Citation: | Quan Zhou, Zijing Zhao, Litao Wang, Jiandong Wang, Lina Fu, Jihong Cui, Guosheng Liu, Jie Yang, Yujie Fu. Immobilized enzyme microreactor system with bamboo-based cellulose nanofibers for efficient biotransformation of phytochemicals[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 224-238. doi: 10.1016/j.jobab.2025.03.004 |
Adel, A., El-Shafei, A., Ibrahim, A., Al-Shemy, M., 2018. Extraction of oxidized nanocellulose from date palm (Phoenix dactylifera L.) sheath fibers: Influence of CI and CII polymorphs on the properties of chitosan/bionanocomposite films. Ind. Crops Prod. 124, 155–165. doi: 10.1016/j.indcrop.2018.07.073
|
Ahmad, M.I., Bensalah, N., 2022. Insights into the generation of hydroxyl radicals from H2O2 decomposition by the combination of Fe2+ and chloranilic acid. Int. J. Environ. Sci. Technol. 19, 10119–10130. doi: 10.1007/s13762-021-03822-0
|
Ariaeenejad, S., Hosseini, E., Motamedi, E., Moosavi-Movahedi, A.A., Salekdeh, G.H., 2019. Application of carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) hydrogel sponges for improvement of efficiency, reusability and thermal stability of a recombinant xylanase. Chem. Eng. J. 375, 122022. doi: 10.1016/j.cej.2019.122022
|
Ariaeenejad, S., Motamedi, E., Hosseini Salekdeh, G., 2021. Immobilization of enzyme cocktails on dopamine functionalized magnetic cellulose nanocrystals to enhance sugar bioconversion: A biomass reusing loop. Carbohydr. Polym. 256, 117511. doi: 10.1016/j.carbpol.2020.117511
|
Balakrishnan, A., Jacob, M.M., Chinthala, M., Dayanandan, N., Ponnuswamy, M., Vo, D.N., 2024. Photocatalytic sponges for wastewater treatment, carbon dioxide reduction, and hydrogen production: A review. Environ. Chem. Lett. 22, 635–656. doi: 10.1007/s10311-024-01696-5
|
Banjanac, K., Carević, M., Ćorović, M., Milivojević, A., Prlainović, N., Marinković, A., Bezbradica, D., 2016. Novel β-galactosidase nanobiocatalyst systems for application in the synthesis of bioactive galactosides. RSC Adv. 6, 97216–97225. doi: 10.1039/C6RA20409K
|
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. doi: 10.1016/0003-2697(76)90527-3
|
Chen, C.J., Kuang, Y.D., Zhu, S.Z., Burgert, I., Keplinger, T., Gong, A., Li, T., Berglund, L., Eichhorn, S.J., Hu, L.B., 2020. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666. doi: 10.1038/s41578-020-0195-z
|
Chen, Z.Y., Xie, Z.Y., Jiang, H., 2023. Extraction of the cellulose nanocrystals via ammonium persulfate oxidation of beaten cellulose fibers. Carbohydr. Polym. 318, 121129. doi: 10.1016/j.carbpol.2023.121129
|
Devireddy, S.B.R., Biswas, S., 2016. Physical and thermal properties of unidirectional banana–jute hybrid fiber-reinforced epoxy composites. J. Reinf. Plast. Compos. 35, 1157–1172. doi: 10.1177/0731684416642877
|
Dong, Y.S., Liu, L.P., Bao, Y.M., Hao, A.Y., Qin, Y., Wen, Z.J., Xiu, Z.L., 2014. Biotransformation of geniposide in Gardenia jasminoides to genipin by Trichoderma harzianum CGMCC 2979. Chin. J. Catal. 35, 1534–1546. doi: 10.1016/S1872-2067(14)60134-0
|
Du, Y.C., Feng, G.F., 2023. When nanocellulose meets hydrogels: The exciting story of nanocellulose hydrogels taking flight. Green Chem 25, 8349–8384. doi: 10.1039/d3gc01829f
|
Gennari, A., Führ, A.J., Volpato, G., Volken de Souza, C.F., 2020. Magnetic cellulose: Versatile support for enzyme immobilization—A review. Carbohydr. Polym. 246, 116646. doi: 10.1016/j.carbpol.2020.116646
|
Gkantzou, E., Chatzikonstantinou, A.V., Fotiadou, R., Giannakopoulou, A., Patila, M., Stamatis, H., 2021. Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations. Biotechnol. Adv. 51, 107738. doi: 10.1016/j.biotechadv.2021.107738
|
Guo, K.N., Zhang, C., Xu, L.H., Sun, S.C., Wen, J.L., Yuan, T.Q., 2022. Efficient fractionation of bamboo residue by autohydrolysis and deep eutectic solvents pretreatment. Bioresour. Technol. 354, 127225. doi: 10.1016/j.biortech.2022.127225
|
Hosseini, S.H., Hosseini, S.A., Zohreh, N., Yaghoubi, M., Pourjavadi, A., 2018. Covalent immobilization of cellulase using magnetic poly(ionic liquid) support: improvement of the enzyme activity and stability. J. Agric. Food Chem. 66, 789–798. doi: 10.1021/acs.jafc.7b03922
|
Hou, G.Y., Chitbanyong, K., Shibata, I., Takeuchi, M., Isogai, A., 2024a. Structural analyses of supernatant fractions in TEMPO-oxidized pulp/water reaction mixtures separated by centrifugation and dialysis. Carbohydr. Polym. 336, 122103. doi: 10.1016/j.carbpol.2024.122103
|
Hou, H.Q., Xu, F.R., Ding, X.X., Zheng, L., Shi, J., 2024b. Magnetic biocatalytic nanoreactors based on graphene oxide with graded reduction degrees for the enzymatic synthesis of phytosterol esters. Carbon N Y 226, 119170. doi: 10.1016/j.carbon.2024.119170
|
Jatti, K., Vaishnav, P., Titiksh, A., 2016. Evaluating the performance of hybrid fiber reinforced concrete dosed with polyvinyl alcohol. Int. J. Trend Res. Developm. 3, 354–357.
|
Je, H.H., Noh, S., Hong, S.G., Ju, Y., Kim, J., Hwang, D.S., 2017. Cellulose nanofibers for magnetically-separable and highly loaded enzyme immobilization. Chem. Eng. J. 323, 425–433. doi: 10.1016/j.cej.2017.04.110
|
Jiang, H., Wu, Y., Han, B.B., Zhang, Y., 2017. Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate. Carbohydr. Polym. 174, 291–298. doi: 10.1016/j.carbpol.2017.06.080
|
Jiang, Q.S., Li, Y.J., Wang, M.M., Cao, W., Yang, X.Y., Zhang, S.H., Guo, L.J., 2024. In-situ honeycomb spheres for enhanced enzyme immobilization and stability. Chem. Eng. J. 495, 153583. doi: 10.1016/j.cej.2024.153583
|
Khanjanzadeh, H., Park, B.D., 2021. Optimum oxidation for direct and efficient extraction of carboxylated cellulose nanocrystals from recycled MDF fibers by ammonium persulfate. Carbohydr. Polym. 251, 117029. doi: 10.1016/j.carbpol.2020.117029
|
Li, L.L., Guo, Y.P., Zhao, L.F., Zu, Y.G., Gu, H.Y., Yang, L., 2015. Enzymatic hydrolysis and simultaneous extraction for preparation of genipin from bark of Eucommia ulmoides after ultrasound, microwave pretreatment. Molecules 20, 18717–18731. doi: 10.3390/molecules201018717
|
Li, L., Zhou, L., Song, G.S., Wang, D.L., Xiao, G.N., Zheng, F.P., Gong, J.Y., 2023. High efficiency biosynthesis of Gardenia blue and red pigment by lactic acid bacteria: A great potential for natural color pigments. Food Chem 417, 135868. doi: 10.1016/j.foodchem.2023.135868
|
Li, Z.H., Chen, C.J., Xie, H., Yao, Y., Zhang, X., Brozena, A., Li, J.G., Ding, Y., Zhao, X.P., Hong, M., Qiao, H.Y., Smith, L.M., Pan, X.J., Briber, R., Shi, S.Q., Hu, L.B., 2021. Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 5, 235–244. doi: 10.1038/s41893-021-00831-2
|
Li, Q.H., Yu, D.D., Peng, J., Zhang, W., Huang, J.L., Liang, Z.X., Wang, J.L., Lin, Z.Y., Xiong, S.Y., Wang, J.Z., Huang, S.M., 2024. Efficient polytelluride anchoring for ultralong-life potassium storage: Combined physical barrier and chemisorption in nanogrid-in-nanofiber. Nano-Micro Lett 16, 77. doi: 10.1007/s40820-023-01318-9
|
Lin, K., Xia, A., Huang, Y., Zhu, X.Q., Cai, K.Y., Wei, Z.D., Liao, Q., 2022. Efficient production of sugar via continuous enzymatic hydrolysis in a microreactor loaded with cellulase. Chem. Eng. J. 445, 136633. doi: 10.1016/j.cej.2022.136633
|
Lin, K., Xia, A., Huang, Y., Zhu, X.Q., Zhu, X., Cai, K.Y., Wei, Z.D., Liao, Q., 2023. How can vanillin improve the performance of lignocellulosic biomass conversion in an immobilized laccase microreactor system? Bioresour. Technol. 374, 128775. doi: 10.1016/j.biortech.2023.128775
|
Liu, J.J., Zhang, J.M., Zhang, B.Q., Zhang, X.Y., Xu, L.L., Zhang, J., He, J.S., Liu, C.Y., 2016. Determination of intrinsic viscosity-molecular weight relationship for cellulose in BmimAc/DMSO solutions. Cellulose 23, 2341–2348. doi: 10.1007/s10570-016-0967-1
|
Liu, Q., Li, Y., Xing, S., Wang, L., Yang, X.D., Hao, F., Liu, M.X., 2022. Genipin-crosslinked amphiphilic chitosan films for the preservation of strawberry. Int. J. Biol. Macromol. 213, 804–813. doi: 10.1016/j.ijbiomac.2022.06.037
|
Liu, K.M., Song, W.L., Cui, C.J., Jiao, R.J., Yu, X., Wang, J., Li, K., Qian, W.Z., 2023. Process simulation of diesel into aromatics and carbon nanotubes: A techno and economic analyses. ACS Omega 8, 17941–17947. doi: 10.1021/acsomega.3c01135
|
Luzi, F., Puglia, D., Sarasini, F., Tirillò, J., Maffei, G., Zuorro, A., Lavecchia, R., Kenny, J.M., Torre, L., 2019. Valorization and extraction of cellulose nanocrystals from North African grass: Ampelodesmos mauritanicus (Diss). Carbohydr. Polym. 209, 328–337. doi: 10.1016/j.carbpol.2019.01.048
|
Lv, J.J., Wang, Y.F., Zhang, C.Y., You, S.P., Qi, W., Su, R.X., He, Z.M., 2019. Highly efficient production of FAMEs and β-farnesene from a two-stage biotransformation of waste cooking oils. Energy Convers. Manag. 199, 112001. doi: 10.1016/j.enconman.2019.112001
|
Mai, X.M., Mai, J.P., Liu, H.J., Liu, Z.J., Wang, R.J., Wang, N., Li, X., Zhong, J., Deng, Q.J., Zhang, H.Q., 2022. Advanced bamboo composite materials with high-efficiency and long-term anti-microbial fouling performance. Adv. Compos. Hybrid Mater. 5, 864–871. doi: 10.1007/s42114-021-00380-4
|
Meng, S.X., Xue, L.H., Xie, C.Y., Bai, R.X., Yang, X., Qiu, Z.P., Guo, T., Wang, Y.L., Meng, T., 2018. Enhanced enzymatic reaction by aqueous two-phase systems using parallel-laminar flow in a double Y-branched microfluidic device. Chem. Eng. J. 335, 392–400. doi: 10.1016/j.cej.2017.10.085
|
Misnon, M.I., Islam, M.M., Epaarachchi, J.A., Lau, K.T., 2014. Potentiality of utilising natural textile materials for engineering composites applications. Mater. Des. 59, 359–368. doi: 10.1016/j.matdes.2014.03.022
|
Norkrans, B., 1957. Studies of β-glucoside- and cellulose splitting enzymes from Polyporus annosus Fr. Physiol. Plant. 10, 198–214. doi: 10.1111/j.1399-3054.1957.tb07621.x
|
Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K., 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 10. doi: 10.1186/1754-6834-3-10
|
Popescu, C.M., Singurel, G., Popescu, M.C., Vasile, C., Argyropoulos, D.S., Willför, S., 2009. Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr. Polym. 77, 851–857. doi: 10.1016/j.carbpol.2009.03.011
|
Prabhakar, T., Giaretta, J., Zulli, R., Rath, R.J., Farajikhah, S., Talebian, S., Dehghani, F., 2025. Covalent immobilization: A review from an enzyme perspective. Chem. Eng. J. 503, 158054. doi: 10.1016/j.cej.2024.158054
|
Prakash, C., Ramakrishnan, G., 2014. Study of thermal properties of bamboo/cotton blended single jersey knitted fabrics. Arab. J. Sci. Eng. 39, 2289–2294. doi: 10.1007/s13369-013-0758-z
|
Saito, T., Kimura, S., Nishiyama, Y., Isogai, A., 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8, 2485–2491. doi: 10.1021/bm0703970
|
Sathishkumar, P., Kamala-Kannan, S., Cho, M., Kim, J.S., Hadibarata, T., Salim, M.R., Oh, B.T., 2014. Laccase immobilization on cellulose nanofiber: The catalytic efficiency and recyclic application for simulated dye effluent treatment. J. Mol. Catal. B Enzym. 100, 111–120. doi: 10.1016/j.molcatb.2013.12.008
|
Sehaqui, H., Gálvez, M.E., Becatinni, V., Ng, Y., Steinfeld, A., Zimmermann, T., Tingaut, P., 2015. Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams. Environ. Sci. Technol. 49, 3167–3174. doi: 10.1021/es504396v
|
Sirviö, J.A., Ukkola, J., Liimatainen, H., 2019. Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers. Cellulose 26, 2303–2316. doi: 10.1007/s10570-019-02257-8
|
Thakur, V.K., Thakur, M.K., Gupta, R.K., 2014. Review: Raw natural fiber-based polymer composites. Int. J. Polym. Anal. Charact. 19, 256–271. doi: 10.1080/1023666X.2014.880016
|
Tripathi, M., Sharma, M., Bala, S., Connell, J., Newbold, J.R., Rees, R.M., Aminabhavi, T.M., Thakur, V.K., Gupta, V.K., 2023. Conversion technologies for valorization of hemp lignocellulosic biomass for potential biorefinery applications. Sep. Purif. Technol. 320, 124018. doi: 10.1016/j.seppur.2023.124018
|
Tušek, A.J., Tišma, M., Bregović, V., Ptičar, A., Kurtanjek, Ž., Zelić, B., 2013. Enhancement of phenolic compounds oxidation using laccase from Trametes versicolor in a microreactor. Biotechnol. Bioprocess Eng. 18, 686–696. doi: 10.1007/s12257-012-0688-8
|
Wang, X.Q., Keplinger, T., Gierlinger, N., Burgert, I., 2014. Plant material features responsible for bamboo’s excellent mechanical performance: A comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels. Ann. Bot. 114, 1627–1635. doi: 10.1093/aob/mcu180
|
Wang, B., Wang, J.M., Hu, Z.H., Zhu, A.L., Shen, X.J., Cao, X.F., Wen, J.L., Yuan, T.Q., 2024. Harnessing renewable lignocellulosic potential for sustainable wastewater purification. Research 7, 347. doi: 10.34133/research.0347
|
Xu, M.M., Sun, Q., Su, J., Wang, J.F., Xu, C., Zhang, T., Sun, Q.L., 2008. Microbial transformation of geniposide in Gardenia jasminoides Ellis into genipin by Penicillium nigricans. Enzyme Microb. Technol. 42, 440–444. doi: 10.1016/j.enzmictec.2008.01.003
|
Xu, H.Y., Sanchez-Salvador, J.L., Blanco, A., Balea, A., Negro, C., 2023. Recycling of TEMPO-mediated oxidation medium and its effect on nanocellulose properties. Carbohydr. Polym. 319, 121168. doi: 10.1016/j.carbpol.2023.121168
|
Xu, R., Chen, J.W., Yan, N.N., Xu, B.Q., Lou, Z.C., Xu, L., 2025. High-value utilization of agricultural residues based on component characteristics: Potentiality and challenges. J. Bioresour. Bioprod. doi: 10.1016/j.jobab.2025.01.002.
|
Yan, L.B., Chouw, N., Jayaraman, K., 2014. Flax fibre and its composites: A review. Compos. Part B Eng. 56, 296–317. doi: 10.1016/j.compositesb.2013.08.014
|
Yang, Y.S., Zhang, T., Yu, S.C., Ding, Y., Zhang, L.Y., Qiu, C., Jin, D., 2011. Transformation of geniposide into genipin by immobilized β-glucosidase in a two-phase aqueous-organic system. Molecules 16, 4295–4304. doi: 10.3390/molecules16054295
|
Yang, H., Chen, D.Z., van de Ven, T.G.M., 2015. Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose 22, 1743–1752. doi: 10.1007/s10570-015-0584-4
|
Zeng, Q.H., Li, H.R., Zhu, Y.Y., Zhou, J.J., Zhu, J.J., Xu, Y., 2024. Efficient co-production of glucose and carboxylated cellulose nanocrystals from cellulose-rich biomass waste residues via low enzymatic pre-hydrolysis and persulfate oxidation. Ind. Crops Prod. 220, 119279. doi: 10.1016/j.indcrop.2024.119279
|
Zhan, B.X., Zhang, L., Deng, Y.Q., Fan, M.H., Yan, L.F., 2024. Sustainable adhesives for ultra-composites from biomass powder. Chem. Eng. J. 485, 149984. doi: 10.1016/j.cej.2024.149984
|
Zhang, K.T., Sun, P.P., Liu, H., Shang, S.B., Song, J., Wang, D., 2016. Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydr. Polym. 138, 237–243. doi: 10.1016/j.carbpol.2015.11.038
|
Zhang, W.B., Fei, B.H., Polle, A., Euring, D., Tian, G.L., Yue, X.H., Chang, Y.T., Jiang, Z.H., Hu, T., 2019. Crystal and thermal response of cellulose isolation from bamboo by two different chemical treatments. Bioresources 14, 3471–3480. doi: 10.15376/biores.14.2.3471-3480
|
Zhang, D.Y., Wan, Y., Yao, X.H., Chen, C., Ju, Y.X., Shuang, F.F., Fu, Y.J., Chen, T., Zhao, W.G., Liu, L., Li, L., 2020. Fabrication of three-dimensional porous cellulose microsphere bioreactor for biotransformation of polydatin to resveratrol from Polygonum cuspidatum Siebold & Zucc. Ind. Crops Prod. 144, 112029. doi: 10.1016/j.indcrop.2019.112029
|
Zhang, S.D., Lin, Q.Q., Wang, X.Y., Yu, Y.L., Yu, W.J., Huang, Y.X., 2022. Bamboo cellulose fibers prepared by different drying methods: Structure-property relationships. Carbohydr. Polym. 296, 119926. doi: 10.1016/j.carbpol.2022.119926
|
Zheng, D., Zheng, Y.L., Tan, J.J., Zhang, Z.J., Huang, H., Chen, Y., 2024. Co-immobilization of whole cells and enzymes by covalent organic framework for biocatalysis process intensification. Nat. Commun. 15, 5510. doi: 10.1038/s41467-024-49831-8
|
Zhang, Q.Y., Yan, R.J., Xiong, Y.Y., Lei, H., Du, G.B., Pizzi, A., Puangsin, B., Xi, X.D., 2025. Preparation and characterization of polymeric cellulose wood adhesive with excellent bonding properties and water resistance. Carbohydr. Polym. 347, 122705. doi: 10.1016/j.carbpol.2024.122705
|