Citation: | Dafang Huang, Jie Li, Suiyi Li, Jianbing Hu, Zhiru Cao, Yang Guo, Yu Ding, Mingwei Zhu, Yanfeng Chen. Self-densified super-strong wood[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 199-208. doi: 10.1016/j.jobab.2025.03.001 |
Berglund, L.A., Burgert, I., 2018. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30, e1704285. doi: 10.1002/adma.201704285
|
Chen, C.J., Kuang, Y.D., Zhu, S.Z., Burgert, I., Keplinger, T., Gong, A., et al., 2020a. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666. doi: 10.1038/s41578-020-0195-z
|
Chen, F., Ritter, M., Xu, Y.F., Tu, K.K., Koch, S.M., Yan, W.Q., et al., 2024. Lightweight, strong, and transparent wood films produced by capillary driven self-densification. Small 20, e2311966.
|
Chen, G.G., Chen, C.J., Pei, Y., He, S.M., Liu, Y., Jiang, B., et al., 2020b. A strong, flame-retardant, and thermally insulating wood laminate. Chem. Eng. J. 383, 123109. doi: 10.1016/j.cej.2019.123109
|
Chen, K.X., Li, L., 2019. Ordered structures with functional units as a paradigm of material design. Adv. Mater. 31, e1901115. doi: 10.1002/adma.201901115
|
Chen, S.Y., Obataya, E., Matsuo-Ueda, M., 2018. Shape fixation of compressed wood by steaming: a mechanism of shape fixation by rearrangement of crystalline cellulose. Wood Sci. Technol. 52, 1229–1241. doi: 10.1007/s00226-018-1026-x
|
Chen, Y., Awasthi, A.K., Wei, F., Tan, Q.Y., Li, J.H., 2021. Single-use plastics: production, usage, disposal, and adverse impacts. Sci. Total Environ. 752, 141772. doi: 10.1016/j.scitotenv.2020.141772
|
Ding, Y., Pang, Z.Q., Lan, K., Yao, Y., Panzarasa, G., Xu, L., et al., 2023. Emerging engineered wood for building applications. Chem. Rev. 123, 1843–1888. doi: 10.1021/acs.chemrev.2c00450
|
Dong, X.F., Gan, W.T., Shang, Y., Tang, J.F., Wang, Y.X., Cao, Z.F., et al., 2022. Low-value wood for sustainable high-performance structural materials. Nat. Sustain. 5, 628–635. doi: 10.1038/s41893-022-00887-8
|
Dursun, T., Soutis, C., 2014. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862–871. doi: 10.1016/j.matdes.2013.12.002
|
Erickson, E.C., 1965. Mechanical properties of laminated modified wood. USA: U.S. Dept. Of Agriculture, Wisconsin No. 1639.
|
Frey, M., Biffi, G., Adobes-Vidal, M., Zirkelbach, M., Wang, Y.R., Tu, K.K., et al., 2019. Tunable wood by reversible interlocking and bioinspired mechanical gradients. Adv. Sci. 6, 1802190. doi: 10.1002/advs.201802190
|
Frey, M., Widner, D., Segmehl, J.S., Casdorff, K., Keplinger, T., Burgert, I., 2018. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Interfaces 10, 5030–5037. doi: 10.1021/acsami.7b18646
|
Hou, Y.Z., Guan, Q.F., Xia, J., Ling, Z.C., He, Z.Z., Han, Z.M., et al., 2021. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano 15, 1310–1320. doi: 10.1021/acsnano.0c08574
|
Huang, W., Restrepo, D., Jung, J.Y., Su, F.Y., Liu, Z.Q., Ritchie, R.O., et al., 2019. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 31, e1901561. doi: 10.1002/adma.201901561
|
Hwang, S.W., Isoda, H., Nakagawa, T., Sugiyama, J., 2021. Flexural anisotropy of rift-sawn softwood boards induced by the end-grain orientation. J. Wood Sci. 67, 1–8. doi: 10.1186/s10086-020-01935-7
|
Jakob, M., Mahendran, A.R., Gindl-Altmutter, W., Bliem, P., Konnerth, J., Müller, U., et al., 2022. The strength and stiffness of oriented wood and cellulose-fibre materials: a review. Prog. Mater. Sci. 125, 100916. doi: 10.1016/j.pmatsci.2021.100916
|
Jin, K., Qin, Z., Buehler, M.J., 2015. Molecular deformation mechanisms of the wood cell wall material. J. Mech. Behav. Biomed. Mater. 42, 198–206. doi: 10.1016/j.jmbbm.2014.11.010
|
Khakalo, A., Tanaka, A., Korpela, A., Hauru, L.K.J., Orelma, H., 2019. All-wood composite material by partial fiber surface dissolution with an ionic liquid. ACS Sustain. Chem. Eng. 7, 3195–3202. doi: 10.1021/acssuschemeng.8b05059
|
Khakalo, A., Tanaka, A., Korpela, A., Orelma, H., 2020. Delignification and ionic liquid treatment of wood toward multifunctional high-performance structural materials. ACS Appl. Mater. Interfaces 12, 23532–23542. doi: 10.1021/acsami.0c02221
|
Kim, S.H., Kim, H., Kim, N.J., 2015. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518, 77–79. doi: 10.1038/nature14144
|
Kulasinski, K., Derome, D., Carmeliet, J., 2017. Impact of hydration on the micromechanical properties of the polymer composite structure of wood investigated with atomistic simulations. J. Mech. Phys. Solids 103, 221–235. doi: 10.1016/j.jmps.2017.03.016
|
Kumar, A., Jyske, T., Petrič, M., 2021. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: a review. Adv. Sustain. Syst. 5, 2000251. doi: 10.1002/adsu.202000251
|
Kutnar, A., Kamke, F.A., Sernek, M., 2008. The mechanical properties of densified VTC wood relevant for structural composites. Holz Als Roh Und Werkstoff 66, 439–446. doi: 10.1007/s00107-008-0259-z
|
Kyriazidou, E., Pesendorfer, M., 1999. Viennese chairs: a case study for modern industrialization. J. Eco. History 59, 143–166. doi: 10.1017/S0022050700022324
|
Li, K., Wang, S.N., Chen, H., Yang, X., Berglund, L.A., Zhou, Q., 2020a. Self-densification of highly mesoporous wood structure into a strong and transparent film. Adv. Mater. 32, e2003653. doi: 10.1002/adma.202003653
|
Li, T., Chen, C.J., Brozena, A.H., Zhu, J.Y., Xu, L.X., Driemeier, C., et al., 2021. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56. doi: 10.1038/s41586-020-03167-7
|
Li, Z.H., Chen, C.J., Mi, R.Y., Gan, W.T., Dai, J.Q., Jiao, M.L., et al., 2020b. A strong, tough, and scalable structural material from fast-growing bamboo. Adv. Mater. 32, e1906308. doi: 10.1002/adma.201906308
|
Ling, S.J., Kaplan, D.L., Buehler, M.J., 2018. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016. doi: 10.1038/natrevmats.2018.16
|
Liu, Y., Li, B., Mao, W.B., Hu, W., Chen, G., Liu, Y.Y., et al., 2019. Strong cellulose-based materials by coupling sodium hydroxide-anthraquinone (NaOH-AQ) pulping with hot pressing from wood. ACS Omega 4, 7861–7865. doi: 10.1021/acsomega.9b00411
|
Luan, Y., Fang, C.H., Ma, Y.F., Fei, B.H., 2022. Wood mechanical densification: a review on processing. Mater. Manuf. Process. 37, 359–371. doi: 10.1080/10426914.2021.2016816
|
Maaß, M.C., Saleh, S., Militz, H., Volkert, C.A., 2020. The structural origins of wood cell wall toughness. Adv. Mater. 32, e1907693. doi: 10.1002/adma.201907693
|
Marbun, S.D., Dwianto, W., Meliala, S.B.P.S., Widyorini, R., Augustina, S., Hiziroglu, S., 2023. Dimensional stability mechanisms of binderless boards by heat or steam treatment: a review. Cellulose 30, 8571–8593. doi: 10.1007/s10570-023-05429-9
|
Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994. doi: 10.1039/c0cs00108b
|
Naskar, A.K., Keum, J.K., Boeman, R.G., 2016. Polymer matrix nanocomposites for automotive structural components. Nat. Nanotechnol. 11, 1026–1030. doi: 10.1038/nnano.2016.262
|
Rautkari, L., Properzi, M., Pichelin, F., Hughes, M., 2010. Properties and set-recovery of surface densified Norway spruce and European beech. Wood Sci. Technol. 44, 679–691. doi: 10.1007/s00226-009-0291-0
|
Ritchie, R.O., 2011. The conflicts between strength and toughness. Nat. Mater. 10, 817–822. doi: 10.1038/nmat3115
|
Ruan, G.M., Filz, G.H., Fink, G., 2022. Shear capacity of timber-to-timber connections using wooden nails. Wood Mater. Sci. Eng. 17, 20–29. doi: 10.1080/17480272.2021.1964595
|
Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Moorthy, I.G., 2014. Investigation of physico-chemical properties of alkali-treated Prosopis juliflora fibers. Int. J. Polym. Anal. Charact. 19, 309–317. doi: 10.1080/1023666X.2014.902527
|
Schubert, M., Panzarasa, G., Burgert, I., 2023. Sustainability in wood products: a new perspective for handling natural diversity. Chem. Rev. 123, 1889–1924. doi: 10.1021/acs.chemrev.2c00360
|
Solhi, L., Guccini, V., Heise, K., Solala, I., Niinivaara, E., Xu, W.Y., et al., 2023. Understanding nanocellulose-water interactions: turning a detriment into an asset. Chem. Rev. 123, 1925–2015. doi: 10.1021/acs.chemrev.2c00611
|
Song, J.W., Chen, C.J., Zhu, S.Z., Zhu, M.W., Dai, J.Q., Ray, U., et al., 2018. Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228. doi: 10.1038/nature25476
|
Sreenivasan, V.S., Somasundaram, S., Ravindran, D., Manikandan, V., Narayanasamy, R., 2011. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres: an exploratory investigation. Mater. Des. 32, 453–461. doi: 10.1016/j.matdes.2010.06.004
|
Tarkow, H.R.S., 1968. Surface densification of wood. For. Prod. J. 18, 104–110.
|
Wan, Y.F., An, F., Zhou, P.C., Li, Y.H., Liu, Y.D., Lu, C.X., et al., 2017. Regenerated cellulose Ⅰ from LiCl·DMAc solution. Chem. Commun. 53, 3595–3597. doi: 10.1039/C7CC00450H
|
Yang, X.P., Biswas, S.K., Han, J.Q., Tanpichai, S., Li, M.C., Chen, C.C., et al., 2021. Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 33, e2002264. doi: 10.1002/adma.202002264
|
Yano, H., Hirose, A., Inaba, S., 1997. High-strength wood-based materials. J. Mater. Sci. Lett. 16, 1906–1909. doi: 10.1023/A:1018578431873
|
Zhang, C., Chen, M.Y., Keten, S., Coasne, B., Derome, D., Carmeliet, J., 2021. Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. Sci. Adv. 7, eabi8919. doi: 10.1126/sciadv.abi8919
|
Zheng, K.L., Politis, D.J., Wang, L.L., Lin, J.G., 2018. A review on forming techniques for manufacturing lightweight complex: shaped aluminium panel components. Int. J. Light. Mater. Manuf. 1, 55–80.
|