F., Li, G., Yang, L., 2024a. RuNi single-atom alloy anchored on rGO as an outstanding bifunctional catalyst for efficient electrochemical water splitting. New J. Chem. 48, 3942–3951. doi: 10.1039/d3nj05436e
    Yang, P.L., Li, E.M., Xiao, F., Zhou, P.C., Wang, Y., Tang, W.S., He, P., Jia, B., 2022. Nanostructure Fe-Co-B/bacterial cellulose based carbon nanofibers: an extremely efficient electrocatalyst toward oxygen evolution reaction. Int. J. Hydrog. Energy 47, 12953–12963. doi: 10.1016/j.ijhydene.2022.02.053
    Yang, Q., Gao, Y., Li, T., Ma, L., Qi, Q., Yang, T., Meng, F.B., 2024b. Advances in carbon fiber-based electromagnetic shielding materials: composition, structure, and application. Carbon 226, 119203. doi: 10.1016/j.carbon.2024.119203
    Yang, Y., Huang, Q.B., Payne, G.F., Sun, R.C., Wang, X.H., 2019. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 11, 725–732. doi: 10.1039/c8nr07123c
    Yang, Y., Lu, Y.T., Zeng, K., Heinze, T., Groth, T., Zhang, K., 2021. Recent progress on cellulose-based ionic compounds for biomaterials. Adv. Mater. 33, 2000717. doi: 10.1002/adma.202000717
    Yin, D.W., Pan, Y.F., Wang, Y., Guo, Q., Hu, S.Q., Huang, J.T., 2022. Preparation and performance of electroless silver composite films based on micro-/nano-cellulose. Wood Sci. Technol. 56, 649–668. doi: 10.1007/s00226-022-01367-0
    Ying, T.P., Zhang, J., Liu, X.G., Yu, J.H., Yu, J.Y., Zhang, X.F., 2020. Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application. J. Alloys Compd. 849, 156662. doi: 10.1016/j.jallcom.2020.156662
    Yu, H.Y., Zhang, H., Song, M.L., Zhou, Y., Yao, J.M., Ni, Q.Q., 2017. From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl. Mater. Interfaces 9, 43920–43938. doi: 10.1021/acsami.7b09102
    Yu, L., Wu, L.B., McElhenny, B., Song, S.W., Luo, D., Zhang, F.H., Yu, Y., Chen, S., Ren, Z.F., 2020a. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 13, 3439–3446. doi: 10.1039/d0ee00921k
    Yu, Q., Qin, Y., Han, M.Y., Pan, F., Han, L., Yin, X.Z., Chen, Z.M., Wang, L.X., Wang, H., 2020b. Preparation and characterization of solvent-free fluids reinforced and plasticized polylactic acid fibrous membrane. Int. J. Biol. Macromol. 161, 122–131. doi: 10.1016/j.ijbiomac.2020.06.027
    Yuan, T.Z., Zeng, J.S., Wang, B., Cheng, Z., Gao, W.H., Xu, J., Chen, K.F., 2021. Silver nanoparticles immobilized on cellulose nanofibrils for starch-based nanocomposites with high antibacterial, biocompatible, and mechanical properties. Cellulose 28, 855–869. doi: 10.1007/s10570-020-03567-y
    Zelinka, S.L., Altgen, M., Emmerich, L., Guigo, N., Keplinger, T., Kymäläinen, M., Thybring, E.E., Thygesen, L.G., 2022. Review of wood modification and wood functionalization technologies. Forests 13, 1004. doi: 10.3390/f13071004
    Zeng, S.L., Huang, Z.X., Jiang, H., Li, Y.J., 2020. From waste to wealth: a lightweight and flexible leather solid waste/polyvinyl alcohol/silver paper for highly efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 52038–52049. doi: 10.1021/acsami.0c16169
    Zhang, Q., Kang, L., Zou, J.X., Huang, C., Gong, Z.W., Zhang, J., 2021. A facile solution-based metallisation method without harsh conditions and expensive activators for paper substrate and its application in flexible supercapacitor. Mater. Des. 205, 109742. doi: 10.1016/j.matdes.2021.109742
    Zhang, Q., Ning, L.P., Wang, C.Y., Wang, M., Shen, Y.Z., Yan, Y.R., 2019a. Fabrication and characterization of bio-based shielding material with dissimilar surface resistivity prepared by electroless Ni–Fe–P alloy plating on bamboo (N. affinis). J. Mater. Sci. Mater. Electron. 30, 21064–21078. doi: 10.1007/s10854-019-02476-6
    Zhang, Q., Ning, L.P., Wang, C.Y., Wang, M., Shen, Y.Z., Yan, Y.R., 2019b. Study of an energy-efficient and cost-friendly electromagnetic shielding material with three-dimensional conductive network fabricated by dispersing Ni–Fe–P alloys coated bamboo fibers in a HDPE matrix. J. Mater. Sci. Mater. Electron. 30, 14631–14645. doi: 10.1007/s10854-019-01835-7
    Zhang, Q., Wang, K., Chen, X.C., Tang, X.H., Zhao, Q., Fu, Q., 2022. Improving the thermal stability and functionality of bamboo fibers by electroless plating. ACS Sustain. Chem. Eng. 10, 16935–16947. doi: 10.1021/acssuschemeng.2c06017
    Zhao, D.W., Zhu, Y., Cheng, W.K., Chen, W.S., Wu, Y.Q., Yu, H.P., 2021. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, e2000619. doi: 10.1002/adma.202000619
    Zhao, L.Y., Yang, G.Q., Shen, C.F., Mao, Z.P., Wang, B.J., Sui, X.F., Feng, X.L., 2022. Dual-functional phase change composite based on copper plated cellulose aerogel. Compos. Sci. Technol. 227, 109615. doi: 10.1016/j.compscitech.2022.109615
    Zhao, W.J., Xiao, X.Y., Pan, G.M., Ye, Z.H., 2020. Fabrication of Cu species functionalized cotton fabric with oil/water separating reusability by in situ reduction process. Surf. Coat. Technol. 385, 125405. doi: 10.1016/j.surfcoat.2020.125405
    Zheng, Y., Song, Y.J., Gao, T., Yan, S.Y., Hu, H.H., Cao, F., Duan, Y.P., Zhang, X.F., 2020. Lightweight and hydrophobic three-dimensional wood-derived anisotropic magnetic porous carbon for highly efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 40802–40814. doi: 10.1021/acsami.0c11530
    Zhou, J.Y., Wang, B.W., Xu, C., Xu, Y.Z., Tan, H.Y., Zhang, X.Q., Zhang, Y.H., 2022. Performance of composite materials by wood fiber/polydopamine/silver modified PLA and the antibacterial property. J. Mater. Res. Technol. 18, 428–438. doi: 10.1016/j.jmrt.2022.02.113
    Zhu, H.L., Luo, W., Ciesielski, P.N., Fang, Z.Q., Zhu, J.Y., Henriksson, G., Himmel, M.E., Hu, L.B., 2016a. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116, 9305–9374. doi: 10.1021/acs.chemrev.6b00225
    Zhu, L., Bi, S.Y., Zhao, H., Hou, L., Xu, Y.M., Lu, Y.X., 2018. Cu-Ni-Gd coating with improved corrosion resistance on linen fabric by electroless plating for electromagnetic interference shielding. J. Mater. Sci. Mater. Electron. 29, 16348–16358. doi: 10.1007/s10854-018-9725-5
    Zhu, Y.Q., Romain, C., Williams, C.K., 2016b. Sustainable polymers from renewable resources. Nature 540, 354–362. doi: 10.1038/nature21001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (22) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return