Volume 10 Issue 2
May  2025
Turn off MathJax
Article Contents
Dafang Huang, Jie Li, Suiyi Li, Jianbing Hu, Zhiru Cao, Yang Guo, Yu Ding, Mingwei Zhu, Yanfeng Chen. Self-densified super-strong wood[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 199-208. doi: 10.1016/j.jobab.2025.03.001
Citation: Dafang Huang, Jie Li, Suiyi Li, Jianbing Hu, Zhiru Cao, Yang Guo, Yu Ding, Mingwei Zhu, Yanfeng Chen. Self-densified super-strong wood[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 199-208. doi: 10.1016/j.jobab.2025.03.001

Self-densified super-strong wood

doi: 10.1016/j.jobab.2025.03.001
Funds:

No 32401505

This work was supported by National Natural Science Foundation of China (No. 91963211

No 92463303), National Key Research and Development Program of China (No. 2018YFB1105400), and Jiangsu Funding Program for Excellent Postdoctoral Talent (No. 2022ZB61).

No 51872136

No 92363001

  • Available Online: 2025-05-09
  • Publish Date: 2025-03-12
  • Lightweight structural materials with high strength and toughness are highly desirable for many advanced applications. Wood, as a sustainable structural material, is widely used in engineering due to its abundance and excellent mechanical properties. In this paper, we report a self-densification strategy to develop super-strong wood by reassembling highly aligned wood fibers as functional units and self-densified without the need for hot pressing. The resulting self-densified wood exhibits ultra-high tensile strength (496.1 MPa), flexural strength (392.7 MPa) and impact toughness (75.2 kJ/m2), surpassing those of compressed densified wood and traditional metal materials like aluminum alloys. Notably, the self-densified wood exhibits uniform shrinkage in the cross-section while maintaining its longitudinal dimension. This characteristic leads to an order-of-magnitude enhancement in the overall mechanical performance of the wood, presenting a significant advantage over compressed densified wood. Such super-strong yet lightweight wood has great potential for application as a sustainable engineering material, replacing traditional structural materials such as metals and alloys.

     

  • loading
  • [1]
    Berglund, L.A., Burgert, I., 2018. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30, e1704285.
    [2]
    Chen, C.J., Kuang, Y.D., Zhu, S.Z., Burgert, I., Keplinger, T., Gong, A., et al. 2020a. Structure-property-function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642-666.
    [3]
    Chen, F., Ritter, M., Xu, Y.F., Tu, K.K., Koch, S.M., Yan, W.Q., et al. 2024. Lightweight, strong, and transparent wood films produced by capillary driven self-densification. Small 20, e2311966.
    [4]
    Chen, G.G., Chen, C.J., Pei, Y., He, S.M., Liu, Y., Jiang, B., et al. 2020b. A strong, flame-retardant, and thermally insulating wood laminate. Chem. Eng. J. 383, 123109.
    [5]
    Chen, K.X., Li, L., 2019. Ordered structures with functional units as a paradigm of material design. Adv. Mater. 31, e1901115.
    [6]
    Chen, S.Y., Obataya, E., Matsuo-Ueda, M., 2018. Shape fixation of compressed wood by steaming: a mechanism of shape fixation by rearrangement of crystalline cellulose. Wood Sci. Technol. 52, 1229-1241.
    [7]
    Chen, Y., Awasthi, A.K., Wei, F., Tan, Q.Y., Li, J.H., 2021. Single-use plastics: production, usage, disposal, and adverse impacts. Sci. Total Environ. 752, 141772.
    [8]
    Ding, Y., Pang, Z.Q., Lan, K., Yao, Y., Panzarasa, G., Xu, L., et al. 2023. Emerging engineered wood for building applications. Chem. Rev. 123, 1843-1888.
    [9]
    Dong, X.F., Gan, W.T., Shang, Y., Tang, J.F., Wang, Y.X., Cao, Z.F., et al. 2022. Low-value wood for sustainable high-performance structural materials. Nat. Sustain. 5, 628-635.
    [10]
    Dursun, T., Soutis, C., 2014. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862-871.
    [11]
    Erickson, E.C., 1965. Mechanical properties of laminated modified wood. USA: U.S. Dept. Of Agriculture, Wisconsin No. 1639.
    [12]
    Frey, M., Biffi, G., Adobes-Vidal, M., Zirkelbach, M., Wang, Y.R., Tu, K.K., et al. 2019. Tunable wood by reversible interlocking and bioinspired mechanical gradients. Adv. Sci. 6, 1802190.
    [13]
    Frey, M., Widner, D., Segmehl, J.S., Casdorff, K., Keplinger, T., Burgert, I., 2018. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Interfaces 10, 5030-5037.
    [14]
    Hou, Y.Z., Guan, Q.F., Xia, J., Ling, Z.C., He, Z.Z., Han, Z.M., et al. 2021. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano 15, 1310-1320.
    [15]
    Huang, W., Restrepo, D., Jung, J.Y., Su, F.Y., Liu, Z.Q., Ritchie, R.O., et al. 2019. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 31, e1901561.
    [16]
    Hwang, S.W., Isoda, H., Nakagawa, T., Sugiyama, J., 2021. Flexural anisotropy of rift-sawn softwood boards induced by the end-grain orientation. J. Wood Sci. 67, 1-8.
    [17]
    Jakob, M., Mahendran, A.R., Gindl-Altmutter, W., Bliem, P., Konnerth, J., Müller, U., et al. 2022. The strength and stiffness of oriented wood and cellulose-fibre materials: a review. Prog. Mater. Sci. 125, 100916.
    [18]
    Jin, K., Qin, Z., Buehler, M.J., 2015. Molecular deformation mechanisms of the wood cell wall material. J. Mech. Behav. Biomed. Mater. 42, 198-206.
    [19]
    Khakalo, A., Tanaka, A., Korpela, A., Hauru, L.K.J., Orelma, H., 2019. All-wood composite material by partial fiber surface dissolution with an ionic liquid. ACS Sustain. Chem. Eng. 7, 3195-3202.
    [20]
    Khakalo, A., Tanaka, A., Korpela, A., Orelma, H., 2020. Delignification and ionic liquid treatment of wood toward multifunctional high-performance structural materials. ACS Appl. Mater. Interfaces 12, 23532-23542.
    [21]
    Kim, S.H., Kim, H., Kim, N.J., 2015. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518, 77-79.
    [22]
    Kulasinski, K., Derome, D., Carmeliet, J., 2017. Impact of hydration on the micromechanical properties of the polymer composite structure of wood investigated with atomistic simulations. J. Mech. Phys. Solids 103, 221-235.
    [23]
    Kumar, A., Jyske, T., Petrič, M., 2021. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: a review. Adv. Sustain. Syst. 5, 2000251.
    [24]
    Kutnar, A., Kamke, F.A., Sernek, M., 2008. The mechanical properties of densified VTC wood relevant for structural composites. Holz Als Roh Und Werkstoff 66, 439-446.
    [25]
    Kyriazidou, E., Pesendorfer, M., 1999. Viennese chairs: a case study for modern industrialization. J. Eco. History 59, 143-166.
    [26]
    Li, K., Wang, S.N., Chen, H., Yang, X., Berglund, L.A., Zhou, Q., 2020a. Self-densification of highly mesoporous wood structure into a strong and transparent film. Adv. Mater. 32, e2003653.
    [27]
    Li, T., Chen, C.J., Brozena, A.H., Zhu, J.Y., Xu, L.X., Driemeier, C., et al. 2021. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47-56.
    [28]
    Li, Z.H., Chen, C.J., Mi, R.Y., Gan, W.T., Dai, J.Q., Jiao, M.L., et al. 2020b. A strong, tough, and scalable structural material from fast-growing bamboo. Adv. Mater. 32, e1906308.
    [29]
    Ling, S.J., Kaplan, D.L., Buehler, M.J., 2018. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016.
    [30]
    Liu, Y., Li, B., Mao, W.B., Hu, W., Chen, G., Liu, Y.Y., et al. 2019. Strong cellulose-based materials by coupling sodium hydroxide-anthraquinone (NaOH-AQ) pulping with hot pressing from wood. ACS Omega 4, 7861-7865.
    [31]
    Luan, Y., Fang, C.H., Ma, Y.F., Fei, B.H., 2022. Wood mechanical densification: a review on processing. Mater. Manuf. Process. 37, 359-371.
    [32]
    Maaß, M.C., Saleh, S., Militz, H., Volkert, C.A., 2020. The structural origins of wood cell wall toughness. Adv. Mater. 32, e1907693.
    [33]
    Marbun, S.D., Dwianto, W., Meliala, S.B.P.S., Widyorini, R., Augustina, S., Hiziroglu, S., 2023. Dimensional stability mechanisms of binderless boards by heat or steam treatment: a review. Cellulose 30, 8571-8593.
    [34]
    Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941-3994.
    [35]
    Naskar, A.K., Keum, J.K., Boeman, R.G., 2016. Polymer matrix nanocomposites for automotive structural components. Nat. Nanotechnol. 11, 1026-1030.
    [36]
    Rautkari, L., Properzi, M., Pichelin, F., Hughes, M., 2010. Properties and set-recovery of surface densified Norway spruce and European beech. Wood Sci. Technol. 44, 679-691.
    [37]
    Ritchie, R.O., 2011. The conflicts between strength and toughness. Nat. Mater. 10, 817-822.
    [38]
    Ruan, G.M., Filz, G.H., Fink, G., 2022. Shear capacity of timber-to-timber connections using wooden nails. Wood Mater. Sci. Eng. 17, 20-29.
    [39]
    Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Moorthy, I.G., 2014. Investigation of physico-chemical properties of alkali-treated Prosopis juliflora fibers. Int. J. Polym. Anal. Charact. 19, 309-317.
    [40]
    Schubert, M., Panzarasa, G., Burgert, I., 2023. Sustainability in wood products: a new perspective for handling natural diversity. Chem. Rev. 123, 1889-1924.
    [41]
    Solhi, L., Guccini, V., Heise, K., Solala, I., Niinivaara, E., Xu, W.Y., et al. 2023. Understanding nanocellulose-water interactions: turning a detriment into an asset. Chem. Rev. 123, 1925-2015.
    [42]
    Song, J.W., Chen, C.J., Zhu, S.Z., Zhu, M.W., Dai, J.Q., Ray, U., et al. 2018. Processing bulk natural wood into a high-performance structural material. Nature 554, 224-228.
    [43]
    Sreenivasan, V.S., Somasundaram, S., Ravindran, D., Manikandan, V., Narayanasamy, R., 2011. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres: an exploratory investigation. Mater. Des. 32, 453-461.
    [44]
    Tarkow, H.R.S., 1968. Surface densification of wood. For. Prod. J. 18, 104-110.
    [45]
    Wan, Y.F., An, F., Zhou, P.C., Li, Y.H., Liu, Y.D., Lu, C.X., et al. 2017. Regenerated cellulose I from LiCl·DMAc solution. Chem. Commun. 53, 3595-3597.
    [46]
    Yang, X.P., Biswas, S.K., Han, J.Q., Tanpichai, S., Li, M.C., Chen, C.C., et al. 2021. Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 33, e2002264.
    [47]
    Yano, H., Hirose, A., Inaba, S.,1997. High-strength wood-based materials. J. Mater. Sci. Lett. 16, 1906-1909.
    [48]
    Zhang, C., Chen, M.Y., Keten, S., Coasne, B., Derome, D., Carmeliet, J., 2021. Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. Sci. Adv. 7, eabi8919.
    [49]
    Zheng, K.L., Politis, D.J., Wang, L.L., Lin, J.G., 2018. A review on forming techniques for manufacturing lightweight complex: shaped aluminium panel components. Int. J. Light. Mater. Manuf. 1, 55-80.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return