Volume 10 Issue 3
Aug.  2025
Turn off MathJax
Article Contents
Xin Wang, Yang Liu, Shiyu Luo, Baojie Liu, Shuangquan Yao, Chengrong Qin, Shuangfei Wang, Chen Liang. Structural characteristics of hemicelluloses and lignin-carbohydrate complexes in alkaline-extracted bamboo green, core, and yellow[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 386-396. doi: 10.1016/j.jobab.2025.01.004
Citation: Xin Wang, Yang Liu, Shiyu Luo, Baojie Liu, Shuangquan Yao, Chengrong Qin, Shuangfei Wang, Chen Liang. Structural characteristics of hemicelluloses and lignin-carbohydrate complexes in alkaline-extracted bamboo green, core, and yellow[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 386-396. doi: 10.1016/j.jobab.2025.01.004

Structural characteristics of hemicelluloses and lignin-carbohydrate complexes in alkaline-extracted bamboo green, core, and yellow

doi: 10.1016/j.jobab.2025.01.004
More Information
  • Corresponding author: E-mail address: liangchen@gxu.edu.cn (C. Liang)
  • Received Date: 2024-11-15
  • Accepted Date: 2025-01-07
  • Rev Recd Date: 2025-01-02
  • Available Online: 2025-01-21
  • Publish Date: 2025-08-01
  • Understanding the differences in the chemical structures of important components in different bamboo tissues is crucial for maximizing bamboo utilization and biorefining bamboo resources. Hemicellulose and lignin-carbohydrate complex (LCC) were extracted from bamboo green, bamboo core, and bamboo yellow tissues by using the alkali-leaching method, and the chemical composition, thermal stability, dissolution process, and structural characteristics were analyzed. The extraction yield of hemicelluloses followed the order: bamboo yellow > bamboo core > bamboo green. Hemicelluloses extracted from bamboo green mainly originated from the secondary wall (S-layer) of the fiber cells and parenchyma cell walls, while those from the bamboo core and yellow mainly originated from the inner S-layer and outer S-layer of the fiber cells, as well as the parenchyma cell walls. The LCCs from bamboo core and bamboo yellow contained a large number of type Ⅰ phenyl glycoside (PhGlc1) bonds, which mainly originated from the parenchyma cell walls of these tissues. These findings provide data on the structural differences between carbohydrate components in green, core, and yellow bamboo, offering valuable guidance for the high-value utilization of different bamboo tissues.

     

  • Declaration of competing interest
    There are no conflicts to declare.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.01.004.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Abidi, N., Cabrales, L., Haigler, C.H., 2014. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr. Polym. 100, 9–16.
    Bai, Z.Y., Lv, Z.W., Rao, J., Sun, D., Hu, Y.J., Yue, P.P., Tian, R., Lü, B.Z., Bian, J., Peng, F., 2022. The effect of bamboo (Phyllostachys pubescens) cell types on the structure of hemicelluloses. Ind. Crops Prod. 187, 115464.
    Balakshin, M., Capanema, E., Gracz, H., Chang, H.M., Jameel, H., 2011. Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233, 1097–1110. doi: 10.1007/s00425-011-1359-2
    Barana, D., Ali, S.D., Salanti, A., Orlandi, M., Castellani, L., Hanel, T., Zoia, L., 2016. Influence of lignin features on thermal stability and mechanical properties of natural rubber compounds. ACS Sustainable Chem. Eng. 4, 5258–5267. doi: 10.1021/acssuschemeng.6b00774
    Björkman, A., 1954. Isolation of lignin from finely divided wood with neutral solvents. Nature 174, 1057–1058. doi: 10.1038/1741057a0
    Chen, M., Guo, L., Ramakrishnan, M., Fei, Z.J., Vinod, K.K., Ding, Y.L., Jiao, C., Gao, Z.P., Zha, R.F., Wang, C.Y., Gao, Z.M., Yu, F., Ren, G.D., Wei, Q., 2022. Rapid growth of moso bamboo (Phyllostachys edulis): cellular roadmaps, transcriptome dynamics, and environmental factors. Plant Cell 34, 3577–3610. doi: 10.1093/plcell/koac193
    Cheng, X.C., Wei, Y.N., Yuan, L.L., Qin, Z., Liu, H.M., Wang, X.D., 2023. Structural characterization of lignin-carbohydrate complexes from Chinese quince fruits extracted after enzymatic hydrolysis pretreatment. Int. J. Biol. Macromol. 246, 125664.
    De Bellis, D., Kalmbach, L., Marhavy, P., Daraspe, J., Geldner, N., Barberon, M., 2022. Extracellular vesiculo-tubular structures associated with suberin deposition in plant cell walls. Nat. Commun. 13, 1489.
    Fan, Q.D., Wei, W., Li, Y.C., Li, L.G., Huang, W.W., Wang, J.H., Cao, Y., Zhou, Z.W., 2023. Biomimetic bridging for reconstructing biomass components toward significantly enhanced films from the full composition of bamboo. ACS Sustain. Chem. Eng. 11, 3228–3237. doi: 10.1021/acssuschemeng.2c05692
    Fan, Z.W., Xu, S.W., Liu, X., Cao, Q., Cao, Y.Z., Wu, X.X., 2023. Aspergillus niger infection weakens the robustness of bamboo-adhesive interphases by damaging the adhesive and detaching the interfacial bonding. Ind. Crops Prod. 204, 117402.
    Ge, J.Y., Wu, Y.T., Han, Y.S., Qin, C.R., Nie, S.X., Liu, S.J., Wang, S.F., Yao, S.Q., 2020. Effect of hydrothermal pretreatment on the demineralization and thermal degradation behavior of Eucalyptus. Bioresour. Technol. 307, 123246.
    Giummarella, N., Lawoko, M., 2017. Structural insights on recalcitrance during hydrothermal hemicellulose extraction from wood. ACS Sustain. Chem. Eng. 5, 5156–5165. doi: 10.1021/acssuschemeng.7b00511
    Giummarella, N., Pu, Y.Q., Ragauskas, A.J., Lawoko, M., 2019. A critical review on the analysis of lignin carbohydrate bonds. Green. Chem. 21, 1573–1595. doi: 10.1039/c8gc03606c
    Han, J.Z., You, X., Wang, S.F., Chen, C., Yao, S.Q., Meng, C.M., Liang, C., Zhao, J.W., 2022. Chlorine dioxide oxidation of hemicellulose from alkaline hydrolysate bagasse to remove lignin unit in lignin-carbohydrate complex. Carbohydr. Polym. 277, 118817.
    He, M.X., Wang, J.L., Qin, H., Shui, Z.X., Zhu, Q.L., Wu, B., Tan, F.R., Pan, K., Hu, Q.C., Dai, L.C., Wang, W.G., Tang, X.Y., Hu, G.Q., 2014. Bamboo: a new source of carbohydrate for biorefinery. Carbohydr. Polym. 111, 645–654.
    Huang, C.X., He, J., Du, L.T., Min, D.Y., Yong, Q., 2016. Structural characterization of the lignins from the green and yellow bamboo of bamboo culm (Phyllostachys pubescens). J. Wood Chem. Technol. 36, 157–172. doi: 10.1080/02773813.2015.1104544
    Huang, C.X., Tang, S., Zhang, W.Y., Tao, Y.H., Lai, C.H., Li, X., Yong, Q., 2018. Unveiling the structural properties of lignin–carbohydrate complexes in bamboo residues and its functionality as antioxidants and immunostimulants. ACS Sustain. Chem. Eng. 6, 12522–12531. doi: 10.1021/acssuschemeng.8b03262
    Huang, D.L., Li, R.J., Xu, P., Li, T., Deng, R., Chen, S., Zhang, Q., 2020. The cornerstone of realizing lignin value-addition: exploiting the native structure and properties of lignin by extraction methods. Chem. Eng. J. 402, 126237.
    Jiang, T., Feng, X.Y., Xia, Z.X., Deng, S.T., Wang, X.H., 2024. Gradient variation and correlation analysis of physical and mechanical properties of moso bamboo (Phyllostachys edulis). Materials 17, 2069. doi: 10.3390/ma17092069
    Kang, K., Qiu, L., Sun, G.T., Zhu, M.Q., Yang, X.M., Yao, Y.Q., Sun, R.C., 2019. Codensification technology as a critical strategy for energy recovery from biomass and other resources - A review. Renew. Sustain. Energy Rev. 116, 109414.
    Li, J., Liu, Z.M., Feng, C.Q., Liu, X.Y., Qin, F.Y., Liang, C., Bian, H.Y., Qin, C.R., Yao, S.Q., 2021. Green, efficient extraction of bamboo hemicellulose using freeze-thaw assisted alkali treatment. Bioresour. Technol. 333, 125107.
    Li, Z.H., Chen, C.J., Xie, H., Yao, Y., Zhang, X., Brozena, A., Li, J.G., Ding, Y., Zhao, X.P., Hong, M., Qiao, H.Y., Smith, L.M., Pan, X.J., Briber, R., Shi, S.Q., Hu, L.B., 2022. Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 5, 235–244.
    Li, Z.Q., Jiang, Z.H., Fei, B.H., Cai, Z.Y., Pan, X.J., 2014. Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification. Bioresour. Technol. 151, 91–99.
    Liu, Y.X., Sun, B., Zheng, X.F., Yu, L.F., Li, J.G., 2018. Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresour. Technol. 247, 859–863.
    Lv, Z.W., Bai, Z.Y., Su, L.Y., Rao, J., Hu, Y.J., Tian, R., Jia, S.Y., Guan, Y., Lü, B.Z., Peng, F., 2023. Unveiling lignin structures and lignin-carbohydrate complex (LCC) linkages of bamboo (Phyllostachys pubescens) fibers and parenchyma cells. Int. J. Biol. Macromol. 241, 124461.
    Qin, Z., Wang, X.D., Liu, H.M., Wang, D.M., Qin, G.Y., 2018. Structural characterization of Chinese quince fruit lignin pretreated with enzymatic hydrolysis. Bioresour. Technol. 262, 212–220.
    Rusch, F., Wastowski, A.D., de Lira, T.S., Kelly Costa Cabral Salazar Ramos Moreira, de Moraes Lúcio, D., 2023. Description of the component properties of species of bamboo: a review. Biomass Convers. Biorefin. 13, 2487–2495. doi: 10.1007/s13399-021-01359-3
    Sawarkar, A.D., Shrimankar, D.D., Kumar, M., Kumar, P., Singh, L., 2023. Bamboos as a cultivated medicinal grass for industries: a systematic review. Ind. Crops Prod. 203, 117210.
    Su, Q., Huang, A.Y., Chen, X.H., Dai, C.P., Fei, B.H., Fang, C.H., Ma, X.X., Sun, F.B., Zhang, X.B., Liu, H.R., 2023. Anisotropic tensile performance of bamboo parenchyma tissue and its influencing factors. Cellulose 30, 9147–9160. doi: 10.1007/s10570-023-05408-0
    Tarasov, D., Leitch, M., Fatehi, P., 2018. Lignin-carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol. Biofuels 11, 269.
    Wang, J., Wu, X.Y., Wang, Y.J., Zhao, W.Y., Zhao, Y., Zhou, M., Wu, Y., Ji, G.B., 2022a. Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nanomicro Lett. 15, 11.
    Wang, W.Y., Gao, J.H., Qin, Z., Liu, H.M., 2022b. Structural variation of lignin-carbohydrate complexes (LCC) in Chinese quince (Chaenomeles sinensis) fruit as it ripens. Int. J. Biol. Macromol. 223, 26–35.
    Wang, X., Han, J.Z., Pang, S.Y., Li, J., Zhao, J.W., Qin, C.R., Yao, S.Q., Liu, Y., Liang, C., 2022c. Structural enrichment and identification of lignin-carbohydrate complex in alkaline stabilized system. Carbohydr. Polym. 296, 119873.
    Wang, X., Liu, Y., Pu, J.L., Qin, C.R., Yao, S.Q., Wang, S.F., Liang, C., 2024a. A comparative study on the structure of lignin-carbohydrate complexes in alkali-soluble hemicellulose from bamboo (Bambusa chungii) fibers and parenchyma cells. Ind. Crops Prod. 210, 118061.
    Wang, X., Pu, J.L., Liu, Y., Qin, C.R., Yao, S.Q., Wang, S.F., Liang, C., 2024b. Unveiling the dissolution regularities of the lignin-carbohydrate complex in bamboo cell walls during alkali pretreatment. J. Agric. Food Chem. 72, 10206–10217. doi: 10.1021/acs.jafc.3c09012
    Wen, J.L., Sun, S.L., Xue, B.L., Sun, R.C., 2013a. Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens). Holzforschung. 67, 613–627. doi: 10.1515/hf-2012-0162
    Wen, J.L., Sun, S.L., Xue, B.L., Sun, R.C., 2013b. Quantitative structures and thermal properties of birch lignins after ionic liquid pretreatment. J. Agric. Food Chem. 61, 635–645. doi: 10.1021/jf3051939
    Yang, X.Y., Fu, M.Y., Xie, J.Z., Li, Z.C., 2009. Geographic variation and provenance selection for bamboo wood properties in Bambusa chungii. J. For. Res. 20, 261–267. doi: 10.1007/s11676-009-0045-8
    Yuan, T.C., Wang, X.Z., Liu, X.R., Lou, Z.C., Mao, S.F., Li, Y.J., 2022. Bamboo flattening technology ebables efficient and value-added utilization of bamboo in the manufacture of furniture and engineered composites. Compos. Part B Eng. 242, 110097.
    Yuan, T.Q., Sun, S.N., Xu, F., Sun, R.C., 2011. Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13c and 2d hsqc nmr spectroscopy. J. Agric. Food Chem. 59, 10604–10614. doi: 10.1021/jf2031549
    Zhang, C., Shen, X.J., Liu, M.Y., Wen, J.L., Yuan, T.Q., 2023. Uncovering the structure of lignin from moso bamboo with different tissues and growing ages for efficient ambient-pressure lignin depolymerization. ACS Sustain. Chem. Eng. 11, 13778–13786. doi: 10.1021/acssuschemeng.3c04206
    Zhang, L.M., Gellerstedt, G., 2007. Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magn. Reson. Chem. 45, 37–45. doi: 10.1002/mrc.1914
    Zhang, W.B., Tian, G.L., Polle, A., Janz, D., Euring, D., Yue, X.H., Zhao, H.S., Fei, B.H., Jiang, Z.H., 2018. Comparative characterization of ethanol organosolv lignin polymer from bamboo green, timber and yellow. Wood Sci. Technol. 52, 1331–1341. doi: 10.1007/s00226-018-1019-9
    Zhao, Y.H., Xie, X.Y., Wang, X.Z., Mao, S.F., Li, Y.J., 2024. In situ retention of lignin-rich bamboo green effectively improves the surface properties of flattened bamboo. Int. J. Biol. Macromol. 264, 130411.
    Zheng, Y.X., Guan, F., Fan, S., Yan, X.R., Huang, L., 2021. Biomass estimation, nutrient content, and decomposition rate of shoot sheath in moso bamboo forest of Yixing Forest Farm, China. Forests 12, 1555. doi: 10.3390/f12111555
    Zhong, Y.D., Wang, T., Yan, M., Miao, C., Zhou, X.F., Tong, G.L., 2022. High-value utilization of bamboo pulp black liquor lignin: preparation of silicon-carbide derived materials and its application. Int. J. Biol. Macromol. 217, 66–76.
    Zhu, J.W., Ren, W.T., Guo, F., Wang, H.K., Yu, Y., 2024. Structural elucidation of lignin, hemicelluloses and LCC from both bamboo fibers and parenchyma cells. Int. J. Biol. Macromol. 274, 133341.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (39) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return