Volume 10 Issue 2
May  2025
Turn off MathJax
Article Contents
Yu Luan, Yuting Yang, Qin Su, Jianchang Lian, Huanrong Liu, Fengbo Sun, Xinxin Ma, Hu Miao, Changhua Fang. Eco-friendly innovation: Industrial-scale all-natural bamboo drinking straw inspired by bamboo's flexibility and toughness[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 239-252. doi: 10.1016/j.jobab.2025.03.002
Citation: Yu Luan, Yuting Yang, Qin Su, Jianchang Lian, Huanrong Liu, Fengbo Sun, Xinxin Ma, Hu Miao, Changhua Fang. Eco-friendly innovation: Industrial-scale all-natural bamboo drinking straw inspired by bamboo's flexibility and toughness[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 239-252. doi: 10.1016/j.jobab.2025.03.002

Eco-friendly innovation: Industrial-scale all-natural bamboo drinking straw inspired by bamboo's flexibility and toughness

doi: 10.1016/j.jobab.2025.03.002
Funds:

This work was supported by the National Key R&D Program of China (No. 2023YFD2202101), the National Natural Science Foundation of China (No. 32230072), the Foundation of International Centre for Bamboo and Rattan (No. 1632023001), and the Science and Technology Program of Fujian Province (No. 202 3N3012).

  • Available Online: 2025-05-09
  • Publish Date: 2025-03-12
  • Disposable plastic straws are small, lightweight, and non-degradable, making them rarely recycled and causing severe environmental pollution. However, the search for suitable alternatives, balancing high performance with low cost, poses a substantial challenge. Inspired by bamboo's flexibility and toughness, this study proposed an innovative solution: a biodegradable drinking straw fabricated by winding ultra-thin bamboo slices. The specially prepared bamboo slices demonstrated high tensile strength, exceptional flexibility for bending, and the ability to withstand repeated torsion. To address natural issues of color-producing group migration and mold susceptibility, the bamboo slices underwent simultaneous soaking and ultrasonic treatment. The resulting bamboo straws exhibited remarkable properties with compressive strength of 16.42-19.01 MPa and bending strength of 14.21-15.02 MPa, which matched or exceeded those of commercial paper straws and were significantly higher than those of polypropylene (PP) and polylactic acid (PLA) straws. When exposed to various beverages, bamboo straws retained their structural integrity, absorbed significantly less water than paper straws, and the wet strength was 4.36 times greater than that of paper straws. Moreover, bamboo drinking straws exhibited low production costs and garnered widespread consumer approval. The strategy for industrial-scale production of bamboo straws offers significant potential for replacing plastic straws.

     

  • loading
  • [1]
    Agyekum, E.O., Fortuin, K.P.J., van der Harst, E., 2017. Environmental and social life cycle assessment of bamboo bicycle frames made in Ghana. J. Clean. Prod. 143, 1069-1080.
    [2]
    Beagle, R., 2022. We compare plastic straw alternatives. Available at: https://regalbeagle.biz/blogs/main/straw-comparison.
    [3]
    Chen, L., Yu, Z.X., Fei, B.H., Lin, C.Y., Fang, C.H., Liu, H.R., Ma, X.X., Zhang, X.B., Sun, F.B., 2022. Study on performance and structural design of bamboo helmet. Forests 13, 1091.
    [4]
    Chen, M.L., Weng, Y., Semple, K., Zhang, S.X., Hu, Y.A., Jiang, X.Y., Ma, J.X., Fei, B.H., Dai, C.P., 2021a. Sustainability and innovation of bamboo winding composite pipe products. Renew. Sustain. Energy Rev. 144, 110976.
    [5]
    Chen, Q., Razi, H., Schlepütz, C.M., Fang, C.H., Ma, X.X., Fei, B.H., Burgert, I., 2021b. Bamboo's tissue structure facilitates large bending deflections. Bioinspir. Biomim. 16, 065005.
    [6]
    Guan, M.J., Zhou, M.M., Yong, C., 2013. Antimold effect of ultrasonic treatment on Chinese moso bamboo. For. Prod. J. 63, 288-291.
    [7]
    Gutierrez, J.N., Royals, A.W., Jameel, H., Venditti, R.A., Pal, L., 2019. Evaluation of paper straws versus plastic straws: development of a methodology for testing and understanding challenges for paper straws. BioResources 14, 8345-8363.
    [8]
    Huang, B., Chen, L., Wang, X.K., Ma, X.X., Liu, H.R., Zhang, X.B., Sun, F.B., Fei, B.H., Fang, C.H., 2023. Eco-friendly, high-utilization, and easy-manufacturing bamboo units for engineered bamboo products: processing and mechanical characterization. Compos. Part B Eng. 267, 111073.
    [9]
    International Bamboo and Rattan Organization (INBAR), 2023. Global action plan for bamboo as a substitute for plastic (2023-2030). Available at: https://www.inbar.int/resources/inbar_publications/gap-for-basp/.
    [10]
    Jia, H., Chen, L., Fei, B.H., Sun, F.B., Fang, C.H., 2022. Effects of accelerated ageing by humidity and heat cycles on the quality of bamboo. Polymers (Basel) 14, 4052.
    [11]
    Kurniawan, S.B., Abdullah, S.R.S., Imron, M.F., Ismail, N., 2021. Current state of marine plastic pollution and its technology for more eminent evidence: a review. J. Clean. Prod. 278, 123537.
    [12]
    Kwak, H., Kim, H., Park, S.A., Lee, M., Jang, M., Park, S.B., Hwang, S.Y., Kim, H.J., Jeon, H., Koo, J.M., Park, J., Oh, D.X., 2022. Biodegradable, water-resistant, anti-fizzing, polyester nanocellulose composite paper straws. Adv. Sci. 10, e2205554.
    [13]
    Li, J.G., Chen, C.J., Chen, Q.Y., Li, Z.H., Xiao, S.L., Gao, J.L., He, S.M., Lin, Z.W., Tang, H., Li, T., Hu, L.B., 2024. Kilogram-scale production of strong and smart cellulosic fibers featuring unidirectional fibril alignment. Natl. Sci. Rev. 11, 270.
    [14]
    Li, Z.Z., Luan, Y., Hu, J.B., Fang, C.H., Liu, L.T., Ma, Y.F., Liu, Y., Fei, B.H., 2022. Bamboo heat treatments and their effects on bamboo properties. Constr. Build. Mater. 331, 127320.
    [15]
    Liu, M., Fan, L.L., Feng, C.Q., Bai, Z.K., Xu, W.L., Xu, J., 2024b. Water-stable and degradable all-natural straws based on cellulose microfiber/nanofiber blends. Ind. Crops Prod. 209, 117956.
    [16]
    Liu, Y.P., Peng, W., Wei, T., Yuan, Y.J., Cao, X.Y., Ma, M., Sun, Q.J., Li, M., Xie, F.W., 2024a. Strong, anti-swelling, and biodegradable seaweed-based straws with surface mineralized CaCO3 armor. Carbohydr. Polym. 341, 122347.
    [17]
    Liu, Y.P., Wei, T., Xie, W.X., Yuan, Y.J., Wang, Y.F., Qin, Y., Ma, M., Sun, Q.J., Li, M., Xie, F.W., 2023. Preparation of green and degradable seaweed-based straws by directional diffusion assembly as a plastic substitute. ACS Sustainable Chem. Eng. 11, 16310-16321.
    [18]
    Luan, Y., Huang, B., Chen, L., Wang, X.K., Ma, Y.F., Yin, M.L., Song, Y.F., Liu, H.R., Ma, X.X., Zhang, X.B., Sun, F.B., Fang, C.H., Fei, B.H., 2023a. High-performance, low-cost, chemical-free, and reusable bamboo drinking straw: an all-natural substitute for plastic straws. Ind. Crops Prod. 200, 116829.
    [19]
    Luan, Y., Liu, L.T., Ma, Y.F., Yang, Y.T., Jiang, M.H., Semple, K., Dai, C.P., Fei, B.H., Fang, C.H., 2023b. An integrated hydrothermal process of bamboo flattening, densification and drying: mechanical properties and strengthening mechanisms. Mater. Des. 226, 111610.
    [20]
    Meng, F.D., Yu, Y.L., Zhang, Y.M., Yu, W.J., Gao, J.M., 2016. Surface chemical composition analysis of heat-treated bamboo. Appl. Surf. Sci. 371, 383-390.
    [21]
    Neto, A.M., Gomes, T.S., Pertel, M., Vieira, L.A.V.P., Pacheco, E.B.A.V., 2021. An overview of plastic straw policies in the Americas. Mar. Pollut. Bull. 172, 112813.
    [22]
    Plastics Europe, 2022. Plastics-the facts 2022. Available at: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022-2/.
    [23]
    Rai, R., Ranjan, R., Kant, C., Ghosh, U.U., Dhar, P., 2023. Environmentally benign partially delignified and microwave processed bamboo-based drinking straws. Adv. Sustain. Syst. 7, 2300057.
    [24]
    Roy, P., Ashton, L., Wang, T., Corradini, M.G., Fraser, E.D.G., Thimmanagari, M., Tiessan, M., Bali, A., Saharan, K.M., Mohanty, A.K., Misra, M., 2021. Evolution of drinking straws and their environmental, economic and societal implications. J. Clean. Prod. 316, 128234.
    [25]
    Su, Q., Chen, L., Dai, C.P., Fei, B.H., Chen, X.H., Luo, X., Fang, C.H., Ma, X.X., Zhang, X.B., Liu, H.R., 2023. Structure and mechanisms of foam-like bamboo parenchyma tissue. J. Mater. Res. Technol. 27, 617-629.
    [26]
    Tang, Q.H., Fang, L., Guo, W.J., 2019. Effects of bamboo fiber length and loading on mechanical, thermal and pulverization properties of phenolic foam composites. J. Bioresour. Bioprod. 4, 51-59.
    [27]
    Timshina, A., Aristizabal-Henao, J.J., Da Silva, B.F., Bowden, J.A., 2021. The last straw: characterization of per- and polyfluoroalkyl substances in commercially-available plant-based drinking straws. Chemosphere 277, 130238.
    [28]
    United Nations Environment Programme, 2022. From pollution to solution. Available at: https://www.unep.org/interactives/pollution-to-solution/.
    [29]
    Wang, X.Z., Pang, Z.Q., Chen, C.J., Xia, Q.Q., Zhou, Y.B., Jing, S.S., Wang, R.L., Ray, U., Gan, W.T., Li, C., Chen, G.G., Foster, B., Li, T., Hu, L.B., 2020. All-natural, degradable, rolled-up straws based on cellulose micro- and nano-hybrid fibers. Adv. Funct. Mater. 30, 1910417.
    [30]
    Wei, X., Gu, S.H., Li, X.J., Li, S.X., Li, L., Wang, G., 2023. Bamboo as a substitute for plastic: underlying mechanisms of flexible deformation and flexural toughness of bamboo at multiple scales. Ind. Crops Prod. 204, 117351.
    [31]
    Xiang, E.L., Guo, Y.H., Yang, S.M., Liu, X.G., Tian, G.L., Ma, J.F., Shang, L.L., 2020. Variations in the anatomical characteristics of Bambusa pervariabilis culms with age and height. For. Prod. J. 70, 72-78.
    [32]
    Xie, Y., Ji, Z., Abdalkarim, S.Y.H., Huang, H.C., Yunusov, K.E., Yu, H.Y., 2024. Investigating interface adhesion of PLA-coated cellulose paper straws: degradation, plant growth effects, and life cycle assessment. J. Hazard. Mater. 480, 136101.
    [33]
    Xu, H.C., Li, J., She, Y.N., Wang, H.K., Xu, X.W., 2024. The unique flexibility feature of moso bamboo: arising implications for biomimetic material design. Constr. Build. Mater. 411, 134568.
    [34]
    Yuan, J., Chen, Q., Fang, C.H., Zhang, S.Q., Liu, X.M., Fei, B.H., 2021. Effect of chemical composition of bamboo fibers on water sorption. Cellulose 28, 7273-7282.
    [35]
    Zea Escamilla, E., Habert, G., 2014. Environmental impacts of bamboo-based construction materials representing global production diversity. J. Clean. Prod. 69, 117-127.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (6) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return