Volume 10 Issue 2
May  2025
Turn off MathJax
Article Contents
Bowen Yan, Hao Wu, Kui Zeng, Caoxing Huang, Chenhuan Lai, Qiang Yong. Structural characterization and immunomodulatory activities of polysaccharides from Russula vinosa lindblad extracted using KOH[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 253-269. doi: 10.1016/j.jobab.2025.01.005
Citation: Bowen Yan, Hao Wu, Kui Zeng, Caoxing Huang, Chenhuan Lai, Qiang Yong. Structural characterization and immunomodulatory activities of polysaccharides from Russula vinosa lindblad extracted using KOH[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 253-269. doi: 10.1016/j.jobab.2025.01.005

Structural characterization and immunomodulatory activities of polysaccharides from Russula vinosa lindblad extracted using KOH

doi: 10.1016/j.jobab.2025.01.005
More Information
  • Corresponding author: E-mail address: swhx@njfu.com.cn (Q. Yong)
  • Available Online: 2025-01-22
  • Publish Date: 2025-05-01
  • Russula vinosa Lindblad (R. vinosa Lindblad) is a nutrient-rich wild edible fungus, abundant in carbohydrates. In this study, two polysaccharides (Russula polysaccharides extracted from 1% KOH (RP-1) and Russula polysaccharides extracted from 5% KOH (RP-5)) were extracted from Russula fruit bodies using KOH-graded extraction technology. The molecular weights of RP-1 and RP-5 were 187000 and 97300 u, respectively. Their glycosyl compositions (galactose꞉glucose꞉xylose꞉ mannose, i.e., Gal꞉Glu꞉Xyl꞉Man) were 0.27:1.00:0.01:0.16 for RP-1 and 0.12:1.00:0.03:0.19 for RP-5. Nuclear magnetic resonance (NMR) analysis revealed that the main structural component of RP-1 was →3,6)-β-d-Glup-(1→, with a →6)-β-d-Glup-(1→ residue linked at sites 1 and 6, and a →3)-β-d-Glup-(1→ residue linked at sites 3. The RP-5 shared this structure with an additional →4)-β-d-Manp-(1→ residue attached to the →3)-β-d-Glup-(1→. Phagocytosis assay demonstrated that RP-5, with a lower molecular weight, lower galactose content, and higher xylose and mannose content, enhanced RAW 264.7 cell phagocytic activity by 121.04%, outperforming RP-1, which showed a 42.15% increase at the same concentration of 600 μg/mL. Furthermore, both RP-1 and RP-5 reduced the release of inflammatory factors and induced the nuclear translocation of the nuclear transcription factor-κB (NF-κB) pathway in RAW 264.7 cells. This study provided insights into the structural characteristics and immunomodulatory properties of Russula polysaccharides, offering potential for further applications in bioactive compound development.

     

  • Not applicable.
    Ethics statement
    Not applicable.
    Consent for publication
    Availability of data
    Data available on request from the authors.
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Declaration of competing interest
    CRediT authorship contribution statement
    Bowen Yan: Formal analysis, Investigation, Methodology, Writing – original draft. Hao Wu: Conceptualization, Investigation, Methodology, Writing – review & editing. Kui Zeng: Formal analysis, Writing – original draft. Caoxing Huang: Conceptualization, Investigation, Methodology, Writing – original draft, Writing – review & editing. Chenhuan Lai: Investigation, Methodology. Qiang Yong: Conceptualization, Writing – review & editing.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.01.005.
  • loading
  • Abaricia, J.O., Farzad, N., Heath, T.J., Simmons, J., Morandini, L., Olivares-Navarrete, R., 2021. Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomater 133, 58–73. doi: 10.1016/j.actbio.2021.04.021
    Abuajah, C.I., Ogbonna, A.C., Osuji, C.M., 2015. Functional components and medicinal properties of food: a review. J. Food Sci. Technol. 52, 2522–2529. doi: 10.1007/s13197-014-1396-5
    Ayimbila, F., Keawsompong, S., 2023. Nutritional quality and biological application of mushroom protein as a novel protein alternative. Curr. Nutr. Rep. 12, 290–307. doi: 10.1007/s13668-023-00468-x
    Breda, L.S., de Melo Nascimento, J.E., Alves, V., de Alencar Arnaut de Toledo, V., de Lima, V.A., Felsner, M.L., 2024. Green and fast prediction of crude protein contents in bee pollen based on digital images combined with Random Forest algorithm. Food Res. Int. 179, 113958. doi: 10.1016/j.foodres.2024.113958
    Casanova, E., Pelé-Meziani, C., Guilminot, É., Mevellec, J.Y., Riquier-Bouclet, C., Vinçotte, A., Lemoine, G., 2016. The use of vibrational spectroscopy techniques as a tool for the discrimination and identification of the natural and synthetic organic compounds used in conservation. Anal. Methods 8, 8514–8527. doi: 10.1039/C6AY02645A
    Chen, H.W., Zhou, H.L., She, Z.Y., Lu, H.H., Wen, M.S., Wang, X.C., Wei, Z.J., Yang, S.Y., Guan, X., Tong, Y., Qin, Q.X., Zhu, P.C., Nong, Y.Y., Zhang, Q.S., 2024. Phytochemical and medicinal profiling of Russula vinosa Lindbl (RVL) using multiomics techniques. LWT-Food Sci. Technol. 192, 115723. doi: 10.1016/j.lwt.2024.115723
    Chen, R.X., Xu, J.X., Wu, W.H., Wen, Y.X., Lu, S.Y., El-Seedi, H.R., Zhao, C., 2022. Structure-immunomodulatory activity relationships of dietary polysaccharides. Curr. Res. Food Sci. 5, 1330–1341. doi: 10.1016/j.crfs.2022.08.016
    Chen, S.Z., Saeed, A.F.U.H., Liu, Q., Jiang, Q., Xu, H.Z., Xiao, G.G., Rao, L., Duo, Y.H., 2023. Macrophages in immunoregulation and therapeutics. Signal Transduct. Target. Ther. 8, 207. doi: 10.1038/s41392-023-01452-1
    Chen, X.H., Xia, L.X., Zhou, H.B., Qiu, G.Z., 2010. Chemical composition and antioxidant activities of Russula griseocarnosa sp. nov. J. Agric. Food Chem. 58, 6966–6971. doi: 10.1021/jf1011775
    Cheng, Y., Gan, J., Yan, B.W., Wang, P., Wu, H., Huang, C.X., 2024. Polysaccharides from Russula: a review on extraction, purification, and bioactivities. Front. Nutr 11, 1406817.
    Cong, Y.H., Wang, Y., Yuan, T., Zhang, Z., Ge, J.X., Meng, Q., Li, Z.Q., Sun, S., 2023. Macrophages in aseptic loosening: characteristics, functions, and mechanisms. Front. Immunol. 14, 1122057. doi: 10.3389/fimmu.2023.1122057
    Deng, X.L., Liu, Q., Fu, Y.J., Luo, X., Hu, M.H., Ma, F.L., Wang, Q., Lai, X.P., Zhou, L., 2018. Effects of Lycium barbarum polysaccharides with different molecular weights on function of RAW 264.7 macrophages. Food Agric. Immunol. 29, 808–820. doi: 10.1080/09540105.2018.1457628
    Fang, J.Q., Cao, Z.L., Song, X.X., Zhang, X.Y., Mai, B.Y., Wen, T.F., Lin, J.R., Chen, J.L., Chi, Y.G., Su, T., Xiao, F.X., 2020. Rhoifolin alleviates inflammation of acute inflammation animal models and LPS-induced RAW 264.7 cells via IKKβ/NF-κB signaling pathway. Inflammation 43, 2191–2201. doi: 10.1007/s10753-020-01286-x
    García-Sobrino, R., Muñoz, M., Rodríguez-Jara, E., Rams, J., Torres, B., Cifuentes, S.C., 2023. Bioabsorbable composites based on polymeric matrix (PLA and PCL) reinforced with magnesium (Mg) for use in bone regeneration therapy: physicochemical properties and biological evaluation. Polymers (Basel) 15, 4667. doi: 10.3390/polym15244667
    Ghosh, D., Tanner, J., Lavoie, J.M., Garnier, G., Patti, A.F., 2021. An integrated approach for hemicellulose extraction from forest residue. BioResources 16, 2524–2547. doi: 10.15376/biores.16.2.2524-2547
    Gong, P., Wang, S.Y., Liu, M., Chen, F.X., Yang, W.J., Chang, X.N., Liu, N., Zhao, Y.Y., Wang, J., Chen, X.F., 2020. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: a mini-review. Carbohydr. Res. 494, 108037. doi: 10.1016/j.carres.2020.108037
    González, A., Cruz, M., Losoya, C., Nobre, C., Loredo, A., Rodríguez, R., Contreras, J., Belmares, R., 2020. Edible mushrooms as a novel protein source for functional foods. Food Funct 11, 7400–7414. doi: 10.1039/d0fo01746a
    Han, C., Yang, J.K., Song, P.Y., Wang, X., Shi, W.Y., 2018. Effects of Salvia miltiorrhiza polysaccharides on lipopolysaccharide-induced inflammatory factor release in RAW 264.7 cells. J. Interferon Cytokine Res. 38, 29–37. doi: 10.1089/jir.2017.0087
    Huang, C.X., Tang, S., Zhang, W.Y., Tao, Y.H., Lai, C.H., Li, X., Yong, Q., 2018. Unveiling the structural properties of lignin-carbohydrate complexes in bamboo residues and its functionality as antioxidants and immunostimulants. ACS Sustainable Chem. Eng. 6, 12522–12531. doi: 10.1021/acssuschemeng.8b03262
    Huo, Y.F., Li, Y.T., Xia, W., Wang, C., Xie, Y.Y., Wang, Y.B., Zhou, T., Fu, L.L., 2021. Degraded polysaccharides from Porphyra haitanensis: purification, physico-chemical properties, antioxidant and immunomodulatory activities. Glycoconj. J. 38, 573–583. doi: 10.1007/s10719-021-10009-9
    Ketha, K., Gudipati, M., 2018a. Immunomodulatory activity of non starch polysaccharides isolated from green gram (Vigna radiata). Food Res. Int. 113, 269–276. doi: 10.1016/j.foodres.2018.07.010
    Ketha, K., Gudipati, M., 2018b. Purification, structural characterization of an arabinogalactan from green gram (Vigna radiata) and its role in macrophage activation. J. Funct. Foods 50, 127–136. doi: 10.1016/j.jff.2018.09.029
    Kim, H.W., Shin, M.S., Lee, S.J., Park, H.R., Jee, H.S., Yoon, T.J., Shin, K.S., 2019. Signaling pathways associated with macrophage-activating polysaccharides purified from fermented barley. Int. J. Biol. Macromol. 131, 1084–1091. doi: 10.1016/j.ijbiomac.2019.03.159
    Kuzmich, A.S., Romanenko, L.A., Kokoulin, M.S., 2023. Cell-cycle arrest and mitochondria-dependent apoptosis induction in T-47D cells by the capsular polysaccharide from the marine bacterium Kangiella japonica KMM 3897. Carbohydr. Polym. 320, 121237. doi: 10.1016/j.carbpol.2023.121237
    Li, J.H., Jiang, X.Q., Li, H.J., Gelinsky, M., Gu, Z., 2021b. Tailoring materials for modulation of macrophage fate. Adv. Mater. 33, e2004172. doi: 10.1002/adma.202004172
    Li, M.Z., Huang, X.J., Wen, J.J., Chen, S.K., Wu, X.C., Ma, W.N., Cui, S.W., Xie, M.Y., Nie, S.P., 2023. Innate immune receptors co-recognition of polysaccharides initiates multi-pathway synergistic immune response. Carbohydr. Polym. 305, 120533. doi: 10.1016/j.carbpol.2022.120533
    Li, M.Z., Wen, J.J., Huang, X.J., Nie, Q.X., Wu, X.C., Ma, W.N., Nie, S.P., Xie, M.Y., 2022. Interaction between polysaccharides and toll-like receptor 4: primary structural role, immune balance perspective, and 3D interaction model hypothesis. Food Chem 374, 131586. doi: 10.1016/j.foodchem.2021.131586
    Li, N.Y., Wang, C.F., Georgiev, M.I., Bajpai, V.K., Tundis, R., Simal-Gandara, J., Lu, X.M., Xiao, J.B., Tang, X.Z., Qiao, X.G., 2021a. Advances in dietary polysaccharides as anticancer agents: structure-activity relationship. Trends Food Sci. Technol. 111, 360–377. doi: 10.1016/j.tifs.2021.03.008
    Li, X.Y., Wang, Z.Y., Wang, L., Walid, E., Zhang, H., 2012. In vitro antioxidant and anti-proliferation activities of polysaccharides from various extracts of different mushrooms. Int. J. Mol. Sci. 13, 5801–5817. doi: 10.3390/ijms13055801
    Liu, H., Xu, J.X., Xu, X.Y., Yuan, Z.H., Song, H., Yang, L.N., Zhu, D.S., 2023. Structure/function relationships of bean polysaccharides: a review. Crit. Rev. Food Sci. Nutr. 63, 330–344. doi: 10.1080/10408398.2021.1946480
    Liu, P.Q., Li, Y., Wang, W.L., Bai, Y.Z., Jia, H.M., Yuan, Z.W., Yang, Z.H., 2022. Role and mechanisms of the NF-ĸB signaling pathway in various developmental processes. Biomed. Pharmacother. 153, 113513. doi: 10.1016/j.biopha.2022.113513
    Liu, X., Dong, M.Y., Li, Y., Li, L.Z., Zhang, Y.F., Wang, C.Y., Wang, N., Wang, D., 2024. Structural properties of glucan from Russula griseocarnosa and its immunomodulatory activities mediated via T cell differentiation. Carbohydr. Polym. 339, 122214. doi: 10.1016/j.carbpol.2024.122214
    Mu, H.B., Zhang, A.M., Zhang, W.X., Cui, G.T., Wang, S.C., Duan, J.Y., 2012. Antioxidative properties of crude polysaccharides from Inonotus obliquus. Int. J. Mol. Sci. 13, 9194–9206. doi: 10.3390/ijms13079194
    Nandi, A.K., Samanta, S., Maity, S., Sen, I.K., Khatua, S., Acharya, K., Maiti, T.K., Islam, S.S., 2014. Antioxidant and immunostimulant β-glucan from edible mushroom Russula albonigra (Krombh.) Fr. Carbohydr. Polym 99, 774–782.
    Nazia Auckloo, B., Wu, B., 2016. Structure, biological properties and applications of marine-derived polysaccharides. Curr. Org. Chem. 20, 2002–2012. doi: 10.2174/1385272820666160202003944
    Panwar, S.S., Chauhan, J.K., Noopur, K., Panwar, N., Pradhan, K., Kumar, L., Panwar, A.S. 2024. Disease prevention in human through bioactive medicinal molecules of vegetables: a review. Indian Res. J. Ext. Edu. 24, 95–105.
    Papoutsis, K., Grasso, S., Menon, A., Brunton, N.P., Lyng, J.G., Jacquier, J.C., Bhuyan, D.J., 2020. Recovery of ergosterol and vitamin D2 from mushroom waste - Potential valorization by food and pharmaceutical industries. Trends Food Sci. Technol. 99, 351–366. doi: 10.1016/j.tifs.2020.03.005
    Park, J., Min, J.S., Kim, B., Chae, U.B., Yun, J.W., Choi, M.S., Kong, I.K., Chang, K.T., Lee, D.S., 2015. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neurosci. Lett. 584, 191–196. doi: 10.1016/j.neulet.2014.10.016
    Shanmugapriya, N., Balachandran, V., Revathi, B., Narayana, B., Salian, V.V., Vanasundari, K., Sivakumar, C., 2021. Quantum chemical calculation, performance of selective antimicrobial activity using molecular docking analysis, RDG and experimental (FT-IR, FT-Raman) investigation of 4-[{2-[3-(4-chlorophenyl)-5-(4-propan-2-yl) phenyl)-4, 5-dihydro- 1H- pyrazol-1-yl]-4-oxo-1, 3- thiazol-5(4H)-ylidene}methyl]benzonitrile. Heliyon 7, e07634. doi: 10.1016/j.heliyon.2021.e07634
    Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S.A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J.T., Sahebkar, A., 2018. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233, 6425–6440. doi: 10.1002/jcp.26429
    Shen, T., Wang, G.C., You, L., Zhang, L., Ren, H.W., Hu, W.C., Qiang, Q., Wang, X.F., Ji, L.L., Gu, Z.Z., Zhao, X.X., 2017. Polysaccharide from wheat bran induces cytokine expression via the toll-like receptor 4-mediated p38 MAPK signaling pathway and prevents cyclophosphamide-induced immunosuppression in mice. Food Nutr. Res. 61, 1344523. doi: 10.1080/16546628.2017.1344523
    Shi, L., Liu, Y., Zhang, Z.F., Li, Y.X., Wu, Y.M., Lu, Y.M., 2024. Structural characterization and immunomodulatory effects of polysaccharide PCP-1 from Pleurotus citrinopileatus. Starch Stärke 76, 2300093. doi: 10.1002/star.202300093
    Song, Q.Q., Jiang, L., Yang, X.Q., Huang, L.X., Yu, Y., Yu, Q., Chen, Y., Xie, J.H., 2019. Physicochemical and functional properties of a water-soluble polysaccharide extracted from Mung bean (Vigna radiate L.) and its antioxidant activity. Int. J. Biol. Macromol. 138, 874–880. doi: 10.1016/j.ijbiomac.2019.07.167
    Sood, A., Gupta, A., Agrawal, G., 2021. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr. Polym. Technol. Appl. 2, 100067.
    Sun, S.C., 2017. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol. 17, 545–558. doi: 10.1038/nri.2017.52
    Tao, Y.H., Wang, T., Huang, C.X., Lai, C.H., Ling, Z., Yong, Q., 2021. Effects of seleno-Sesbania canabina galactomannan on anti-oxidative and immune function of macrophage. Carbohydr. Polym. 261, 117833. doi: 10.1016/j.carbpol.2021.117833
    Waktola, G., Temesgen, T., 2018. Application of mushroom as food and medicine. Adv. Biotechnol. Microbiol. 11, 555817.
    Wang, L., He, C.Q., 2022. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front. Immunol. 13, 967193. doi: 10.3389/fimmu.2022.967193
    Wang, W.L., Tan, J.Q., Nima, L.M., Sang, Y.M., Cai, X., Xue, H.K., 2022. Polysaccharides from fungi: a review on their extraction, purification, structural features, and biological activities. Food Chem. X 15, 100414. doi: 10.1016/j.fochx.2022.100414
    Wang, Y., Han, X., Li, Y.D., Wang, Y.B., Zhao, S.Y., Zhang, D.J., Lu, Y., 2017. Lentinan dose dependence between immunoprophylaxis and promotion of the murine liver cancer. Oncotarget 8, 95152–95162. doi: 10.18632/oncotarget.19808
    Wang, Z.C., Zhou, X.Y., Sheng, L.L., Zhang, D., Zheng, X.X., Pan, Y.P., Yu, X.X., Liang, X.N., Wang, Q., Wang, B.S., Li, N., 2023. Effect of ultrasonic degradation on the structural feature, physicochemical property and bioactivity of plant and microbial polysaccharides: a review. Int. J. Biol. Macromol. 236, 123924. doi: 10.1016/j.ijbiomac.2023.123924
    Wen, Z.S., Xiang, X.W., Jin, H.X., Guo, X.Y., Liu, L.J., Huang, Y.N., OuYang, X.K., Qu, Y.L., 2016. Composition and anti-inflammatory effect of polysaccharides from Sargassum horneri in RAW264.7 macrophages. Int. J. Biol. Macromol. 88, 403–413. doi: 10.1016/j.ijbiomac.2016.02.025
    Xie, L.N., Liu, G.R., Huang, Z.B., Zhu, Z.Y., Yang, K.Y., Liang, Y.H., Xu, Y.N., Zhang, L.Y., Du, Z.Y., 2023. Tremella fuciformis polysaccharide induces apoptosis of B16 melanoma cells via promoting the M1 polarization of macrophages. Molecules 28, 4018. doi: 10.3390/molecules28104018
    Xie, Y.H., Wang, L.X., Sun, H., Wang, Y.X., Yang, Z.B., Zhang, G.G., Jiang, S.Z., Yang, W.R., 2019b. Polysaccharide from alfalfa activates RAW264.7 macrophages through MAPK and NF-κB signaling pathways. Int. J. Biol. Macromol. 126, 960–968. doi: 10.1016/j.ijbiomac.2018.12.227
    Xie, Z.L., Wang, Y., Huang, J.Q., Qian, N., Shen, G.Z., Chen, L.H., 2019a. Anti-inflammatory activity of polysaccharides from Phellinus linteus by regulating the NF-κB translocation in LPS-stimulated RAW 264.7 macrophages. Int. J. Biol. Macromol. 129, 61–67. doi: 10.1016/j.ijbiomac.2019.02.023
    Yan, B.W., Deng, J.P., Gu, J., Tao, Y.H., Huang, C.X., Lai, C.H., Yong, Q., 2023. Comparison of structure and neuroprotective ability of low molecular weight galactomannans from Sesbania cannabina obtained by different extraction technologies. Food Chem 427, 136642. doi: 10.1016/j.foodchem.2023.136642
    Yan, B.W., Wang, R., Fu, C.L., Huang, C.X., Lai, C.H., Yong, Q., 2024. Procuring the polysaccharides with anti-inflammatory bioactivity from Russula vinosa Lindblad by citric acid extraction. Food Biosci 59, 104079. doi: 10.1016/j.fbio.2024.104079
    Yao, H.Y.Y., Wang, J.Q., Yin, J.Y., Nie, S.P., Xie, M.Y., 2021. A review of NMR analysis in polysaccharide structure and conformation: progress, challenge and perspective. Food Res. Int. 143, 110290. doi: 10.1016/j.foodres.2021.110290
    Yao, Y., Zhu, Y.Y., Ren, G.X., 2016b. Immunoregulatory activities of polysaccharides from mung bean. Carbohydr. Polym. 139, 61–66. doi: 10.1016/j.carbpol.2015.12.001
    Yao, Y., Zhu, Y.Y., Ren, G.X., 2016a. Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from mung bean. Int. J. Biol. Macromol. 84, 289–294. doi: 10.1016/j.ijbiomac.2015.12.045
    Ye, Z.P., Wang, W., Yuan, Q.X., Ye, H., Sun, Y., Zhang, H.C., Zeng, X.X., 2016. Box-Behnken design for extraction optimization, characterization and in vitro antioxidant activity of Cicer arietinum L. hull polysaccharides. Carbohydr. Polym. 147, 354–364. doi: 10.1016/j.carbpol.2016.03.092
    Zhang, H., Li, C.C., Lai, P.F.H., Chen, J.S., Xie, F., Xia, Y.J., Ai, L.Z., 2021a. Fractionation, chemical characterization and immunostimulatory activity of β-glucan and galactoglucan from Russula vinosa Lindblad. Carbohydr. Polym. 256, 117559. doi: 10.1016/j.carbpol.2020.117559
    Zhang, H., Li, C.C., Lai, P.F.H., Xie, F., Xia, Y.J., Ai, L.Z., 2022. NMR elucidation of a water-soluble β-(1→3, 1→6)-glucan from Russula vinosa Lindblad. Bioact. Carbohydr. Diet. Fibre 27, 100311. doi: 10.1016/j.bcdf.2022.100311
    Zhang, H., Zou, P., Zhao, H.T., Qiu, J.Q., Regenstein, J.M., Yang, X., 2021b. Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis. Carbohydr. Polym. 251, 117078. doi: 10.1016/j.carbpol.2020.117078
    Zhang, J.Z., Liu, N., Sun, C., Sun, D.Q., Wang, Y.J., 2019. In: Polysaccharides from Polygonatum sibiricum Delar. Ex Redoute induce an Immune Response in the RAW 264.7 Cell Line Via an NF-κ/MAPK Pathway, 9. RSC Adv, pp. 17988–17994.
    Zhang, M., Cui, S.W., Cheung, P.C.K., Wang, Q., 2007. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci. Technol. 18, 4–19. doi: 10.1016/j.tifs.2006.07.013
    Zhang, M.M., Wu, W.J., Ren, Y., Li, X.F., Tang, Y.Q., Min, T., Lai, F.R., Wu, H., 2017. Structural characterization of a novel polysaccharide from Lepidium meyenii (Maca) and analysis of its regulatory function in macrophage polarization in vitro. J. Agric. Food Chem. 65, 1146–1157. doi: 10.1021/acs.jafc.6b05218
    Zheng, C.M., Li, J.Q., Liu, H.G., Wang, Y.Z., 2023. Review of postharvest processing of edible wild-grown mushrooms. Food Res. Int. 173, 113223. doi: 10.1016/j.foodres.2023.113223
    Zhou, H., Cheng, G.Q., Wang, Q.T., Guo, M.J., Zhuo, L., Yan, H.F., Li, G.J., Hou, C.L., 2022. Morphological characteristics and phylogeny reveal six new species in Russula subgenus Russula (Russulaceae, Russulales) from Yanshan Mountains, North China. J. Fungi 8, 1283. doi: 10.3390/jof8121283
    Zhou, J.H., Zhang, J.Y., Li, H.M., Sun, G.W., Liang, F.Z., 2013. Extraction of hemicellulose from corn stover by KOH solution pretreatment and its characterization. Adv. Mater. Res. 821, 1065–1070.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (35) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return