Volume 10 Issue 2
May  2025
Turn off MathJax
Article Contents
Emanuela Bellinetto, Sofia Regoli, Ruggero Barni, Carmen Canevali, Oussama Boumezgane, Luca Zoia, Claudia Riccardi, Stefano Turri, Gianmarco Griffini. Enhanced performance and reprocessability in polypropylene-lignin blends through plasma treatment[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 170-186. doi: 10.1016/j.jobab.2025.01.003
Citation: Emanuela Bellinetto, Sofia Regoli, Ruggero Barni, Carmen Canevali, Oussama Boumezgane, Luca Zoia, Claudia Riccardi, Stefano Turri, Gianmarco Griffini. Enhanced performance and reprocessability in polypropylene-lignin blends through plasma treatment[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 170-186. doi: 10.1016/j.jobab.2025.01.003

Enhanced performance and reprocessability in polypropylene-lignin blends through plasma treatment

doi: 10.1016/j.jobab.2025.01.003
Funds:

This work received funding from Regione Lombardia and Fondazione Cariplo (No. 2018-1739, Project: POLISTE), the European Union's Horizon 2020 Research and Innovation Programme (No. 952941, Project: BIOMAC), and Regione Lombardia (“Collaboration Agreement for the Creation of an Innovative Pilot Regional Infrastructure to Support the Transition Towards the Circular Economy”, Project: EcoCIRC Regional Hub). This study was partly carried out within the Agritech National Research Center funded by the European Union Next-GenerationEU (National Recovery and Resilience Plan (Piano Nazionale di Ripresa e Resilienza - PNRR) - Mission 4, Component 2, Investment line 1.4 - d.d. 1032 17/06/2022, cn00000022).

  • Available Online: 2025-05-09
  • Publish Date: 2025-01-20
  • In this work, a new compatibilization strategy for polypropylene-lignin blends was presented, which did not rely on the use of solvents or other chemicals. Soda lignin was subjected to plasma treatment in an argon atmosphere employing a gliding-arc-tornado reactor configuration. The effect of this process was evaluated using electron paramagnetic resonance spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and thermogravimetric analysis, evidencing significant chemical-structural modifications in lignin, including an increased concentration of phenoxy radicals (60%) and depletion of hydroxyl functionalities (35%). Polypropylene-lignin blends incorporating 5% (w/w), 10% (w/w), and 20% (w/w) of either pristine or plasma-treated lignin were then prepared by melt-blending in a twin-screw extruder, and their thermo-mechanical and rheological properties were investigated in detail. As a result of the plasma-induced modifications occurred in lignin, blends incorporating the plasma-treated material exhibited greater thermo-oxidative stability, more favorable viscoelastic response, significantly improved mechanical performance (137% and 294% strain at break for polypropylene (PP) containing 5% (w/w) and 10% (w/w) of treated lignin, respectively), and enhanced thermo-mechanical reprocessability (> 95% retention of yield strength and strain at break after re-extrusion). This work provided the first demonstration of the effectiveness of plasma treatment as a viable and sustainable strategy to improve filler-matrix interactions in polypropylene-lignin blends without the use of solvents, chemical compatibilizers or additional wet-chemistry steps, paving the way for the development of lignin-based thermoplastic polyolefin materials with enhanced thermo-mechanical characteristics and improved reprocessability.

     

  • loading
  • [1]
    Abdelwahab, M.A., Misra, M., Mohanty, A.K., 2019. Injection molded biocomposites from polypropylene and lignin: effect of compatibilizers on interfacial adhesion and performance. Ind. Crops Prod. 132, 497-510.
    [2]
    Alexy, P., Košíková, B., Crkonová, G., Gregorová, A., Martiš, P., 2004. Modification of lignin-polyethylene blends with high lignin content using ethylene-vinylacetate copolymer as modifier. J. Appl. Polym. Sci. 94, 1855-1860.
    [3]
    Anushikha, Gaikwad, K.K., 2023. Lignin as a UV blocking, antioxidant, and antimicrobial agent for food packaging applications. Biomass Convers. Biorefin. 14, 16755-16767.
    [4]
    Atifi, S., Miao, C.W., Hamad, W.Y., 2017. Surface modification of lignin for applications in polypropylene blends. J. Appl. Polym. Sci. 134, e45103.
    [5]
    Atz Dick, T., Couve, J., Gimello, O., Mas, A., Robin, J.J., 2017. Chemical modification and plasma-induced grafting of pyrolitic lignin. Evaluation of the reinforcing effect on lignin/poly(L-lactide) composites. Polymer (Guildf) 118, 280-296.
    [6]
    Balakshin, M., Capanema, E., 2015. On the quantification of lignin hydroxyl groups with 31P and 13C NMR spectroscopy. J. Wood Chem. Technol. 35, 220-237.
    [7]
    Barnes, H.A., 2000. A Handbook of Elementary Rheology. Aberystwyth: University of Wales.
    [8]
    Barni, R., Alex, P., Salanti, A., Canevali, C., Zoia, L., Orlandi, M., Riccardi, C., 2021. Characterization of the electrical and optical properties of a gliding arc tornado device. Eur. Phys. J. D 75, 147.
    [9]
    Barni, R., Canevali, C., Zoia, L., Orlandi, M., Bellinetto, E., Boumezgane, O., Turri, S., Griffini, G., Riccardi, C., 2022. Plasma processing of nano and microparticles in gliding arc tornado device. The 48th EPS Conference Plasma Physics, EPS 2022.
    [10]
    Barni, R., Canevali, C., Zoia, L., Orlandi, M., Bellinetto, E., Boumezgane, O., Turri, S., Griffini, G., Riccardi, C., 2023. Characterization of a gliding arc tornado device for lignin particles functionalization. The 49th EPS Conference Plasma Physics, EPS 2023.
    [11]
    Beckert, D., Burkitt, M., Canters, G., Groenen, E., Collison, D., McInnes, E., Eaton, G.R., Eaton, S.S., Giamello, E., Huttermann, J., Kappl, R., Kay, C., Weber, S., Lurie, D., Smirnov, A., Smith, G., Riedi, P., 2002. In: Gilbert, B.C., Davies, M.J., Murphy, D.M. (Eds.). Electron Paramagnetic Resonance. London: Royal Society of Chemistry.
    [12]
    Bellinetto, E., Fumagalli, N., Astorri, M., Turri, S., Griffini, G., 2024. Elucidating the role of lignin type and functionality in the development of high-performance biobased phenolic thermoset resins. ACS Appl. Polym. Mater. 6, 1191-1203.
    [13]
    Bertella, S., Luterbacher, J.S., 2020. Lignin functionalization for the production of novel materials. Trends. Chem. 2, 440-453.
    [14]
    Canetti, M., Bertini, F., De Chirico, A., Audisio, G., 2006. Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym. Degrad. Stab. 91, 494-498.
    [15]
    Cao, Y.Z., Tang, M., Yang, P., Chen, M.Z., Wang, S.Q., Hua, H.M., Chen, W.M., Zhou, X.Y., 2020. Atmospheric low-temperature plasma-induced changes in the structure of the lignin macromolecule: an experimental and theoretical investigation. J. Agric. Food Chem. 68, 451-460.
    [16]
    Carri, G.A., Winter, H.H., 1997. Mapping of the relaxation patterns of polymer melts with linear flexible molecules of uniform length. Rheol. Acta 36, 330-344.
    [17]
    Chen, F., Dai, H.H., Dong, X.L., Yang, J.T., Zhong, M.Q., 2011. Physical properties of lignin-based polypropylene blends. Polym. Compos. 32, 1019-1025.
    [18]
    Chen, F.G., Zhang, M.Z., 2019. Maleic anhydride-modified polyolefins as compatibilizer for lignin-reinforced polypropylene composites. Polym. Compos. 40, 2594-2601.
    [19]
    Cicala, G., Tosto, C., Latteri, A., La Rosa, A.D., Blanco, I., Elsabbagh, A., Russo, P., Ziegmann, G., 2017. Green composites based on blends of polypropylene with liquid wood reinforced with hemp fibers: thermomechanical properties and the effect of recycling cycles. Materials (Basel) 10, 998.
    [20]
    Coiai, S., Cicogna, F., Yang, C.C., Tempesti, V., Carroccio, S.C., Gorrasi, G., Mendichi, R., Dintcheva, N.T., Passaglia, E., 2017. Grafting of hindered phenol groups onto ethylene/α-olefin copolymer by nitroxide radical coupling. Polymers (Basel) 9, 670.
    [21]
    Constant, S., Wienk, H.L.J., Frissen, A.E., de Peinder, P., Boelens, R., van Es, D.S., Grisel, R.J.H., Weckhuysen, B.M., Huijgen, W.J.J., Gosselink, R.J.A., Bruijnincx, P.C.A., 2016. New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem. 18, 2651-2665.
    [22]
    Dias, O.A.T., Sain, M., Cesarino, I., Leão, A.L., 2019. Development of high bio-content polypropylene composites with different industrial lignins. Polym. Adv. Technol. 30, 70-78.
    [23]
    Domínguez, J.C., Oliet, M., Alonso, M.V., Gilarranz, M.A., Rodríguez, F., 2008. Thermal stability and pyrolysis kinetics of organosolv lignins obtained from Eucalyptus globulus. Ind. Crops Prod. 27, 150-156.
    [24]
    Duval, A., Lawoko, M., 2014. A review on lignin-based polymeric, micro- and nano-structured materials. React. Funct. Polym. 85, 78-96.
    [25]
    Elmoumni, A., Winter, H.H., Waddon, A.J., Fruitwala, H., 2003. Correlation of material and processing time scales with structure development in isotactic polypropylene crystallization. Macromolecules 36, 6453-6461.
    [26]
    Gadioli, R., Waldman, W.R., de Paoli, M.A., 2016. Lignin as a green primary antioxidant for polypropylene. J. Appl. Polym. Sci. 133, e43558.
    [27]
    Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782.
    [28]
    Grassie, N., 1983. Degradation and stabilisation of polyolefins. In: Allen, N.S (Ed.). Polymer Degradation and Stability. London: Elsevier Applied Science Publishers.
    [29]
    Gregorová, A., Cibulková, Z., Košíková, B., Šimon, P., 2005. Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym. Degrad. Stab. 89, 553-558.
    [30]
    Guilhen, A., Gadioli, R., Fernandes, F.C., Waldman, W.R., Aurelio De Paoli, M., 2017. High-density green polyethylene biocomposite reinforced with cellulose fibers and using lignin as antioxidant. J. Appl. Polym. Sci. 134, e45219.
    [31]
    Halpin, J.C., 1969. Stiffness and expansion estimates for oriented short fiber composites. J. Compos. Mater. 3, 732-734.
    [32]
    Hon, D.N.S., 1992. Electron spin resonance (ESR) spectroscopy. In: Lin, S.Y., Dence, C.W., (Eds.). Springer Series in Wood Science. Heidelberg: Springer, 274-286.
    [33]
    Iyer, K.A., Torkelson, J.M., 2015. Sustainable green hybrids of polyolefins and lignin yield major improvements in mechanical properties when prepared via solid-state shear pulverization. ACS Sustainable Chem. Eng. 3, 959-968.
    [34]
    Jalaee, A., Trottman, K., French, V., Raghunath, S., Brito dos Santos, F., Foster, E.J., 2024. Improved thermomechanical and rheological properties of polypropylene composites with thermomechanical pulp for injection molding. Polym. Compos. 45, 12782-12795.
    [35]
    Kabir, A.S., Yuan, Z.S., Kuboki, T., Xu, C.B., 2019. Development of lignin-based antioxidants for polymers. In: Fang, Z., Smith, R.L., Tian, X.F., (Eds.). Production of Materials from Sustainable Biomass Resources. Singapore: Springer, 39-59.
    [36]
    Kalra, C.S., Cho, Y.I., Gutsol, A., Fridman, A., Rufael, T.S., 2005. Gliding arc in tornado using a reverse vortex flow. Rev. Sci. Instrum. 76, 025110.
    [37]
    Karina, M., Syampurwadi, A., Satoto, R., Irmawati, Y., Puspitasari, T., 2017. Physical and mechanical properties of recycled polypropylene composites reinforced with rice straw lignin. Bioresources 12, 5801-5811.
    [38]
    Klarhöfer, L., Viöl, W., Maus-Friedrichs, W., 2010. Electron spectroscopy on plasma treated lignin and cellulose. Holzforschung 64, 331-336.
    [39]
    Kun, D., Pukánszky, B., 2017. Polymer/lignin blends: interactions, properties, applications. Eur. Polym. J. 93, 618-641.
    [40]
    Lee, J.H., Jang, D., Yang, I., Jo, S.M., Lee, S., 2022. Effect of phosphorylated lignin on flame retardancy of polypropylene-based composites. J. Appl. Polym. Sci. 139, e52519.
    [41]
    Lee, K.T., Goddard, J.M., Hotchkiss, J.H., 2009. Plasma modification of polyolefin surfaces. Packag. Technol. Sci. 22, 139-150.
    [42]
    Levchenko, I., Mandhakini, M., Prasad, K., Bazaka, O., Ivanova, E.P., Jacob, M.V., Baranov, O., Riccardi, C., Roman, H.E., Xu, S.Y., Bazaka, K., 2022. Functional nanomaterials from waste and low-value natural products: a technological approach level. Adv. Mater. Technol. 7, 2101471.
    [43]
    Li, Y.M., Cui, D.X., Tong, Y.J., Xu, L.H., 2013. Study on structure and thermal stability properties of lignin during thermostabilization and carbonization. Int. J. Biol. Macromol. 62, 663-669.
    [44]
    Lima, M.F.S., Vasconcellos, M.A.Z., Samios, D., 2002. Crystallinity changes in plastically deformed isotactic polypropylene evaluated by X-ray diffraction and differential scanning calorimetry methods. J. Polym. Sci. Part B Polym. Phys. 40, 896-903.
    [45]
    Liston, E.M., Martinu, L., Wertheimer, M.R., 1993. Plasma surface modification of polymers for improved adhesion: a critical review. J. Adhes. Sci. Technol. 7, 1091-1127.
    [46]
    Lobato-Peralta, D.R., Duque-Brito, E., Villafán-Vidales, H.I., Longoria, A., Sebastian, P.J., Cuentas-Gallegos, A.K., Arancibia-Bulnes, C.A., Okoye, P.U., 2021. A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications. J. Clean. Prod. 293, 126123.
    [47]
    Lotz, B., 1998. α and β phases of isotactic polypropylene: a case of growth kinetics ‘phase reentrency’ in polymer crystallization. Polymer (Guildf) 39, 4561-4567.
    [48]
    Lu, F.F., Yu, H.Y., Yan, C.F., Yao, J.M., 2016. Polylactic acid nanocomposite films with spherical nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and thermal properties. RSC Adv. 6, 46008-46018.
    [49]
    Luo, S.P., Cao, J.Z., McDonald, A.G., 2017. Esterification of industrial lignin and its effect on the resulting poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or polypropylene blends. Ind. Crops Prod. 97, 281-291.
    [50]
    Maldhure, A.V., Chaudhari, A.R., Ekhe, J.D., 2010. Thermal and structural studies of polypropylene blended with esterified industrial waste lignin. J. Therm. Anal. Calorim. 103, 625-632.
    [51]
    Miao, C.W., Hamad, W.Y., 2017. Controlling lignin particle size for polymer blend applications. J. Appl. Polym. Sci. 134, e44669.
    [52]
    Moan, M., Huitric, J., Médéric, P., Jarrin, J., 2000. Rheological properties and reactive compatibilization of immiscible polymer blends. J. Rheol. 44, 1227-1245.
    [53]
    Moliton, J.P., Jussiaux, C., Trigaud, T., Lazzaroni, R., Lhost, O., Bredas, J.L., Kihn, Y., Sevely, J., 1996. Relation between plasmons and the valence-band density of states in polymethylmethacrylate: influence of ion irradiation on damage selectivity. Philos. Mag. B 73, 763-778.
    [54]
    Müller, K., Zollfrank, C., Schmid, M., 2019. Natural polymers from biomass resources as feedstocks for thermoplastic materials. Macromol. Mater. Eng. 304, 1-17.
    [55]
    Novais, R.M., Simon, F., Paiva, M.C., Covas, J.A., 2012. The influence of carbon nanotube functionalization route on the efficiency of dispersion in polypropylene by twin-screw extrusion. Compos. Part A Appl. Sci. Manuf. 43, 2189-2198.
    [56]
    Patil, S.V., Argyropoulos, D.S., 2017. Stable organic radicals in lignin: a review. ChemSusChem 10, 3284-3303.
    [57]
    Patrício Silva, A.L., Prata, J.C., Walker, T.R., Campos, D., Duarte, A.C., Soares, A.M.V.M., Barcelò, D., Rocha-Santos, T., 2020. Rethinking and optimising plastic waste management under COVID-19 pandemic: policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Sci. Total Environ. 742, 140565.
    [58]
    Pouteau, C., Baumberger, S., Cathala, B., Dole, P., 2004. Lignin-polymer blends: evaluation of compatibility by image analysis. C. R. Biol. 327, 935-943.
    [59]
    Pouteau, C., Dole, P., Cathala, B., Averous, L., Boquillon, N., 2003. Antioxidant properties of lignin in polypropylene. Polym. Degrad. Stab. 81, 9-18.
    [60]
    Rabinovich, A., Nirenberg, G., Kocagoz, S., Surace, M., Sales, C., Fridman, A., 2022. Scaling up of non-thermal gliding arc plasma systems for industrial applications. Plasma Chem. Plasma Process. 42, 35-50.
    [61]
    Ridho, M.R., Agustiany, E.A., Rahmi Dn, M., Madyaratri, E.W., Ghozali, M., Restu, W.K., Falah, F., Rahandi Lubis, M.A., Syamani, F.A., Nurhamiyah, Y., Hidayati, S., Sohail, A., Karungamye, P., Nawawi, D.S., Iswanto, A.H., Othman, N., Mohamad Aini, N.A., Hussin, M.H., Sahakaro, K., Hayeemasae, N., Ali, M.Q., Fatriasari, W., 2022. Lignin as green filler in polymer composites: development methods, characteristics, and potential applications. Adv. Mater. Sci. Eng. 2022, 1363481.
    [62]
    Sadeghifar, H., Ragauskas, A., 2020. Lignin as a UV light blocker-a review. Polymers (Basel) 12, 1134.
    [63]
    Saikrishnan, S., Jubinville, D., Tzoganakis, C., Mekonnen, T.H., 2020. Thermo-mechanical degradation of polypropylene (PP) and low-density polyethylene (LDPE) blends exposed to simulated recycling. Polym. Degrad. Stab. 182, 109390.
    [64]
    Saito, T., Brown, R.H., Hunt, M.A., Pickel, D.L., Pickel, J.M., Messman, J.M., Baker, F.S., Keller, M., Naskar, A.K., 2012. Turning renewable resources into value-added polymer: development of lignin-based thermoplastic. Green Chem. 14, 3295-3303.
    [65]
    Sakai, H., Kuroda, K., Muroyama, S., Tsukegi, T., Kakuchi, R., Takada, K., Hata, A., Kojima, R., Ogoshi, T., Omichi, M., Ninomiya, K., Takahashi, K., 2018. Alkylated alkali lignin for compatibilizing agents of carbon fiber-reinforced plastics with polypropylene. Polym. J. 50, 281-284.
    [66]
    Scarica, C., Suriano, R., Levi, M., Turri, S., Griffini, G., 2018. Lignin functionalized with succinic anhydride as building block for biobased thermosetting polyester coatings. ACS Sustainable Chem. Eng. 6, 3392-3401.
    [67]
    Souza, J.R., Araujo, J.R., Archanjo, B.S., Simão, R.A., 2019. Cross-linked lignin coatings produced by UV light and SF6 plasma treatments. Prog. Org. Coat. 128, 82-89.
    [68]
    Stanzione, J. III, La Scala, J., 2016. Sustainable polymers and polymer science: dedicated to the life and work of Richard P. Wool. J. Appl. Polym. Sci. 133, e44212.
    [69]
    Tanks, J., Tamura, K., Naito, K., Nge, T.T., Yamada, T., 2023. Glycol lignin/MAH-g-PP blends and composites with exceptional mechanical properties for automotive applications. Compos. Sci. Technol. 238, 110030.
    [70]
    Tian, B., Li, J.F., Li, Z.G., Dong, W., Zhang, N., Zhao, H.T., Liu, Y.G., Di, M.W., 2022. Preparation of polypropylene with high melt strength by wet reaction blending of lignin. J. Appl. Polym. Sci. 139, e51224.
    [71]
    Toriz, G., Denes, F., Young, R.A., 2002. Lignin-polypropylene composites. Part 1: composites from unmodified lignin and polypropylene. Polym. Compos. 23, 806-813.
    [72]
    Vega, J.F., Rastogi, S., Peters, G.W.M., Meijer, H.E.H., 2004. Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt. J. Rheol. 48, 663-678.
    [73]
    Wang, R.C., You, X.Y., Qi, S.J., Tian, R.Y., Zhang, H.J., 2024. Enhancing mechanical performance of high-lignin-filled polypropylene via reactive extrusion. Polymers (Basel) 16, 520.
    [74]
    Wang, S.X., Muiruri, J.K., Soo, X.Y.D., Liu, S.L., Thitsartarn, W., Tan, B.H., Suwardi, A., Li, Z.B., Zhu, Q., Loh, X.J., 2023. Bio-polypropylene and polypropylene-based biocomposites: solutions for a sustainable future. Chem. Asian J. 18, e202200972.
    [75]
    Weil, J.A., Bolton, J.R., 2006. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Hoboken: John Wiley & Sons.
    [76]
    Ye, D.Z., Li, S., Lu, X.M., Zhang, X., Rojas, O.J., 2016. Antioxidant and thermal stabilization of polypropylene by addition of butylated lignin at low loadings. ACS Sustainable Chem. Eng. 4, 5248-5257.
    [77]
    Yeo, J.S., Seong, D.W., Hwang, S.H., 2015. Chemical surface modification of lignin particle and its application as filler in the polypropylene composites. J. Ind. Eng. Chem. 31, 80-85.
    [78]
    Zaitsev, A., Moisan, S., Poncin-Epaillard, F., 2018. Study of the alkali lignin stabilization thanks to plasma process. Polym. Degrad. Stab. 156, 202-210.
    [79]
    Zanini, S., Canevali, C., Orlandi, M., Tolppa, E.L., Zoia, L., Riccardi, C., Morazzoni, F., 2008. Radical formation on CTMP fibers by argon plasma treatments and related lignin chemical changes. Bioresources 3, 995-1009.
    [80]
    Zanini, S., Riccardi, C., Canevali, C., Orlandi, M., Zoia, L., Tolppa, E.L., 2005. Modifications of lignocellulosic fibers by Ar plasma treatments in comparison with biological treatments. Surf. Coat. Technol. 200, 556-560.
    [81]
    Zare, Y., 2016. Development of Halpin-Tsai model for polymer nanocomposites assuming interphase properties and nanofiller size. Polym. Test. 51, 69-73.
    [82]
    Zhao, X.J., Liu, Y.H., Sun, B.H., Liu, Z.C., Shao, Z.B., Liu, X.B., Zhang, H.L., Sun, Z.Y., Hu, W., 2023. Lignin-derived flame retardant for improving fire safety and mechanical properties of polypropylene. J. Appl. Polym. Sci. 140, e54739.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return