Volume 10 Issue 3
Aug.  2025
Turn off MathJax
Article Contents
Rui Xu, Jingwen Chen, Nina Yan, Bingqian Xu, Zhichao Lou, Lei Xu. High-value utilization of agricultural residues based on component characteristics: Potentiality and challenges[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 271-294. doi: 10.1016/j.jobab.2025.01.002
Citation: Rui Xu, Jingwen Chen, Nina Yan, Bingqian Xu, Zhichao Lou, Lei Xu. High-value utilization of agricultural residues based on component characteristics: Potentiality and challenges[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 271-294. doi: 10.1016/j.jobab.2025.01.002

High-value utilization of agricultural residues based on component characteristics: Potentiality and challenges

doi: 10.1016/j.jobab.2025.01.002
More Information
  • Corresponding author: E-mail address: bxu@engr.uga.edu (B. Xu); E-mail address: zc-lou2015@njfu.edu.cn (Z. Lou); E-mail address: 20110037@jaas.ac.cn (L. Xu)
  • Received Date: 2024-09-01
  • Accepted Date: 2024-12-02
  • Rev Recd Date: 2024-11-26
  • Available Online: 2025-01-16
  • Publish Date: 2025-08-01
  • Agricultural residues (ARs) mainly consist of lignocellulose materials, such as crop straws and by-products from agricultural processing, with a global annual output exceeding 1.9 billion tons. Currently, effective waste management and resource utilization have garnered significant attention. Over the past decades, the results of numerous studies have shown that the use of ARs to produce organic fertilizers, biofuels, and new bio-based materials is an effective strategy for mitigating the global energy crisis and environmental degradation. Pretreatment technology has become a major focus of value-added transformation due to the heterogeneity and complexity of AR. However, most studies mainly concentrated on innovations in pretreatment technology and product quality, with few systematically addressing the comprehensive framework that encompasses composition analysis, pretreatment, transformation path, and energy assessment. This paper reviews the value-added conversion system of AR and analyzes its composition characteristics and pretreatment technologies. It provides a forward-looking perspective and an overview of technological advancement in diverse value-added pathways, such as physical utilization, thermochemical conversion, and biological fermentation. Additionally, it comprehensively evaluates energy consumption and environmental impacts across different conversion methods, addressing a significant gap in systematic evaluation in this field. This study identified key research trends by analyzing 8 641 high-quality articles using VOSviewer software based on Web of Science data from the past decade. The focus has progressively shifted from pretreatment technologies, including "steam explosion", "microwave" and "enzymatic hydrolysis" to primary products, such as "bioethanol" and "biogas" toward evaluating higher echelon of economic and environmental benefit, including "circular economy", "carbon emission" and "sustainability". In addition, this review directly addresses current research challenges, such as technical limitations, cost-benefit analysis, and standardization of environmental impact assessment. It also offers constructive suggestions for future research to enhance the efficiency, environmental friendliness, and sustainability of the value-added transformation of AR.

     

  • Author contributions
    Conceptualization: Rui Xu, Lei Xu.
    Formal analysis: Rui Xu, Zhichao Lou.
    Investigation: Rui Xu, Jingwen Chen.
    Methodology: Bingqian Xu, Nina Yan, Zhichao Lou, Lei Xu.
    Writing-original draft: Rui Xu, Jingwen Chen.
    Writing-review editing: Zhichao Lou, Lei Xu, Bingqian Xu.
    Availability of data
    Data available on request from the authors.
    Declaration of competing interest
    There are no conflicts to declare.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Abou Rjeily, M., Gennequin, C., Pron, H., Abi-Aad, E., Randrianalisoa, J.H., 2021. Pyrolysis-catalytic upgrading of bio-oil and pyrolysis-catalytic steam reforming of biogas: areview. Environ. Chem. Lett. 19, 2825–2872. doi: 10.1007/s10311-021-01190-2
    Ahmad, M.R., Chen, B., Duan, H.J., 2020. Improvement effect of pyrolyzed agro-food biochar on the properties of magnesium phosphate cement. Sci. Total Environ. 718, 137422.
    Akbari, R., Nasrollahzadeh, M., 2022. Iran's agricultural waste. Science 375, 984–985. doi: 10.1126/science.abn9765
    Ashoor, S., Mallapureddy, K.K., Sukumaran, R.K., 2023. Sequential mild acid and alkali pretreatment of rice straw to improve enzymatic saccharification for bioethanol production. Prep. Biochem. Biotechnol. 53, 231–238. doi: 10.1080/10826068.2022.2073597
    Atinafu, D.G., Chang, S.J., Kim, K.H., Kim, S., 2020. Tuning surface functionality of standard biochars and the resulting uplift capacity of loading/energy storage for organic phase change materials. Chem. Eng. J. 394, 125049.
    Azim, R., Wang, Q., Sadiq, M., Zhou, X.J., Zhang, D.K., Zhao, X.L., Xu, Y.H., Sun, Y.W., Qi, W.J., Zhu, J.H., Ma, W., Liu, B., Gillani, S.F.A., Ahmed, S., 2024. Exploring the potential of straw and biochar application on soil quality indicators and crop yield in semi-arid regions. J. Soil Sci. Plant Nutr. 24, 1907–1923. doi: 10.1007/s42729-024-01668-2
    Balch, M.L., Holwerda, E.K., Davis, M.F., Sykes, R.W., Happs, R.M., Kumar, R., Wyman, C.E., Lynd, L.R., 2017. Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by Clostridium thermocellum in the presence and absence of continuous in situ ball-milling. Energy Environ. Sci. 10, 1252–1261.
    Banoth, C., Sunkar, B., Tondamanati, P.R., Bhukya, B., 2017. Improved physicochemical pretreatment and enzymatic hydrolysis of rice straw for bioethanol production by yeast fermentation. 3 Biotech 7, 334.
    Bertoldo, N., Qureshi, T., Simpkins, D., Arrigoni, A., Dotelli, G., 2024. Concrete with organic waste materials as aggregate replacement. Appl. Sci. 14, 108.
    Boora, A., Rani, K., Suthar, M., Rana, R.S., Berwal, P., Al Asmari, A.F.S., Amir Khan, M., Islam, S., 2023. Slag and bagasse ash: potential binders for sustainable rigid pavement. ACS Omega 8, 32867–32876. doi: 10.1021/acsomega.3c04089
    Bu, J., Wang, Y.T., Deng, M.C., Zhu, M.J., 2021. Enhanced enzymatic hydrolysis and hydrogen production of sugarcane bagasse pretreated by peroxyformic acid. Bioresour. Technol. 326, 124751.
    Cai, P.H., Lu, S.Y., Yu, J.Q., Xiao, L., Wang, J.Y., Liang, H.F., Huang, L., Han, G.J., Bian, M.X., Zhang, S.H., Zhang, J., Liu, C.S., Jiang, L.B., Li, Y.L., 2022. Injectable nanofiber-reinforced bone cement with controlled biodegradability for minimally-invasive bone regeneration. Bioact. Mater. 21, 267–283.
    Cai, W.F., Dai, L., Liu, R.H., 2018. Catalytic fast pyrolysis of rice husk for bio-oil production. Energy 154, 477–487.
    Cao, C.Q., Zhang, Y., Li, L.H., Wei, W.W., Wang, G.Y., Bian, C., 2019. Supercritical water gasification of black liquor with wheat straw as the supplementary energy resource. Int. J. Hydrog. Energy 44, 15737–15745.
    Chen, H., Wu, J., Wang, H., Zhou, Y.Y., Xiao, B.Y., Zhou, L., Yu, G.L., Yang, M., Xiong, Y., Wu, S., 2021. Dark co-fermentation of rice straw and pig manure for biohydrogen production: effects of different inoculum pretreatments and substrate mixing ratio. Environ. Technol. 42, 4539–4549. doi: 10.1080/09593330.2020.1770340
    Chen, L., Chen, Q.C., Rao, P.H., Yan, L.L., Shakib, A., Shen, G.Q., 2018. Formulating and optimizing a novel biochar-based fertilizer for simultaneous slow-release of nitrogen and immobilization of cadmium. Sustainability 10, 2740. doi: 10.3390/su10082740
    Chen, T.F., Zhao, L.Y., Gao, X.J., Li, L.S., Qin, L., 2022. Modification of carbonation-cured cement mortar using biochar and its environmental evaluation. Cem. Concr. Compos. 134, 104764.
    Chen, Z.K., Jiang, X.L., Boyjoo, Y., Zhang, L., Li, W., Zhao, L., Liu, Y.X., Zhang, Y.G., Liu, J., Li, X.F., 2024. Nanoporous carbon materials derived from biomass precursors: sustainable materials for energy conversion and storage. Electrochem. Energy Rev. 7, 26.
    Cheng, J., Su, H.B., Zhou, J.H., Song, W.L., Cen, K.F., 2011. Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. Int. J. Hydrogen Energy 36, 2093–2101.
    Chung, D.D.L., 2024. A review of microwave absorption and reflection by cement-based materials, with emphasis on electromagnetic interference shielding and admixture effects. Adv. Funct. Mater. 34, 2408220.
    Coseri, S., 2017. Cellulose: to depolymerize… or not to? Biotechnol. Adv. 35, 251–266.
    Cui, H., Ou, Y., Wang, L.X., Yan, B.X., Li, Y.X., Bao, M.W., 2021. Critical passivation mechanisms on heavy metals during aerobic composting with different grain-size zeolite. J. Hazard. Mater. 406, 124313.
    de Sá, L.R.V., de Oliveira Faber, M., da Silva, A.S., Cammarota, M.C., Ferreira-Leitão, V.S., 2020. Biohydrogen production using xylose or xylooligosaccharides derived from sugarcane bagasse obtained by hydrothermal and acid pretreatments. Renew. Energy 146, 2408–2415.
    Deng, N., Wang, J.B., Li, J.J., Sun, J., 2023. Straw density board vs. conventional density board: is straw density board more sustainable? Sci. Total Environ. 888, 164020.
    Dinesh, G.H., Nguyen, D.D., Ravindran, B., Chang, S.W., Vo, D. V N., Bach, Q.V., Tran, H.N., Basu, M.J., Mohanrasu, K., Murugan, R.S., Swetha, T.A., Sivapraksh, G., Selvaraj, A., Arun, A., 2020. Simultaneous biohydrogen (H2) and bioplastic (poly-β-hydroxybutyrate-PHB) productions under dark, photo, and subsequent dark and photo fermentation utilizing various wastes. Int. J. Hydrogen Energy 45, 5840–5853.
    Domínguez-Robles, J., Tarrés, Q., Alcalà, M., El Mansouri, N.E., Rodríguez, A., Mutjé, P., Delgado-Aguilar, M., 2020. Development of high-performance binderless fiberboards from wheat straw residue. Constr. Build. Mater. 232, 117247.
    Duan, Y., Gao, Y.M., Zhao, J., Xue, Y.L., Zhang, W., Wu, W.J., Jiang, H.Q., Cao, D., 2023. Agricultural methane emissions in China: inventories, driving forces and mitigation strategies. Environ. Sci. Technol. 57, 13292–13303. doi: 10.1021/acs.est.3c04209
    Dušek, J., Jerman, M., Podlena, M., Böhm, M., Černý, R., 2021. Sustainable composite material based on surface-modified rape straw and environment-friendly adhesive. Constr. Build. Mater. 300, 124036.
    Eblaghi, M., Niakousari, M., Sarshar, M., Mesbahi, G.R., 2016. Combining ultrasound with mild alkaline solutions as an effective pretreatment to boost the release of sugar trapped in sugarcane bagasse for bioethanol production. J. Food Process. Eng. 39, 273–282. doi: 10.1111/jfpe.12220
    Ebrahimi, M., Caparanga, A.R., Ordono, E.E., Villaflores, O.B., Pouriman, M., 2017. Effect of ammonium carbonate pretreatment on the enzymatic digestibility, structural characteristics of rice husk and bioethanol production via simultaneous saccharification and fermentation process with Saccharomyces cerevisiae Hansen 2055. Ind. Crops Prod. 101, 84–91.
    Ehsani, A., Parsimehr, H., 2020. Electrochemical energy storage electrodes from fruit biochar. Adv. Colloid Interface Sci. 284, 102263.
    Ernst, L., Werner, A., Wefers, D., 2023. Influence of ultrasonication and hydrolysis conditions in methylation analysis of bacterial homoexopolysaccharides. Carbohydr. Polym. 308, 120643.
    Feng, J.Z., Tang, R.X., Wang, X.Y., Meng, T., 2021. Biomass-derived activated carbon sheets with tunable oxygen functional groups and pore volume for high-performance oxygen reduction and Zn-air batteries. ACS Appl. Energy Mater. 4, 5230–5236. doi: 10.1021/acsaem.1c00755
    Fonseca-Bermúdez, Ó. J., Giraldo, L., Sierra-Ramírez, R., Moreno-Piraján, J.C., 2023. Removal of hydrogen sulfide from biogas by adsorption and photocatalysis: a review. Environ. Chem. Lett. 21, 1059–1073. doi: 10.1007/s10311-022-01549-z
    Fu, Y.H., Jia, M.Y., Wang, F., Wang, Z.Q., Mei, Z., Bian, Y.R., Jiang, X., Virta, M., Tiedje, J.M., 2021. Strategy for mitigating antibiotic resistance by biochar and hyperaccumulators in cadmium and oxytetracycline co-contaminated soil. Environ. Sci. Technol. 55, 16369–16378. doi: 10.1021/acs.est.1c03434
    García-Torreiro, M., López-Abelairas, M., Lu-Chau, T.A., Lema, J.M., 2016. Fungal pretreatment of agricultural residues for bioethanol production. Ind. Crops Prod. 89, 486–492.
    Ge, S.B., Shi, Y., Chen, X.M., Zhou, Y.H., Naushad, M., Verma, M., Lam, S.S., Ng, H.S., Chen, W.H., Sonne, C., Peng, W.X., 2023. Sustainable upcycling of plastic waste and wood fibers into high-performance laminated wood-polymer composite via one-step cell collapse and chemical bonding approach. Adv. Compos. Hybrid Mater. 6, 146. doi: 10.15302/j-sscae-2023.05.013
    Giannetta, B., Plaza, C., Siebecker, M.G., Aquilanti, G., Vischetti, C., Plaisier, J.R., Juanco, M., Sparks, D.L., Zaccone, C., 2020. Iron speciation in organic matter fractions isolated from soils amended with biochar and organic fertilizers. Environ. Sci. Technol. 54, 5093–5101. doi: 10.1021/acs.est.0c00042
    Guo, S.M., Wu, J., Han, Z.Q., Li, Z.T., Xu, P.S., Liu, S.W., Wang, J.Y., Zou, J.W., 2023. The legacy effect of biochar application on soil nitrous oxide emissions. GCB Bioenergy 15, 478–493. doi: 10.1111/gcbb.13022
    Guo, Y.C., Dai, Y., Bai, Y.X., Li, Y.H., Fan, Y.T., Hou, H.W., 2014. Co-producing hydrogen and methane from higher-concentration of corn stalk by combining hydrogen fermentation and anaerobic digestion. Int. J. Hydrogen Energy 39, 14204–14211.
    Gupte, A.P., Basaglia, M., Casella, S., Favaro, L., 2022. Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives. Renew. Sustain. Energy Rev. 167, 112673.
    Hakeem, I.Y., Amin, M., Zeyad, A.M., Tayeh, B.A., Maglad, A.M., Agwa, I.S., 2022. Effects of nano sized sesame stalk and rice straw ashes on high-strength concrete properties. J. Clean. Prod. 370, 133542.
    Han, H., Lou, Z.C., Wang, P., Wang, Q.Y., Li, R., Zhang, Y., Li, Y.J., 2020. Synthesis of ultralight and porous magnetic g-C3N4/g-carbon foams with excellent electromagnetic wave (EMW) absorption performance and their application as a reinforcing agent for 3D printing EMW absorbers. Ind. Eng. Chem. Res. 59, 7633–7645. doi: 10.1021/acs.iecr.0c00665
    He, L.L., Huang, H., Lei, Z.F., Liu, C.G., Zhang, Z.Y., 2014. Enhanced hydrogen production from anaerobic fermentation of rice straw pretreated by hydrothermal technology. Bioresour. Technol. 171, 145–151.
    Hei, Z.W., Peng, Y.T., Hao, S.L., Li, Y.M., Yang, X., Zhu, T.B., Müller, C., Zhang, H.Y., Hu, H.W., Chen, Y.L., 2023. Full substitution of chemical fertilizer by organic manure decreases soil N2 O emissions driven by ammonia oxidizers and gross nitrogen transformations. Glob. Change Biol. 29, 7117–7130. doi: 10.1111/gcb.16957
    Hoy, Z.X., Woon, K.S., Chin, W.C., Van Fan, Y., Yoo, S.J., 2023. Curbing global solid waste emissions toward net-zero warming futures. Science 382, 797–800. doi: 10.1126/science.adg3177
    Hu, L.L., He, Z., Zhang, S.P., 2020. Sustainable use of rice husk ash in cement-based materials: environmental evaluation and performance improvement. J. Clean. Prod. 264, 121744.
    Hu, Y.X., Chen, J.J., Tian, H., Hu, Z.M., 2023. Techno-economic and environmental evaluation of the production of biodiesel from rice-straw in China. Front. Energy Res. 11, 1286373.
    Hua, Y., Cai, C., Dai, X.H., 2021. A specious relevance between theory and practice: insights into temperature parameter and multi-phase strategy of anaerobic digestion of straw. Sci. Total Environ. 753, 142212.
    Huang, F.C., Tian, Z.J., Ma, H., Ding, Z.D., Ji, X.X., Si, C.L., Wang, D.X., 2023. Combined alkali impregnation and poly dimethyl diallyl ammonium chloride-assisted cellulase absorption for high-efficiency pretreatment of wheat straw. Adv. Compos. Hybrid Mater. 6, 230.
    Huang, J.R., Chen, X., Hu, B.B., Cheng, J.R., Zhu, M.J., 2022. Bioaugmentation combined with biochar to enhance thermophilic hydrogen production from sugarcane bagasse. Bioresour. Technol. 348, 126790.
    Huang, X., Cao, J.P., Zhao, X.Y., Wang, J.X., Fan, X., Zhao, Y.P., Wei, X.Y., 2016. Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel 169, 93–98.
    Hussein, Z., Ashour, T., Khalil, M., Bahnasawy, A., Ali, S., Hollands, J., Korjenic, A., 2019. Rice straw and flax fiber particleboards as a product of agricultural waste: an evaluation of technical properties. Appl. Sci. 9, 3878. doi: 10.3390/app9183878
    Hýsková, P., Hýsek, Š., Schönfelder, O., Šedivka, P., Lexa, M., Jarský, V., 2020. Utilization of agricultural rests: Straw-based composite panels made from enzymatic modified wheat and rapeseed straw. Ind. Crops Prod. 144, 112067.
    Jiang, D.P., Ge, X.M., Zhang, T., Liu, H.L., Zhang, Q.G., 2016. Photo-fermentative hydrogen production from enzymatic hydrolysate of corn stalk pith with a photosynthetic consortium. Int. J. Hydrogen Energy 41, 16778–16785.
    Jiang, J.G., Fu, J.L., An, N., Zhang, Y.F., Chen, X., Wang, L., 2023a. Rapid and effective molten oxalic acid dihydrate pretreatment to enhance enzymatic saccharification for biohydrogen production by efficient coextraction of lignin and hemicellulose in wheat straw. Chem. Eng. J. 475, 146422.
    Jiang, X., Liu, J., Ren, J., Fan, P., Yang, K., Cai, H., 2023b. Corn straw supported high-performance phase change composites: strategy to turn agricultural residues into high efficient and stable thermal energy storage materials. Mater. Today Sustain. 24, 100571.
    Jin, M.J., Wei, X., Mu, X.F., Ren, W.X., Zhang, S.H., Tang, C.F., Cao, W., 2024. Life-cycle analysis of biohydrogen production via dark-photo fermentation from wheat straw. Bioresour. Technol. 396, 130429.
    Johnson, R., 2023. Biotransformations for bioremediation. Nat. Chem. Biol. 19, 1287–1289. doi: 10.1038/s41589-023-01446-8
    Ketsub, N., Latif, A., Kent, G., Doherty, W.O.S., O'Hara, I.M., Zhang, Z.Y., Kaparaju, P., 2021. A systematic evaluation of biomethane production from sugarcane trash pretreated by different methods. Bioresour. Technol. 319, 124137.
    Khandelwal, K., Nanda, S., Dalai, A.K., 2024. Machine learning to predict the production of bio-oil, biogas, and biochar by pyrolysis of biomass: a review. Environ. Chem. Lett. 22, 2669–2698. doi: 10.1007/s10311-024-01767-7
    Khoo, K.S., Ahmad, I., Chew, K.W., Iwamoto, K., Bhatnagar, A., Show, P.L., 2023. Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: a review. Prog. Energy Combust. Sci. 96, 101071.
    Kim, S., 2018. Evaluation of alkali-pretreated soybean straw for lignocellulosic bioethanol production. Int. J. Polym. Sci. 2018, 5241748.
    Kuhad, R.C., Rapoport, A., Kumar, V., Singh, D., Kumar, V., Tiwari, S.K., Ahlawat, S., Singh, B. 2024. Biological pretreatment of lignocellulosic biomass: an environment-benign and sustainable approach for conversion of solid waste into value-added products. Crit. Rev. Environ. Sci. Technol., 54(10), 771-796.
    Kumar, A., Daw, P., Milstein, D., 2022. Homogeneous catalysis for sustainable energy: hydrogen and methanol economies, fuels from biomass, and related topics. Chem. Rev. 122, 385–441. doi: 10.1021/acs.chemrev.1c00412
    Li, R., Lin, T.H., Fan, X.L., Dai, X.F., Huang, J.H., Zhang, Y.F., Guo, R.B., Fu, S.F., 2024a. Effects of salinity in food waste on the growth of black soldier fly larvae and global warming potential analysis. Chem. Eng. J. 480, 148221.
    Li, S.J., Han, X., Song, W.L., Wang, Z., Zhu, Y.L., Jiao, S.Q., 2023. Nickel-promoted electrocatalytic graphitization of biochars for energy storage: mechanistic understanding using multi-scale approaches. Angew. Chem. Int. Ed 62, e202301985.
    Li, X., Du, Y.Y., Chang, H.M., Ai, J., Zhao, Y., 2024b. Life cycle environmental impacts of five technological routes for straw utilisation in China. Biomass Bioenergy 183, 107157.
    Li, X.Q., Chen, Z., Liu, P., Wang, Z.W., Sun, T.L., Wu, S.Y., Wu, Y.Q., Lei, T.Z., 2024c. Oriented pyrolysis of biomass for hydrogen-rich gas and biochar production: an energy, environment, and economic assessment based on life cycle assessment method. Int. J. Hydrogen Energy 62, 979–993.
    Lian, J.K., Wang, Y.L., Fu, T.F., Easa, S.M., Zhou, Y., Li, H.W., 2023. Mechanical, electrical, and tensile self-sensing properties of ultra-high-performance concrete enhanced with sugarcane bagasse ash. Materials (Basel) 17, 82. doi: 10.3390/ma17010082
    Liang, C.B., Qiu, H., Song, P., Shi, X.T., Kong, J., Gu, J.W., 2020. Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like "mortar/brick" structures for electromagnetic interference shielding. Sci. Bull. 65, 616–622.
    Lin, L.F., Han, X., Han, B.X., Yang, S.H., 2021. Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. Chem. Soc. Rev. 50, 11270–11292. doi: 10.1039/d1cs00039j
    Liu, T.J., Li, Z.L., 2017. An electrogenerated base for the alkaline oxidative pretreatment of lignocellulosic biomass to produce bioethanol. RSC Adv. 7, 47456–47463.
    Liu, X.Q., Chen, Z.J., Lu, S., Xu, B.T., Cheng, D.L., Wei, W., Shen, Y.S., Ni, B.J., 2023. Heterogeneous photocatalytic conversion of biomass to biofuels: a review. Chem. Eng. J. 476, 146794.
    López-Linares, J.C., García-Cubero, M.T., Lucas, S., González-Benito, G., Coca, M., 2019. Microwave assisted hydrothermal as greener pretreatment of brewer's spent grains for biobutanol production. Chem. Eng. J. 368, 1045–1055.
    Lou, Z., Yuan, C., Li, Y., Shen, D., Yang, L., Li, J., Zhang, A., 2020. Effect of saturated steam treatment on the chemical composition and crystallinity properties of bamboo bundles. J. For. Eng. 5, 29–35.
    Lou, Z.C., Wang, W.K., Yuan, C.L., Zhang, Y., Li, Y.J., Yang, L.T., 2019. Fabrication of Fe/C composites as effective electromagnetic wave absorber by carbonization of pre-magnetized natural wood fibers. J. Bioresour. Bioprod. 4, 43–50. doi: 10.21967/jbb.v4i1.185
    Lynd, L.R., Beckham, G.T., Guss, A.M., Jayakody, L.N., Karp, E.M., Maranas, C., McCormick, R.L., Amador-Noguez, D., Bomble, Y.J., Davison, B.H., Foster, C., Himmel, M.E., Holwerda, E.K., Laser, M.S., Ng, C.Y., Olson, D.G., Román-Leshkov, Y., Trinh, C.T., Tuskan, G.A., Upadhayay, V., Vardon, D.R., Wang, L., Wyman, C.E., 2022. Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels. Energy Environ. Sci. 15, 938–990. doi: 10.1039/d1ee02540f
    Mani-López, E., Palou, E., López-Malo, A., 2021. Legume proteins, peptides, water extracts, and crude protein extracts as antifungals for food applications. Trends Food Sci. Technol. 112, 16–24.
    Manoharan, D., Radhakrishnan, M., Tiwari, B.K., 2024. Cavitation technologies for extraction of high value ingredients from renewable biomass. Trac Trends Anal. Chem. 174, 117682.
    Mohamad Aziz, N.A., Mohamed, H., Kania, D., Ong, H.C., Zainal, B.S., Junoh, H., Ker, P.J., Silitonga, A.S., 2024. Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis. Renew. Sustain. Energy Rev. 191, 114097.
    Mohanty, A.K., Wu, F., Mincheva, R., Hakkarainen, M., Raquez, J.M., Mielewski, D.F., Narayan, R., Netravali, A.N., Misra, M., 2022. Sustainable polymers. Nat. Rev. Meth. Primers 2, 46.
    Mujtaba, M., Fernandes Fraceto, L., Fazeli, M., Mukherjee, S., Savassa, S.M., Araujo de Medeiros, G., do Espírito Santo Pereira, A., Mancini, S.D., Lipponen, J., Vilaplana, F., 2023. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 402, 136815.
    Najahi, A., Aguado, R.J., Tarrés, Q., Boufi, S., Delgado-Aguilar, M., 2023. Harvesting value from agricultural waste: dimensionally stable fiberboards and particleboards with enhanced mechanical performance and fire retardancy through the use of lignocellulosic nanofibers. Ind. Crops Prod. 204, 117336.
    Ndayisenga, F., Yu, Z.S., Zheng, J.Z., Wang, B.B., Liang, H.X., Ali Phulpoto, I., Habiyakare, T., Zhou, D.D., 2021. Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: substrate pretreatment towards optimization. Renew. Sustain. Energy Rev. 145, 111078.
    Ning, P., Yang, G.F., Hu, L.H., Sun, J.X., Shi, L.N., Zhou, Y.H., Wang, Z.B., Yang, J.M., 2021. Recent advances in the valorization of plant biomass. Biotechnol. Biofuels 14, 102.
    Ocreto, J.B., Chen, W.H., Rollon, A.P., Ong, H.C., Pétrissans, A., Pétrissans, M., De Luna, M.D.G., 2022. Ionic liquid dissolution utilized for biomass conversion into biofuels, value-added chemicals and advanced materials: a comprehensive review. Chem. Eng. J. 445, 136733.
    Osman, A.I., Farghali, M., Ihara, I., Elgarahy, A.M., Ayyad, A., Mehta, N., Ng, K.H., Abd El-Monaem, E.M., Eltaweil, A.S., Hosny, M., Hamed, S.M., Fawzy, S., Yap, P.S., Rooney, D.W., 2023. Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: a review. Environ. Chem. Lett. 21, 1419–1476. doi: 10.1007/s10311-023-01573-7
    Pagano, M., Hernando, H., Cueto, J., Cruz, P.L., Dufour, J., Moreno, I., Serrano, D.P., 2023. Insights on the acetic acid pretreatment of wheat straw: changes induced in the biomass properties and benefits for the bio-oil production by pyrolysis. Chem. Eng. J. 454, 140206.
    Palliprath, S., Poolakkalody, N.J., Ramesh, K., Mangalan, S.M., Kabekkodu, S.P., Santiago, R., Manisseri, C., 2023. Pretreatment of sugarcane postharvest leaves by γ-valerolactone/water/FeCl3 system for enhanced glucan and bioethanol production. Ind. Crops Prod. 197, 116571.
    Pan, C.Y., Chen, A.P., Liu, Z., Chen, P., Lou, H., Zheng, X.M., 2012. Aqueous-phase reforming of the low-boiling fraction of rice husk pyrolyzed bio-oil in the presence of platinum catalyst for hydrogen production. Bioresour. Technol. 125, 335–339.
    Pang, B., Zhou, T., Cao, X.F., Zhao, B.C., Sun, Z.H., Liu, X., Chen, Y.Y., Yuan, T.Q., 2022. Performance and environmental implication assessments of green bio-composite from rice straw and bamboo. J. Clean. Prod. 375, 134037.
    Periyasamy, S., Karthik, V., Senthil Kumar, P., Isabel, J.B., Temesgen, T., Hunegnaw, B.M., Melese, B.B., Mohamed, B.A., Vo, D.V. N., 2022. Chemical, physical and biological methods to convert lignocellulosic waste into value-added products. A review. Environ. Chem. Lett. 20, 1129–1152. doi: 10.1007/s10311-021-01374-w
    Pooja, N.S., Sajeev, M.S., Jeeva, M.L., Padmaja, G., 2018. Bioethanol production from microwave-assisted acid or alkali-pretreated agricultural residues of cassava using separate hydrolysis and fermentation (SHF). 3 Biotech 8, 69.
    Puga, A.P., Grutzmacher, P., Cerri, C.E.P., Ribeirinho, V.S., Andrade, C.A., 2020. Biochar-based nitrogen fertilizers: greenhouse gas emissions, use efficiency, and maize yield in tropical soils. Sci. Total Environ. 704, 135375.
    Quéméneur, M., Bittel, M., Trably, E., Dumas, C., Fourage, L., Ravot, G., Steyer, J.P., Carrère, H., 2012. Effect of enzyme addition on fermentative hydrogen production from wheat straw. Int. J. Hydrogen Energy 37, 10639–10647.
    Rai, P.K., Singh, S.P., Asthana, R.K., Singh, S., 2014. Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation. Bioresour. Technol. 152, 140–146.
    Reddy, K., Nasr, M., Kumari, S., Kumar, S., Gupta, S.K., Enitan, A.M., Bux, F., 2017. Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environ. Sci. Pollut. Res. Int. 24, 8790–8804. doi: 10.1007/s11356-017-8560-1
    Reynolds, W., Conrad, M., Mbeukem, S., Stank, R., Smirnova, I., 2019. Pressure drop, mechanic deformation, stabilization and scale-up of wheat straw fixed-beds during hydrothermal pretreatment: experiments and modeling. Chem. Eng. J. 360, 1587–1600.
    Sabeeh, M., Zeshan, Liaquat, R., Maryam, A., 2020. Effect of alkaline and alkaline-photocatalytic pretreatment on characteristics and biogas production of rice straw. Bioresour. Technol. 309, 123449.
    Safaripour, M., Ghanbari, A., Seyedabadi, E., Pourhashem, G., 2023. Investigation of environmental impacts of bioethanol production from wheat straw in Kermanshah, Iran. Biomass Convers. Biorefin. 13, 5931–5941. doi: 10.1007/s13399-021-01676-7
    Sahil, S., Singh, R., Masakapalli, S.K., Pareek, N., Kovalev, A.A., Litti, Y.V., Nanda, S., Vivekanand, V., 2024. Biomass pretreatment, bioprocessing and reactor design for biohydrogen production: a review. Environ. Chem. Lett. 22, 1665–1702. doi: 10.1007/s10311-024-01722-6
    Saletnik, B.A., Saletnik, A., Bajcar, M., Zaguła, G., Puchalski, C., Strobel, W., Dobrzański, B., 2024. Influence of temperature and duration of pyrolysis process on calorific value of cereal straw biochar and dust explosive index. Int. Agrophys. 38, 267–278. doi: 10.31545/intagr/188306
    Santos, T.M., da Silva, W.R., de Carvalho Carregosa, J., Schmitt, C.C., Moreira, R., Raffelt, K., Dahmen, N., Wisniewski, A. Jr., 2022. Thermal conversion of sugarcane bagasse coupled with vapor phase hydrotreatment over nickel-based catalysts: a comprehensive characterization of upgraded products. Catalysts 12, 355. doi: 10.3390/catal12040355
    Saratale, G.D., Saratale, R.G., Kim, S.H., Kumar, G., 2018. Screening and optimization of pretreatments in the preparation of sugarcane bagasse feedstock for biohydrogen production and process optimization. Int. J. Hydrogen Energy 43, 11470–11483.
    Sawhney, D., Vaid, S., Bangotra, R., Sharma, S., Dutt, H.C., Kapoor, N., Mahajan, R., Bajaj, B.K., 2023. Proficient bioconversion of rice straw biomass to bioethanol using a novel combinatorial pretreatment approach based on deep eutectic solvent, microwave irradiation and laccase. Bioresour. Technol. 375, 128791.
    Shakouri, M., Exstrom, C.L., Ramanathan, S., Suraneni, P., 2020. Hydration, strength, and durability of cementitious materials incorporating untreated corn cob ash. Constr. Build. Mater. 243, 118171.
    Shang, X.Y., Li, Z.C., Chang, J.L., Chen, Y.Q., Yang, J.W., Duan, Z.H., 2024. Production, properties and life cycle assessment of artificial lightweight aggregates produced with corn straw ash (CSA) and concrete slurry waste (CSW). Constr. Build. Mater. 411, 134274.
    Shang, X.Y., Song, S.Q., Yang, J.W., 2020a. Comparative environmental evaluation of straw resources by LCA in China. Adv. Mater. Sci. Eng. 2020, 4781805.
    Shang, X.Y., Yang, J.W., Song, Q., Wang, L., 2020b. Efficacy of modified rice straw fibre on properties of cementitious composites. J. Clean. Prod. 276, 124184.
    Shao, Y.C., Luo, Z.R., Bao, M.G., Huo, W.Z., Ye, R., Ajmal, M., Lu, W.J., 2023. Enhanced production of hydrothermal humic acid in a two-step hydrothermal process with acid hydrothermal solution recycling. Chem. Eng. J. 474, 145634.
    Sharma, B., Larroche, C., Dussap, C.G., 2020. Comprehensive assessment of 2G bioethanol production. Bioresour. Technol. 313, 123630.
    Shelake, S.P., Sutar, D.N., Abraham, B.M., Banerjee, T., Sainath, A.V.S., Pal, U., 2024. Emerging photoreforming process to hydrogen production: a future energy. Adv. Funct. Mater. 34, 2403795.
    Sheridan, J., Sonebi, M., Taylor, S., Amziane, S., 2020. The effect of long term weathering on hemp and rapeseed concrete. Cem. Concr. Res. 131, 106014.
    Singhal, A., Roslander, C., Goel, A., Ismailov, A., Erdei, B., Wallberg, O., Konttinen, J., Joronen, T., 2024. Combined leaching and steam explosion pretreatment of lignocellulosic biomass for high quality feedstock for thermochemical applications. Chem. Eng. J. 489, 151298.
    Soto, L.R., Byrne, E., van Niel, E.W.J., Sayed, M., Villanueva, C.C., Hatti-Kaul, R., 2019. Hydrogen and polyhydroxybutyrate production from wheat straw hydrolysate using Caldicellulosiruptor species and Ralstonia eutropha in a coupled process. Bioresour. Technol. 272, 259–266.
    Srivastava, N., Alhazmi, A., Mohammad, A., Haque, S., Srivastava, M., Pal, D.B., Singh, R., Mishra, P.K., Vo, D.V.N., Yoon, T., Gupta, V.K., 2022. Biohydrogen production via integrated sequential fermentation using magnetite nanoparticles treated crude enzyme to hydrolyze sugarcane bagasse. Int. J. Hydrogen Energy 47, 30861–30871.
    Su, X., Shao, X.L., Tian, S.C., Li, H., Huang, Y.X., 2021. Life cycle assessment comparison of three typical energy utilization ways for corn stover in China. Biomass Bioenergy 152, 106199.
    Sun, H.L., Feng, D.D., Zhao, Y.J., Sun, S.Z., 2023. Optimization of operating parameters for tar reforming/hydrogen upgrading in corn straw pyrolysis polygeneration. Renew. Energy 214, 1–10.
    Tian, Y., Wang, F., Djandja, J.O., Zhang, S.L., Xu, Y.P., Duan, P.G., 2020. Hydrothermal liquefaction of crop straws: effect of feedstock composition. Fuel 265, 116946.
    Tian, Y.J., Guo, L.H., Qiao, C.Z., Sun, Z.X., Yamauchi, Y., Liu, S.D., 2023. Dynamics-driven tailoring of sub-nanometric Pt-Ni bimetals confined in hierarchical zeolite for catalytic hydrodeoxygenation. Appl. Catal. B Environ. 336, 122945.
    Tsegaye, B., Balomajumder, C., Roy, P., 2019. Optimization of microwave and NaOH pretreatments of wheat straw for enhancing biofuel yield. Energy Convers. Manag. 186, 82–92.
    Valladares-Diestra, K.K., Porto de Souza Vandenberghe, L., Zevallos Torres, L.A., Nishida, V.S., Zandoná Filho, A., Woiciechowski, A.L., Soccol, C.R., 2021. Imidazole green solvent pre-treatment as a strategy for second-generation bioethanol production from sugarcane bagasse. Chem. Eng. J. 420, 127708.
    Valle, B., Remiro, A., Aguayo, A.T., Bilbao, J., Gayubo, A.G., 2013. Catalysts of Ni/α-Al2O3 and Ni/La2O3-αAl2O3 for hydrogen production by steam reforming of bio-oil aqueous fraction with pyrolytic lignin retention. Int. J. Hydrogen Energy 38, 1307–1318.
    Vasilakou, K., Nimmegeers, P., Billen, P., Van Passel, S., 2023. Geospatial environmental techno-economic assessment of pretreatment technologies for bioethanol production. Renew. Sustain. Energy Rev. 187, 113743.
    Wang, C., Feng, D., Xia, A., Nizami, A.S., Huang, Y., Zhu, X.Q., Zhu, X., Liao, Q., Murphy, J.D., 2024a. A comparative life cycle assessment of electro-anaerobic digestion to evaluate biomethane generation from organic solid waste. Renew. Sustain. Energy Rev. 196, 114347.
    Wang, C., Zhu, W.J., Strong, P.J., Zhu, F.X., Han, X.G., Hong, C.L., Wang, W.P., Yao, Y.L., 2021. Disentangling the effects of physicochemical, genetic, and microbial properties on phase-driven resistome dynamics during multiple manure composting processes. Environ. Sci. Technol. 55, 14732–14745. doi: 10.1021/acs.est.1c03933
    Wang, J.Y., Fu, J.Y., Zhao, Z.T., Bing, L.F., Xi, F.M., Wang, F., Dong, J., Wang, S.Y., Lin, G., Yin, Y., Hu, Q.Q., 2023a. Benefit analysis of multi-approach biomass energy utilization toward carbon neutrality. Innovation (Camb) 4, 100423.
    Wang, N.Y., He, Y., Zhao, K.Q., Lin, X., He, X., Chen, A.W., Wu, G.Y., Zhang, J.C., Yan, B.H., Luo, L., Xu, D.J., 2024b. Greenhouse gas emission characteristics and influencing factors of agricultural waste composting process: a review. J. Environ. Manag. 354, 120337.
    Wang, P.T., Wang, H.N., Liang, C., Yu, K.F., 2022a. Effects of nitrogen and phosphorus Co-doped layering on lithium/sodium-ion storage properties of biomass-derived carbonaceous electrode materials. J. Alloys Compd. 922, 166233.
    Wang, S., Liao, P., Cen, L., Cheng, H.G., Liu, Q.Y., 2023b. Biochar promotes arsenopyrite weathering in simulated alkaline soils: electrochemical mechanism and environmental implications. Environ. Sci. Technol. 57, 8373–8384. doi: 10.1021/acs.est.2c09874
    Wang, S., Song, X.P., Chen, Q.S., Wang, X.J., Wei, M.L., Ke, Y.X., Luo, Z.H., 2020a. Mechanical properties of cemented tailings backfill containing alkalized rice straw of various lengths. J. Environ. Manag. 276, 111124.
    Wang, S.B., Gao, P.L., Zhang, Q.W., Shi, Y.L., Guo, X.L., Lv, Q.X., Wu, W., Zhang, X., Li, M.Z., Meng, Q.M., 2022b. Application of biochar and organic fertilizer to saline-alkali soil in the Yellow River Delta: effects on soil water, salinity, nutrients, and maize yield. Soil Use Manag. 38, 1679–1692. doi: 10.1111/sum.12829
    Wang, X.L., Yang, Z.L., Liu, X., Huang, G.Q., Xiao, W.H., Han, L.J., 2020b. The composition characteristics of different crop straw types and their multivariate analysis and comparison. Waste Manag. 110, 87–97.
    Wang, X.X., Wang, T., Zhang, T.Y., Winter, L.R., Di, J.H., Tu, Q.S., Hu, H.Y., Hertwich, E., Zimmerman, J.B., Elimelech, M., 2023c. Microalgae commercialization using renewable lignocellulose is economically and environmentally viable. Environ. Sci. Technol. 57, 1144–1156. doi: 10.1021/acs.est.2c04607
    Wang, Y., Baral, N.R., Yang, M.L., Scown, C.D., 2023d. Co-processing agricultural residues and wet organic waste can produce lower-cost carbon-negative fuels and bioplastics. Environ. Sci. Technol. 57, 2958–2969. doi: 10.1021/acs.est.2c06674
    Webber, M.E., Glazer, Y.R., 2023. Solid waste, a lever for decarbonization. Science 382, 762–763. doi: 10.1126/science.adl0557
    Wei, X., Feng, J.L., Cao, W., Guo, L.J., 2021. Enhanced biohydrogen production by an ammonium-tolerant Rhodobacter capsulatus from sugarcane bagasse. Fuel 300, 121009.
    Wen, C., Liu, T.Y., Wang, D.P., Wang, Y.Q., Chen, H.P., Luo, G.Q., Zhou, Z.J., Li, C.K., Xu, M.H., 2023. Biochar as the effective adsorbent to combustion gaseous pollutants: preparation, activation, functionalization and the adsorption mechanisms. Prog. Energy Combust. Sci. 99, 101098.
    Wu, Z.Y., Pan, H., Huang, P., Tang, J.H., She, W., 2024. Biomimetic mechanical robust cement-resin composites with machine learning-assisted gradient hierarchical structures. Adv. Mater. 36, e2405183.
    Xiang, L.L., Harindintwali, J.D., Wang, F., Redmile-Gordon, M., Chang, S.X., Fu, Y.H., He, C., Muhoza, B., Brahushi, F., Bolan, N., Jiang, X., Ok, Y.S., Rinklebe, J., Schaeffer, A., Zhu, Y.G., Tiedje, J.M., Xing, B.S., 2022. Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environ. Sci. Technol. 56, 16546–16566. doi: 10.1021/acs.est.2c02976
    Xing, R.Z., Yin, K.K., Du, X., Lin, Y., Yu, Z., Chen, Z., Zhou, S.G., 2024. Enhanced organic matter humification by hydroxyl radical generation during electric field-assisted aerobic composting. Chem. Eng. J. 482, 148910.
    Yan, H., Lou, Z.C., Xu, L., Lv, H.L., 2023. Pore-regulation in 2D biochar-based flakes towards wideband microwave absorption. Chem. Eng. J. 464, 142568.
    Yan, H.L., Zong, Z.M., Li, Z.K., Kong, J., Zheng, Q.X., Li, Y., Wei, X.Y., 2017. Sweet Sorghum stalk liquefaction in supercritical methanol: effects of operating conditions on product yields and molecular composition of soluble fraction. Fuel Process. Technol. 155, 42–50.
    Yang, F.Y., Yao, Y., Xu, Y.K., Wang, C., Wang, M.L., Ren, J.J., Zhang, C.Z., Wu, F., Lu, J., 2024. Evolution of the porous structure for phosphoric acid etching carbon as cathodes in Li-O2 batteries: pyrolysis temperature-induced characteristics changes. Carbon Energy 6, e372.
    Yang, R.Y., Guo, X.R., Wu, H.T., Kang, W.Z., Song, K., Li, Y.Q., Huang, X.B., Wang, G., 2022. Anisotropic hemp-stem-derived biochar supported phase change materials with efficient solar-thermal energy conversion and storage. Biochar 4, 38.
    Yin, Y.L., Cui, Z.L., 2024. Fertilizer application improvements in China. Nat. Food 5, 351–352.
    Yu, Y., Wu, J., Ren, X.Y., Lau, A., Rezaei, H., Takada, M., Bi, X.T., Sokhansanj, S., 2022. Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: a review. Renew. Sustain. Energy Rev. 154, 111871.
    Yue, X., Huang, L.Q., Huang, L.Y., Luo, X.T., 2021. A sustainable strategy for medium-density fiberboards preparation from waste hybrid Pennisetum straws. Waste Biomass Valoriz. 12, 5161–5173. doi: 10.1007/s12649-021-01367-4
    Zhai, J.H., Burke, I.T., Stewart, D.I., 2021. Beneficial management of biomass combustion ashes. Renew. Sustain. Energy Rev. 151, 111555.
    Zhang, B., Biswal, B.K., Zhang, J.J., Balasubramanian, R., 2023. Hydrothermal treatment of biomass feedstocks for sustainable production of chemicals, fuels, and materials: progress and perspectives. Chem. Rev. 123, 7193–7294. doi: 10.1021/acs.chemrev.2c00673
    Zhang, J.S., Kong, C.D., Yang, M.C., Zang, L.H., 2020a. Comparison of calcium oxide and calcium peroxide pretreatments of wheat straw for improving biohydrogen production. ACS Omega 5, 9151–9161. doi: 10.1021/acsomega.9b04368
    Zhang, J.W., Chen, Y., Nie, Z.G., Chen, Z.S., Gao, J.K., 2020b. Silver microsphere doping porous-carbon inspired shape-stable phase change material with excellent thermal properties: preparation, optimization, and mechanism. Sci. Rep. 10, 20843.
    Zhang, L., Hu, Y.C., 2014. Novel lignocellulosic hybrid particleboard composites made from rice straws and coir fibers. Mater. Des. 55, 19–26. doi: 10.1201/b17064-3
    Zhang, S.C., Lai, Q.H., Lu, Y., Liu, Z.D., Wang, T.M., Zhang, C., Xing, X.H., 2016. Enhanced biohydrogen production from corn stover by the combination of Clostridium cellulolyticum and hydrogen fermentation bacteria. J. Biosci. Bioeng. 122, 482–487.
    Zhang, T., Jiang, D.P., Li, Y.M., Zhang, H., Zhang, Z.P., Jing, Y.Y., Lu, C.Y., Zhang, Y., Xia, C.X., Zhang, Q.G., 2022a. Lignin removal, reducing sugar yield and photo-fermentative biohydrogen production capability of corn stover: effects of different pretreatments. Bioresour. Technol. 346, 126437.
    Zhang, Y., Yuan, H., Peng, S.N., Wang, Z.Y., Cai, S.Y., Chen, Z.X., Yang, B.Y., Yang, P., Wang, D.S., Guo, J.H., Zhang, W.J., 2024a. Vermicomposting preferably alters fungal communities in wasted activated sludge and promotes the production of plant growth-promoting biostimulants in the vermicompost. Chem. Eng. J. 495, 153232.
    Zhang, Y., Zhang, Z.Z., Chen, Y.G., 2021. Biochar mitigates N2O emission of microbial denitrification through modulating carbon metabolism and allocation of reducing power. Environ. Sci. Technol. 55, 8068–8078. doi: 10.1021/acs.est.1c01976
    Zhang, Z.Y., Wang, X.F., Wang, C.X., Yan, Z.Y., Zhuang, G.Y., Ma, N., Li, Q.B., 2024b. Selective hydrodeoxygenation of bio-oil model compounds and mixtures over CuCoOx catalysts under mild conditions. Chem. Eng. J. 483, 149367.
    Zhao, Z.Z., Yu, C., Yang, C.R., Gao, B.Q., Jiménez, N., Wang, C., Li, F., Ao, Y., Zheng, L.Y., Huang, F., Tomberlin, J.K., Ren, Z.Q., Yu, Z.N., Zhang, J.B., Cai, M.M., 2023. Mitigation of antibiotic resistome in swine manure by black soldier fly larval conversion combined with composting. Sci. Total Environ. 879, 163065.
    Zhou, X.K., Li, F., Li, C.J., Li, Y.M., Jiang, D.P., Zhang, T., Lu, C.Y., Zhang, Q.G., Jing, Y.Y., 2023. Effect of deep eutectic solvent pretreatment on biohydrogen production from corncob: pretreatment temperature and duration. Bioengineered 14, 2252218.
    Zhou, Y., Luo, J., Jing, Q.M., Ge, S.B., Chen, S., Guo, Z.H., Li, J.Z., Liu, Z.X., He, P., He, X.M., Xu, B.B., 2024. Tough, waterproofing, and sustainable bio-adhesive inspired by the dragonfly wing. Adv. Funct. Mater. 34, 2406557.
    Zhu, J.B., Song, W.L., Chen, X., Sun, S.N., 2023. Integrated process to produce biohydrogen from wheat straw by enzymatic saccharification and dark fermentation. Int. J. Hydrogen Energy 48, 11153–11161.
    Zhuo, S.N., Ren, H.Y., Xie, G.J., Xing, D.F., Liu, B.F., 2023. Conversion mechanism of biomass to nano zero-valent iron biochar: iron phase transfer and in situ reduction. Engineering 21, 124–134.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views (87) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return