Volume 10 Issue 2
May  2025
Turn off MathJax
Article Contents
Emanuela Bellinetto, Sofia Regoli, Ruggero Barni, Carmen Canevali, Oussama Boumezgane, Luca Zoia, Claudia Riccardi, Stefano Turri, Gianmarco Griffini. Enhanced performance and reprocessability in polypropylene-lignin blends through plasma treatment[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 170-186. doi: 10.1016/j.jobab.2025.01.003
Citation: Emanuela Bellinetto, Sofia Regoli, Ruggero Barni, Carmen Canevali, Oussama Boumezgane, Luca Zoia, Claudia Riccardi, Stefano Turri, Gianmarco Griffini. Enhanced performance and reprocessability in polypropylene-lignin blends through plasma treatment[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 170-186. doi: 10.1016/j.jobab.2025.01.003

Enhanced performance and reprocessability in polypropylene-lignin blends through plasma treatment

doi: 10.1016/j.jobab.2025.01.003
More Information
  • In this work, a new compatibilization strategy for polypropylene-lignin blends was presented, which did not rely on the use of solvents or other chemicals. Soda lignin was subjected to plasma treatment in an argon atmosphere employing a gliding-arc-tornado reactor configuration. The effect of this process was evaluated using electron paramagnetic resonance spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and thermogravimetric analysis, evidencing significant chemical-structural modifications in lignin, including an increased concentration of phenoxy radicals (60%) and depletion of hydroxyl functionalities (35%). Polypropylene-lignin blends incorporating 5% (w/w), 10% (w/w), and 20% (w/w) of either pristine or plasma-treated lignin were then prepared by melt-blending in a twin-screw extruder, and their thermo-mechanical and rheological properties were investigated in detail. As a result of the plasma-induced modifications occurred in lignin, blends incorporating the plasma-treated material exhibited greater thermo-oxidative stability, more favorable viscoelastic response, significantly improved mechanical performance (137% and 294% strain at break for polypropylene (PP) containing 5% (w/w) and 10% (w/w) of treated lignin, respectively), and enhanced thermo-mechanical reprocessability (> 95% retention of yield strength and strain at break after re-extrusion). This work provided the first demonstration of the effectiveness of plasma treatment as a viable and sustainable strategy to improve filler-matrix interactions in polypropylene-lignin blends without the use of solvents, chemical compatibilizers or additional wet-chemistry steps, paving the way for the development of lignin-based thermoplastic polyolefin materials with enhanced thermo-mechanical characteristics and improved reprocessability.

     

  • Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.01.003.
    Supplementary materials
  • loading
  • Abdelwahab, M.A., Misra, M., Mohanty, A.K., 2019. Injection molded biocomposites from polypropylene and lignin: effect of compatibilizers on interfacial adhesion and performance. Ind. Crops Prod. 132, 497–510. doi: 10.1016/j.indcrop.2019.02.026
    Alexy, P., Košíková, B., Crkonová, G., Gregorová, A., Martiš, P., 2004. Modification of lignin-polyethylene blends with high lignin content using ethylene-vinylacetate copolymer as modifier. J. Appl. Polym. Sci. 94, 1855–1860. doi: 10.1002/app.20716
    Anushikha, Gaikwad, K.K., 2023. Lignin as a UV blocking, antioxidant, and antimicrobial agent for food packaging applications. Biomass Convers. Biorefin. 14, 16755–16767.
    Atifi, S., Miao, C.W., Hamad, W.Y., 2017. Surface modification of lignin for applications in polypropylene blends. J. Appl. Polym. Sci. 134, e45103. doi: 10.1002/app.45103
    Atz Dick, T., Couve, J., Gimello, O., Mas, A., Robin, J.J., 2017. Chemical modification and plasma-induced grafting of pyrolitic lignin. Evaluation of the reinforcing effect on lignin/poly(L-lactide) composites. Polymer (Guildf) 118, 280–296. doi: 10.1016/j.polymer.2017.04.036
    Balakshin, M., Capanema, E., 2015. On the quantification of lignin hydroxyl groups with 31P and 13C NMR spectroscopy. J. Wood Chem. Technol. 35, 220–237. doi: 10.1080/02773813.2014.928328
    Barnes, H.A., 2000. A Handbook of Elementary Rheology. University of Wales, Institute of Non-Newtonian Fluid Mechanics.
    Barni, R., Alex, P., Salanti, A., Canevali, C., Zoia, L., Orlandi, M., Riccardi, C., 2021. Characterization of the electrical and optical properties of a gliding arc tornado device. Eur. Phys. J. D 75, 147. doi: 10.1140/epjd/s10053-021-00121-8
    Barni, R., Canevali, C., Zoia, L., Orlandi, M., Bellinetto, E., Boumezgane, O., Turri, S., Griffini, G., Riccardi, C., 2022. Plasma processing of nano and microparticles in gliding arc tornado device. The 48th EPS Conference Plasma Physics, EPS 2022.
    Barni, R., Canevali, C., Zoia, L., Orlandi, M., Bellinetto, E., Boumezgane, O., Turri, S., Griffini, G., Riccardi, C., 2023. Characterization of a gliding arc tornado device for lignin particles functionalization. The 49th EPS Conference Plasma Physics, EPS 2023.
    Beckert, D., Burkitt, M., Canters, G., Groenen, E., Collison, D., McInnes, E., Eaton, G.R., Eaton, S.S., Giamello, E., Huttermann, J., Kappl, R., Kay, C., Weber, S., Lurie, D., Smirnov, A., Smith, G., Riedi, P., 2002. Electron Paramagnetic Resonance In: Gilbert, B.C., Davies, M.J., Murphy, D.M. (Eds. ). Royal Society of Chemistry, London.
    Bellinetto, E., Fumagalli, N., Astorri, M., Turri, S., Griffini, G., 2024. Elucidating the role of lignin type and functionality in the development of high-performance biobased phenolic thermoset resins. ACS Appl. Polym. Mater. 6, 1191–1203. doi: 10.1021/acsapm.3c02136
    Bertella, S., Luterbacher, J.S., 2020. Lignin functionalization for the production of novel materials. Trends. Chem. 2, 440–453. doi: 10.1016/j.trechm.2020.03.001
    Canetti, M., Bertini, F., De Chirico, A., Audisio, G., 2006. Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym. Degrad. Stab. 91, 494–498. doi: 10.1016/j.polymdegradstab.2005.01.052
    Cao, Y.Z., Tang, M., Yang, P., Chen, M.Z., Wang, S.Q., Hua, H.M., Chen, W.M., Zhou, X.Y., 2020. Atmospheric low-temperature plasma-induced changes in the structure of the lignin macromolecule: an experimental and theoretical investigation. J. Agric. Food Chem. 68, 451–460. doi: 10.1021/acs.jafc.9b05604
    Carri, G.A., Winter, H.H., 1997. Mapping of the relaxation patterns of polymer melts with linear flexible molecules of uniform length. Rheol. Acta 36, 330–344. doi: 10.1007/BF00366674
    Chen, F., Dai, H.H., Dong, X.L., Yang, J.T., Zhong, M.Q., 2011. Physical properties of lignin-based polypropylene blends. Polym. Compos. 32, 1019–1025. doi: 10.1002/pc.21087
    Chen, F.G., Zhang, M.Z., 2019. Maleic anhydride-modified polyolefins as compatibilizer for lignin-reinforced polypropylene composites. Polym. Compos. 40, 2594–2601. doi: 10.1002/pc.25053
    Cicala, G., Tosto, C., Latteri, A., La Rosa, A.D., Blanco, I., Elsabbagh, A., Russo, P., Ziegmann, G., 2017. Green composites based on blends of polypropylene with liquid wood reinforced with hemp fibers: thermomechanical properties and the effect of recycling cycles. Materials (Basel) 10, 998. doi: 10.3390/ma10090998
    Coiai, S., Cicogna, F., Yang, C.C., Tempesti, V., Carroccio, S.C., Gorrasi, G., Mendichi, R., Dintcheva, N.T., Passaglia, E., 2017. Grafting of hindered phenol groups onto ethylene/α-olefin copolymer by nitroxide radical coupling. Polymers (Basel) 9, 670. doi: 10.3390/polym9120670
    Constant, S., Wienk, H.L.J., Frissen, A.E., de Peinder, P., Boelens, R., van Es, D.S., Grisel, R.J.H., Weckhuysen, B.M., Huijgen, W.J.J., Gosselink, R.J.A., Bruijnincx, P.C.A., 2016. New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem. 18, 2651–2665. doi: 10.1039/C5GC03043A
    Dias, O.A.T., Sain, M., Cesarino, I., Leão, A.L., 2019. Development of high bio-content polypropylene composites with different industrial lignins. Polym. Adv. Technol. 30, 70–78. doi: 10.1002/pat.4444
    Domínguez, J.C., Oliet, M., Alonso, M.V., Gilarranz, M.A., Rodríguez, F., 2008. Thermal stability and pyrolysis kinetics of organosolv lignins obtained from Eucalyptus globulus. Ind. Crops Prod. 27, 150–156. doi: 10.1016/j.indcrop.2007.07.006
    Duval, A., Lawoko, M., 2014. A review on lignin-based polymeric, micro- and nano-structured materials. React. Funct. Polym. 85, 78–96. doi: 10.1016/j.reactfunctpolym.2014.09.017
    Elmoumni, A., Winter, H.H., Waddon, A.J., Fruitwala, H., 2003. Correlation of material and processing time scales with structure development in isotactic polypropylene crystallization. Macromolecules 36, 6453–6461. doi: 10.1021/ma025948n
    Gadioli, R., Waldman, W.R., de Paoli, M.A., 2016. Lignin as a green primary antioxidant for polypropylene. J. Appl. Polym. Sci. 133, e43558. doi: 10.1002/app.43558
    Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782. doi: 10.1126/sciadv.1700782
    Grassie, N., 1983. Degradation and stabilisation of polyolefins. In: Allen, N. S (Ed. ), Polymer Degradation and Stability. Elsevier Applied Science Publishers, London.
    Gregorová, A., Cibulková, Z., Košíková, B., Šimon, P., 2005. Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym. Degrad. Stab. 89, 553–558. doi: 10.1016/j.polymdegradstab.2005.02.007
    Guilhen, A., Gadioli, R., Fernandes, F.C., Waldman, W.R., Aurelio De Paoli, M., 2017. High-density green polyethylene biocomposite reinforced with cellulose fibers and using lignin as antioxidant. J. Appl. Polym. Sci. 134, e45219. doi: 10.1002/app.45219
    Halpin, J.C., 1969. Stiffness and expansion estimates for oriented short fiber composites. J. Compos. Mater. 3, 732–734. doi: 10.1177/002199836900300419
    Hon, D.N.S., 1992. Electron spin resonance (ESR) spectroscopy. In: Lin, S.Y., Dence, C.W. (Eds. ), Springer Series in Wood Science. Springer, Heidelberg, pp. 274–286.
    Iyer, K.A., Torkelson, J.M., 2015. Sustainable green hybrids of polyolefins and lignin yield major improvements in mechanical properties when prepared via solid-state shear pulverization. ACS Sustainable Chem. Eng. 3, 959–968. doi: 10.1021/acssuschemeng.5b00099
    Jalaee, A., Trottman, K., French, V., Raghunath, S., Brito dos Santos, F., Foster, E.J., 2024. Improved thermomechanical and rheological properties of polypropylene composites with thermomechanical pulp for injection molding. Polym. Compos. 45, 12782–12795. doi: 10.1002/pc.28667
    Kabir, A.S., Yuan, Z.S., Kuboki, T., Xu, C.B., 2019. Development of lignin-based antioxidants for polymers. In: Fang, Z., Smith, R.L., Tian, X.F. (Eds. ), Production of Materials from Sustainable Biomass Resources. Springer, Singapore, pp. 39–59.
    Kalra, C.S., Cho, Y.I., Gutsol, A., Fridman, A., Rufael, T.S., 2005. Gliding arc in tornado using a reverse vortex flow. Rev. Sci. Instrum. 76, 025110. doi: 10.1063/1.1854215
    Karina, M., Syampurwadi, A., Satoto, R., Irmawati, Y., Puspitasari, T., 2017. Physical and mechanical properties of recycled polypropylene composites reinforced with rice straw lignin. Bioresources 12, 5801–5811.
    Klarhöfer, L., Viöl, W., Maus-Friedrichs, W., 2010. Electron spectroscopy on plasma treated lignin and cellulose. Holzforschung 64, 331–336. doi: 10.1515/HF.2010.048
    Kun, D., Pukánszky, B., 2017. Polymer/lignin blends: interactions, properties, applications. Eur. Polym. J. 93, 618–641. doi: 10.1016/j.eurpolymj.2017.04.035
    Lee, J.H., Jang, D., Yang, I., Jo, S.M., Lee, S., 2022. Effect of phosphorylated lignin on flame retardancy of polypropylene-based composites. J. Appl. Polym. Sci. 139, e52519. doi: 10.1002/app.52519
    Lee, K.T., Goddard, J.M., Hotchkiss, J.H., 2009. Plasma modification of polyolefin surfaces. Packag. Technol. Sci. 22, 139–150. doi: 10.1002/pts.829
    Levchenko, I., Mandhakini, M., Prasad, K., Bazaka, O., Ivanova, E.P., Jacob, M.V., Baranov, O., Riccardi, C., Roman, H.E., Xu, S.Y., Bazaka, K., 2022. Functional nanomaterials from waste and low-value natural products: a technological approach level. Adv. Mater. Technol. 7, 2101471. doi: 10.1002/admt.202101471
    Li, Y.M., Cui, D.X., Tong, Y.J., Xu, L.H., 2013. Study on structure and thermal stability properties of lignin during thermostabilization and carbonization. Int. J. Biol. Macromol. 62, 663–669. doi: 10.1016/j.ijbiomac.2013.09.040
    Lima, M.F.S., Vasconcellos, M.A.Z., Samios, D., 2002. Crystallinity changes in plastically deformed isotactic polypropylene evaluated by X-ray diffraction and differential scanning calorimetry methods. J. Polym. Sci. Part B Polym. Phys. 40, 896–903. doi: 10.1002/polb.10159
    Liston, E.M., Martinu, L., Wertheimer, M.R., 1993. Plasma surface modification of polymers for improved adhesion: a critical review. J. Adhes. Sci. Technol. 7, 1091–1127. doi: 10.1163/156856193X00600
    Lobato-Peralta, D.R., Duque-Brito, E., Villafán-Vidales, H.I., Longoria, A., Sebastian, P.J., Cuentas-Gallegos, A.K., Arancibia-Bulnes, C.A., Okoye, P.U., 2021. A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications. J. Clean. Prod. 293, 126123. doi: 10.1016/j.jclepro.2021.126123
    Lotz, B., 1998. α and β phases of isotactic polypropylene: a case of growth kinetics 'phase reentrency' in polymer crystallization. Polymer (Guildf) 39, 4561–4567. doi: 10.1016/S0032-3861(97)10147-1
    Lu, F.F., Yu, H.Y., Yan, C.F., Yao, J.M., 2016. Polylactic acid nanocomposite films with spherical nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and thermal properties. RSC Adv. 6, 46008–46018. doi: 10.1039/C6RA02768G
    Luo, S.P., Cao, J.Z., McDonald, A.G., 2017. Esterification of industrial lignin and its effect on the resulting poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or polypropylene blends. Ind. Crops Prod. 97, 281–291. doi: 10.1016/j.indcrop.2016.12.024
    Maldhure, A.V., Chaudhari, A.R., Ekhe, J.D., 2010. Thermal and structural studies of polypropylene blended with esterified industrial waste lignin. J. Therm. Anal. Calorim. 103, 625–632.
    Miao, C.W., Hamad, W.Y., 2017. Controlling lignin particle size for polymer blend applications. J. Appl. Polym. Sci. 134, e44669. doi: 10.1002/app.44669
    Moan, M., Huitric, J., Médéric, P., Jarrin, J., 2000. Rheological properties and reactive compatibilization of immiscible polymer blends. J. Rheol. 44, 1227–1245. doi: 10.1122/1.1289281
    Moliton, J.P., Jussiaux, C., Trigaud, T., Lazzaroni, R., Lhost, O., Bredas, J.L., Kihn, Y., Sevely, J., 1996. Relation between plasmons and the valence-band density of states in polymethylmethacrylate: influence of ion irradiation on damage selectivity. Philos. Mag. B 73, 763–778. doi: 10.1080/13642819608239151
    Müller, K., Zollfrank, C., Schmid, M., 2019. Natural polymers from biomass resources as feedstocks for thermoplastic materials. Macromol. Mater. Eng. 304, 1–17.
    Novais, R.M., Simon, F., Paiva, M.C., Covas, J.A., 2012. The influence of carbon nanotube functionalization route on the efficiency of dispersion in polypropylene by twin-screw extrusion. Compos. Part A Appl. Sci. Manuf. 43, 2189–2198. doi: 10.1016/j.compositesa.2012.08.004
    Patil, S.V., Argyropoulos, D.S., 2017. Stable organic radicals in lignin: a review. ChemSusChem 10, 3284–3303. doi: 10.1002/cssc.201700869
    Patrício Silva, A.L., Prata, J.C., Walker, T.R., Campos, D., Duarte, A.C., Soares, A.M.V.M., Barcelò, D., Rocha-Santos, T., 2020. Rethinking and optimising plastic waste management under COVID-19 pandemic: policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Sci. Total Environ. 742, 140565. doi: 10.1016/j.scitotenv.2020.140565
    Pouteau, C., Baumberger, S., Cathala, B., Dole, P., 2004. Lignin-polymer blends: evaluation of compatibility by image analysis. C. R. Biol. 327, 935–943. doi: 10.1016/j.crvi.2004.08.008
    Pouteau, C., Dole, P., Cathala, B., Averous, L., Boquillon, N., 2003. Antioxidant properties of lignin in polypropylene. Polym. Degrad. Stab. 81, 9–18. doi: 10.1016/S0141-3910(03)00057-0
    Rabinovich, A., Nirenberg, G., Kocagoz, S., Surace, M., Sales, C., Fridman, A., 2022. Scaling up of non-thermal gliding arc plasma systems for industrial applications. Plasma Chem. Plasma Process. 42, 35–50. doi: 10.1007/s11090-021-10203-5
    Ridho, M.R., Agustiany, E.A., Rahmi Dn, M., Madyaratri, E.W., Ghozali, M., Restu, W.K., Falah, F., Rahandi Lubis, M.A., Syamani, F.A., Nurhamiyah, Y., Hidayati, S., Sohail, A., Karungamye, P., Nawawi, D.S., Iswanto, A.H., Othman, N., Mohamad Aini, N.A., Hussin, M.H., Sahakaro, K., Hayeemasae, N., Ali, M.Q., Fatriasari, W., 2022. Lignin as green filler in polymer composites: development methods, characteristics, and potential applications. Adv. Mater. Sci. Eng. 2022, 1363481.
    Sadeghifar, H., Ragauskas, A., 2020. Lignin as a UV light blocker-a review. Polymers (Basel) 12, 1134. doi: 10.3390/polym12051134
    Saikrishnan, S., Jubinville, D., Tzoganakis, C., Mekonnen, T.H., 2020. Thermo-mechanical degradation of polypropylene (PP) and low-density polyethylene (LDPE) blends exposed to simulated recycling. Polym. Degrad. Stab. 182, 109390. doi: 10.1016/j.polymdegradstab.2020.109390
    Saito, T., Brown, R.H., Hunt, M.A., Pickel, D.L., Pickel, J.M., Messman, J.M., Baker, F.S., Keller, M., Naskar, A.K., 2012. Turning renewable resources into value-added polymer: development of lignin-based thermoplastic. Green Chem. 14, 3295–3303. doi: 10.1039/c2gc35933b
    Sakai, H., Kuroda, K., Muroyama, S., Tsukegi, T., Kakuchi, R., Takada, K., Hata, A., Kojima, R., Ogoshi, T., Omichi, M., Ninomiya, K., Takahashi, K., 2018. Alkylated alkali lignin for compatibilizing agents of carbon fiber-reinforced plastics with polypropylene. Polym. J. 50, 281–284. doi: 10.1038/s41428-017-0009-3
    Scarica, C., Suriano, R., Levi, M., Turri, S., Griffini, G., 2018. Lignin functionalized with succinic anhydride as building block for biobased thermosetting polyester coatings. ACS Sustainable Chem. Eng. 6, 3392–3401. doi: 10.1021/acssuschemeng.7b03583
    Souza, J.R., Araujo, J.R., Archanjo, B.S., Simão, R.A., 2019. Cross-linked lignin coatings produced by UV light and SF6 plasma treatments. Prog. Org. Coat. 128, 82–89. doi: 10.1016/j.porgcoat.2018.12.017
    Stanzione, J. Ⅲ, La Scala, J., 2016. Sustainable polymers and polymer science: dedicated to the life and work of Richard P. Wool. J. Appl. Polym. Sci. 133, e44212. doi: 10.1002/app.44212
    Tanks, J., Tamura, K., Naito, K., Nge, T.T., Yamada, T., 2023. Glycol lignin/MAH-g-PP blends and composites with exceptional mechanical properties for automotive applications. Compos. Sci. Technol. 238, 110030. doi: 10.1016/j.compscitech.2023.110030
    Tian, B., Li, J.F., Li, Z.G., Dong, W., Zhang, N., Zhao, H.T., Liu, Y.G., Di, M.W., 2022. Preparation of polypropylene with high melt strength by wet reaction blending of lignin. J. Appl. Polym. Sci. 139, e51224. doi: 10.1002/app.51224
    Toriz, G., Denes, F., Young, R.A., 2002. Lignin-polypropylene composites. Part 1: composites from unmodified lignin and polypropylene. Polym. Compos. 23, 806–813. doi: 10.1002/pc.10478
    Vega, J.F., Rastogi, S., Peters, G.W.M., Meijer, H.E.H., 2004. Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt. J. Rheol. 48, 663–678. doi: 10.1122/1.1718367
    Wang, R.C., You, X.Y., Qi, S.J., Tian, R.Y., Zhang, H.J., 2024. Enhancing mechanical performance of high-lignin-filled polypropylene via reactive extrusion. Polymers (Basel) 16, 520. doi: 10.3390/polym16040520
    Wang, S.X., Muiruri, J.K., Soo, X.Y.D., Liu, S.L., Thitsartarn, W., Tan, B.H., Suwardi, A., Li, Z.B., Zhu, Q., Loh, X.J., 2023. Bio-polypropylene and polypropylene-based biocomposites: solutions for a sustainable future. Chem. Asian J. 18, e202200972. doi: 10.1002/asia.202200972
    [75]
    Weil, J.A., Bolton, J.R., 2006. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. John Wiley & Sons, Hoboken.
    Ye, D.Z., Li, S., Lu, X.M., Zhang, X., Rojas, O.J., 2016. Antioxidant and thermal stabilization of polypropylene by addition of butylated lignin at low loadings. ACS Sustainable Chem. Eng. 4, 5248–5257. doi: 10.1021/acssuschemeng.6b01241
    Yeo, J.S., Seong, D.W., Hwang, S.H., 2015. Chemical surface modification of lignin particle and its application as filler in the polypropylene composites. J. Ind. Eng. Chem. 31, 80–85. doi: 10.1016/j.jiec.2015.06.010
    Zaitsev, A., Moisan, S., Poncin-Epaillard, F., 2018. Study of the alkali lignin stabilization thanks to plasma process. Polym. Degrad. Stab. 156, 202–210. doi: 10.1016/j.polymdegradstab.2018.09.008
    Zanini, S., Canevali, C., Orlandi, M., Tolppa, E.L., Zoia, L., Riccardi, C., Morazzoni, F., 2008. Radical formation on CTMP fibers by argon plasma treatments and related lignin chemical changes. Bioresources 3, 995–1009. doi: 10.15376/biores.3.4.995-1009
    Zanini, S., Riccardi, C., Canevali, C., Orlandi, M., Zoia, L., Tolppa, E.L., 2005. Modifications of lignocellulosic fibers by Ar plasma treatments in comparison with biological treatments. Surf. Coat. Technol. 200, 556–560. doi: 10.1016/j.surfcoat.2005.01.090
    Zare, Y., 2016. Development of Halpin-Tsai model for polymer nanocomposites assuming interphase properties and nanofiller size. Polym. Test. 51, 69–73. doi: 10.1016/j.polymertesting.2016.02.010
    Zhao, X.J., Liu, Y.H., Sun, B.H., Liu, Z.C., Shao, Z.B., Liu, X.B., Zhang, H.L., Sun, Z.Y., Hu, W., 2023. Lignin-derived flame retardant for improving fire safety and mechanical properties of polypropylene. J. Appl. Polym. Sci. 140, e54739. doi: 10.1002/app.54739
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (47) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return