Volume 10 Issue 2
May  2025
Turn off MathJax
Article Contents
Shuwei Tang, Lansheng Wei, Zhengguo Wu, Jiayao Weng, Jiwen Luo, Xiaoying Wang. Robust MXene aerogel assisted by cellulose nanofiber for efficient crude oil spill remediation[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 209-223. doi: 10.1016/j.jobab.2025.03.005
Citation: Shuwei Tang, Lansheng Wei, Zhengguo Wu, Jiayao Weng, Jiwen Luo, Xiaoying Wang. Robust MXene aerogel assisted by cellulose nanofiber for efficient crude oil spill remediation[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 209-223. doi: 10.1016/j.jobab.2025.03.005

Robust MXene aerogel assisted by cellulose nanofiber for efficient crude oil spill remediation

doi: 10.1016/j.jobab.2025.03.005
Funds:

This work was financially supported by the National Natural Science Foundation of China (No. 22371081 and No 22078119), the Guangzhou Science and Technology Program Project (No. 2023B03J1332), and the Shandong Provincial Natural Science Foundation (No. ZR2024QB197).

  • Available Online: 2025-05-09
  • Publish Date: 2025-03-28
  • Efficient cleanup of crude oil continues to be a global challenge owing to its inherent high viscosity, which makes it difficult to remove with conventional porous adsorbents. Here, a novel multifunctional aerogel was fabricated through directional freeze-drying, leveraging its photothermal properties and directional structure for the rapid cleanup of crude oil. The aerogel incorporates 2,2,6,6-tetramethyl-1-piperidinyloxy oxidized nanocellulose to enhance Ti3C2T (MXene) to construct functional networks, MXene/gold nanoparticles (MX/AuNPs) as photothermal absorbers, and methyltrimethoxysilane for hydrophobic coatings. After 30 compression-release cycles at 90% strain, the strain retention of the aerogel is 85.7%, indicating its mechanical super-elasticity. The as-prepared aerogel showed durable hydrophobicity (145°), high oil/organic solvent absorption capacity (45.7-85.6 g/g), and efficient photothermal conversion, rapidly attaining and sustaining 76 °C. Interestingly, for viscous crude oil that cannot be absorbed for a long time, the aerogel completed the absorption within 10 s after illumination, demonstrating an improved absorption ability of viscous crude oil. Furthermore, the obtained aerogel successfully achieved controlled and rapid light-driven motion, as well as long-lasting photothermal sterilization performance. This work presents a feasible strategy for developing multifunctional composite aerogels, addressing the increasing demands in crude oil separation applications.

     

  • loading
  • [1]
    Cai, C.Y., Wei, Z.C., Huang, Y.Z., Fu, Y., 2021. Wood-inspired superelastic MXene aerogels with superior photothermal conversion and durable superhydrophobicity for clean-up of super-viscous crude oil. Chem. Eng. J. 421, 127772.
    [2]
    Cao, W.T., Feng, W., Jiang, Y.Y., Ma, C., Zhou, Z.F., Ma, M.G., Chen, Y., Chen, F., 2019. Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects. Mater. Horiz. 6, 1057-1065.
    [3]
    Chaudhuri, K., Alhabeb, M., Wang, Z.X., Shalaev, V.M., Gogotsi, Y., Boltasseva, A., 2018. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics 5, 1115-1122.
    [4]
    Cheng, Q.F., Huang, C.J., Tomsia, A.P., 2017. Freeze casting for assembling bioinspired structural materials. Adv. Mater. 29, 1703155.
    [5]
    Ding, M.C., Lu, H., Sun, Y.B., He, Y.J., Yu, J.H., Kong, H.J., Shao, C.X., Liu, C.Y., Li, C.W., 2022. Superelastic 3D assembled clay/graphene aerogels for continuous solar desalination and oil/organic solvent absorption. Adv. Sci. 9, e2205202.
    [6]
    Fan, X.Q., Liu, L., Jin, X., Wang, W.T., Zhang, S.F., Tang, B.T., 2019. MXene Ti3C2Tx for phase change composite with superior photothermal storage capability. J. Mater. Chem. A 7, 14319-14327.
    [7]
    Ge, J., Shi, L., Wang, Y.C., Zhao, H.Y., Yao, H.B., Zhu, Y.B., Zhang, Y., Zhu, H.W., Wu, H.G., Yu, S.H., 2017. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotechnol. 12, 434-440.
    [8]
    Gong, X.Y., Wang, Y.X., Zeng, H.B., Betti, M., Chen, L.Y., 2019. Highly porous, hydrophobic, and compressible cellulose nanocrystals/poly(vinyl alcohol) aerogels as recyclable absorbents for oil-water separation. ACS Sustain. Chem. Eng. 7, 11118-11128.
    [9]
    Guan, Y.H., Wang, Z.N., Bao, M.T., Chen, X.P., Dong, L.M., Shen, Y., Li, Y.M., 2023. Multi-energies assisted and all-weather recovery of crude oil by superhydrophobic melamine sponge. J. Hazard. Mater. 443, 130131.
    [10]
    Ji, C., Wang, Y., Ye, Z.Q., Tan, L.Y., Mao, D.S., Zhao, W.G., Zeng, X.L., Yan, C.Z., Sun, R., Kang, D.J., Xu, J.B., Wong, C.P., 2020. Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials. ACS Appl. Mater. Interfaces 12, 24298-24307.
    [11]
    Kang, Y.L., Zhang, J., Wu, G., Zhang, M.X., Chen, S.C., Wang, Y.Z., 2018. Full-biobased nanofiber membranes toward decontamination of wastewater containing multiple pollutants. ACS Sustain. Chem. Eng. 6, 11783-11792.
    [12]
    Li, H., Du, Z.Q., 2019. Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocomposite-based yarn and wearable applications. ACS Appl. Mater. Interfaces 11, 45930-45938.
    [13]
    Li, R.Y., Zhang, L.B., Shi, L., Wang, P., 2017. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano. 11, 3752-3759.
    [14]
    Li, K.R., Chang, T.H., Li, Z.P., Yang, H.T., Fu, F.F., Li, T.T., Ho, J.S., Chen, P.Y., 2019. Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 9, 1901687.
    [15]
    Li, S.S., Gu, B., Li, X.Y., Tang, S.W., Zheng, L., Ruiz-Hitzky, E., Sun, Z.Y., Xu, C.L., Wang, X.Y., 2022. MXene-enhanced chitin composite sponges with antibacterial and hemostatic activity for wound healing. Adv. Healthc. Mater. 11, 2102367.
    [16]
    Ma, X.Z., Zhang, C., Gnanasekar, P., Xiao, P., Luo, Q., Li, S.Q., Qin, D.D., Chen, T., Chen, J., Zhu, J., Yan, N., 2021. Mechanically robust, solar-driven, and degradable lignin-based polyurethane adsorbent for efficient crude oil spill remediation. Chem. Eng. J. 415, 128956.
    [17]
    Navarathna, C.M., Dewage, N.B., Keeton, C., Pennisson, J., Henderson, R., Lashley, B., Zhang, X.F., Hassan, E.B., Perez, F., Mohan, D., Pittman, C.U., Mlsna, T., 2020. Biochar adsorbents with enhanced hydrophobicity for oil spill removal. ACS Appl. Mater. Interfaces 12, 9248-9260.
    [18]
    Qin, L.Y., Yang, D.Z., Zhang, M., Zhao, T.Y., Luo, Z., Yu, Z.Z., 2021. Superelastic and ultralight electrospun carbon nanofiber/MXene hybrid aerogels with anisotropic microchannels for pressure sensing and energy storage. J. Colloid Interface Sci. 589, 264-274.
    [19]
    Song, X., Huang, X.W., Luo, J.C., Long, B., Zhang, W.M., Wang, L., Gao, J.F., Xue, H.G., 2021. Flexible, superhydrophobic and multifunctional carbon nanofiber hybrid membranes for high performance light driven actuators. Nanoscale 13, 12017-12027.
    [20]
    Tang, S.W., Wu, Z.G., Feng, G.X., Wei, L.S., Weng, J.Y., Ruiz-Hitzky, E., Wang, X.Y., 2023a. Multifunctional sandwich-like composite film based on superhydrophobic MXene for self-cleaning, photodynamic and antimicrobial applications. Chem. Eng. J. 454, 140457.
    [21]
    Tang, S.W., Wu, Z.G., Li, X.Y., Xie, F.W., Ye, D.D., Ruiz-Hitzky, E., Wei, L.S., Wang, X.Y., 2023b Nacre-inspired biodegradable nanocellulose/MXene/AgNPs films with high strength and superior gas barrier properties. Carbohydr. Polym. 299, 120204.
    [22]
    Wang, N.N., Wang, H., Wang, Y.Y., Wei, Y.H., Si, J.Y., Yuen, A.C.Y., Xie, J.S., Yu, B., Zhu, S.E., Lu, H.D., Yang, W., Chan, Q.N., Yeoh, G.H., 2019. Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl. Mater. Interfaces 11, 40512-40523.
    [23]
    Wang, P.L., Ma, C., Yuan, Q., Mai, T., Ma, M.G., 2022. Novel Ti3C2Tx MXene wrapped wood sponges for fast cleanup of crude oil spills by outstanding Joule heating and photothermal effect. J. Colloid Interface Sci. 606, 971-982.
    [24]
    Wang, X.J., Wang, C., Cheng, L., Lee, S.T., Liu, Z., 2012. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced raman scattering imaging and photothermal therapy. J. Am. Chem. Soc. 134, 7414-7422.
    [25]
    Wang, Y.Q., Xie, W.H., Liu, H., Gu, H.B., 2020. Hyperelastic magnetic reduced graphene oxide three-dimensional framework with superb oil and organic solvent adsorption capability. Adv. Compos. Hybrid Mater. 3, 473-484.
    [26]
    Wang, Z.X., Han, X.S., Han, X.W., Chen, Z.B., Wang, S.J., Pu, J.W., 2021. MXene/wood-derived hierarchical cellulose scaffold composite with superior electromagnetic shielding. Carbohydr. Polym. 254, 117033.
    [27]
    Wang, T., Wang, W., Hu, C.Y., Zheng, J., Zhu, Z.J., Liu, B.J., 2024a. Design of carboxymethyl cellulose/alginate aerogels with anti-fouling and light-driven self-cleaning for enhanced oily wastewater remediation. Carbohydr. Polym. 342, 122358.
    [28]
    Wang, T., Wang, W., Wang, J.J., Hu, C.Y., Zheng, J., Zhu, Z.J., Liu, B.J., 2024b Development of biomass aerogels with aligned channels: for continuous treatment of oily wastewater and solar-powered oil evaporation. Bioresour. Technol. 412, 131344.
    [29]
    Wang, T., Wang, W., Hu, C.Y., Zheng, J., Liu, B.J., Zhu, Z.J., 2024c. Mechanically durable, recyclable polyvinyl alcohol/lignin-based aerogel for efficient oil/water separation and solar-powered removal of high-viscosity oil. Ind. Crops Prod. 219, 119131.
    [30]
    Wei, Y.H., Li, J.J., Sun, F.R., Wu, J.R., Zhao, L.J., 2018. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents. Green Chem. 20, 1858-1865.
    [31]
    Wu, N., Yang, Y.F., Wang, C.X., Wu, Q.L., Pan, F., Zhang, R.N., Liu, J.R., Zeng, Z.H., 2023. Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 35, e2207969.
    [32]
    Yi, L.F., Yang, J.Y., Fang, X., Xia, Y., Zhao, L.J., Wu, H., Guo, S.Y., 2020. Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from water. J. Hazard. Mater. 385, 121507.
    [33]
    Yun, T., Kim, H., Iqbal, A., Cho, Y.S., Lee, G.S., Kim, M.K., Kim, S.J., Kim, D., Gogotsi, Y., Kim, S.O., Koo, C.M., 2020. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, 1906769.
    [34]
    Zhang, Y.L., Mu, Z.J., Lai, J.P., Chao, Y.G., Yang, Y., Zhou, P., Li, Y.J., Yang, W.X., Xia, Z.H., Guo, S.J., 2019. MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano. 13, 2167-2175.
    [35]
    Zhang, J., Huang, D., Wu, G., Chen, S.C., Wang, Y.Z., 2020a. Highly-efficient, rapid and continuous separation of surfactant-stabilized oil/Water emulsions by selective under-liquid adhering emulsified droplets. J. Hazard. Mater. 400, 123132.
    [36]
    Zhang, S.C., Liu, H., Tang, N., Zhou, S., Yu, J.Y., Ding, B., 2020b Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks. Adv. Mater. 32, e2002361.
    [37]
    Zhang, J.Y., Cheng, Y.H., Xu, C.J., Gao, M.Y., Zhu, M.F., Jiang, L., 2021. Hierarchical interface engineering for advanced nanocellulosic hybrid aerogels with high compressibility and multifunctionality. Adv. Funct. Mater. 31, 2009349.
    [38]
    Zhao, X., Peng, L.M., Tang, C.Y., Pu, J.H., Zha, X.J., Ke, K., Bao, R.Y., Yang, M.B., Yang, W., 2020a. All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels. Mater. Horiz. 7, 855-865.
    [39]
    Zhao, X., Wang, L.Y., Tang, C.Y., Zha, X.J., Liu, Y., Su, B.H., Ke, K., Bao, R.Y., Yang, M.B., Yang, W., 2020b Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano. 14, 8793-8805.
    [40]
    Zhou, Z.H., Song, Q.C., Huang, B.X., Feng, S.Y., Lu, C.H., 2021. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano. 15, 12405-12417.
    [41]
    Zhou, G.Q., Li, M.C., Liu, C.Z., Wu, Q.L., Mei, C.T., 2022a. 3D printed Ti3C2Tx MXene/cellulose nanofiber architectures for solid-state supercapacitors: Ink rheology, 3D printability, and electrochemical performance. Adv. Funct. Mater. 32, 2109593.
    [42]
    Zhou, J., Li, X.L., Hou, T., Zhang, X.G., Yang, B., 2022b Biodegradable, biomimetic, and nanonet-engineered membranes enable high-flux and highly-efficient oil/water separation. J. Hazard. Mater. 434, 128858.
    [43]
    Zhu, M., Yan, X.X., Xu, H.L., Xu, Y.J., Kong, L., 2021. Highly conductive and flexible bilayered MXene/cellulose paper sheet for efficient electromagnetic interference shielding applications. Ceram. Int. 47, 17234-17244.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (15) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return