Volume 10 Issue 2
May  2025
Turn off MathJax
Article Contents
Haiyu Liu, Fang He, Zhixiang Xu, Meng Zhang, Quan Wan, Yajun Shuai, Jie Wang, Mingying Yang, Zongpu Xu. Achieving significant mechanical improvement of chitosan aerogel with embedding or bridging structures mediated by size-dependent silk microfibers[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 187-198. doi: 10.1016/j.jobab.2025.03.006
Citation: Haiyu Liu, Fang He, Zhixiang Xu, Meng Zhang, Quan Wan, Yajun Shuai, Jie Wang, Mingying Yang, Zongpu Xu. Achieving significant mechanical improvement of chitosan aerogel with embedding or bridging structures mediated by size-dependent silk microfibers[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 187-198. doi: 10.1016/j.jobab.2025.03.006

Achieving significant mechanical improvement of chitosan aerogel with embedding or bridging structures mediated by size-dependent silk microfibers

doi: 10.1016/j.jobab.2025.03.006
Funds:

This work was supported by National Natural Science Foundation of China (No. 52103149), State of Sericulture Industry Technology System (No. CARS-18-ZJ0501), Zhejiang Provincial Science and Technology Plans (No. 2021C02072-6), China Postdoctoral Science Foundation (No. 2023M743064), and Zhejiang University Start-up Fund.

  • Available Online: 2025-05-09
  • Publish Date: 2025-03-28
  • Building high-performance aerogels with biomass-derived rather than fossil-derived polymers is an eco-friendlier option given the increasingly serious sustainability issues. Chitosan (CS) aerogels with oriented pore structures exhibit broad application prospects owing to light weight, high porosity, and favorable bioactivity, but the dominating drawback in low mechanical strength greatly hinders their functional advantages. In this study, two types of silk microfibers with similar diameter yet different aspect ratios (1-3 (denoting as SmSF) and 50-100 (denoting as LmSF)) were used as fillers to reinforce CS aerogels prepared by directional freeze casting. The distinction of SmSF and LmSF in size led to their notable variations in distribution pattern, as SmSF embedded within the individual CS lamellae while LmSF traversed throughout the adjacent CS lamellae, which in consequence significantly influence their mechanical reinforcing efficiency. The compressive strength values could be improved from 61.67 kPa (pure CS aerogel) to 82.13 kPa (SmSF/CS aerogel) and 165.03 kPa (LmSF/CS aerogel), respectively, attributing to the transition in deformation mechanisms from a bending- to crumpling-dominated mode. In addition, the embedding or bridging structure could also change the liquid transportation property of CS aerogels. The results of this study demonstrated the feasibility of applying filler-size-mediated strategy for material structural optimization.

     

  • loading
  • [1]
    An, Q., Ren, J.N., Jia, X., Qu, S.S., Zhang, N.W., Li, X., Fan, G., Pan, S.Y., Zhang, Z.F., Wu, K.N., 2024. Anisotropic materials based on carbohydrate polymers: A review of fabrication strategies, properties, and applications. Carbohydr. Polym. 330, 121801.
    [2]
    Bojedla, S.S.R., Chameettachal, S., Yeleswarapu, S., Nikzad, M., Masood, S.H., Pati, F., 2022. Silk fibroin microfiber-reinforced polycaprolactone composites with enhanced biodegradation and biological characteristics. J. Biomed. Mater. Res. A 110, 1386-1400.
    [3]
    Chaudary, A., Patoary, M.K., Zhang, M.L., Chudhary, T., Farooq, A., Liu, L.F., 2022. Structurally integrated thermal management of isotropic and directionally ice-templated nanocellulose/chitosan aerogels. Cellulose 29, 8265-8282.
    [4]
    Chen, J.J., Li, H., Ma, L.L., Jiang, G.X., Li, D., Wu, Y., Shi, X.W., Li, D., Wang, X., Deng, H.B., 2021. Chitosan-based recyclable composite aerogels for the photocatalytic degradation of rhodamine B. Carbohydr. Polym. 273, 118559.
    [5]
    Cheng, P., Liu, K., Wan, Y.C., Hu, W., Ji, C.C., Huang, P., Guo, Q.H., Xu, J., Cheng, Q., Wang, D., 2022. Solution viscosity-mediated structural control of nanofibrous sponge for RNA separation and purification. Adv. Funct. Mater. 32, 2112023.
    [6]
    Cheng, P., Wang, K., Peng, Y., Ahzi, S., 2024. Effects of cellular crossing paths on mechanical properties of 3D printed continuous fiber reinforced biocomposite honeycomb structures. Compos. Part A Appl. Sci. Manuf. 178, 107972.
    [7]
    Cywar, R.M., Rorrer, N.A., Hoyt, C.B., Beckham, G.T., Chen, E.Y.X., 2021. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater. 7, 83-103.
    [8]
    Deng, S.Y., Huang, Y.G., Hu, E.L., Ning, L.J., Xie, R.Q., Yu, K., Lu, F., Lan, G.Q., Lu, B.T., 2023. Chitosan/silk fibroin nanofibers-based hierarchical sponges accelerate infected diabetic wound healing via a HClO self-producing cascade catalytic reaction. Carbohydr. Polym. 321, 121340.
    [9]
    Finlay, K.A., Gawryla, M.D., Schiraldi, D.A., 2015. Effects of fiber reinforcement on clay aerogel composites. Materials (Basel) 8, 5440-5451.
    [10]
    Gao, W.W., Wang, M.N., Bai, H., 2020. A review of multifunctional nacre-mimetic materials based on bidirectional freeze casting. J. Mech. Behav. Biomed. Mater. 109, 103820.
    [11]
    Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782.
    [12]
    Gu, Z.P., Xie, H.X., Huang, C.C., Li, L., Yu, X.X., 2013. Preparation of chitosan/silk fibroin blending membrane fixed with alginate dialdehyde for wound dressing. Int. J. Biol. Macromol. 58, 121-126.
    [13]
    Hu, Y.J., Zhuo, H., Luo, Q.S., Wu, Y.X., Wen, R., Chen, Z.H., Liu, L.X., Zhong, L.X., Peng, X.W., Sun, R.C., 2019. Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity and pressure sensitivity. J. Mater. Chem. A 7, 10273-10281.
    [14]
    Jia, X.Z., Kanbaiguli, M., Zhang, B., Huang, Y.Y., Peydayesh, M., Huang, Q., 2024. Anisotropic chitosan-nanocellulose/zeolite imidazolate frameworks-8 aerogel for sustainable dye removal. J. Colloid Interface Sci. 676, 298-309.
    [15]
    Kang, H.J., Lee, Y.J., Lee, J.K., Nurika, I., Suhartini, S., Choe, D., Kim, D.H., Choi, H., Murphy, N.P., Kim, H.Y., Jung, Y.H., 2024. Production of chitosan-based composite film reinforced with lignin-rich lignocellulose nanofibers from rice husk. J. Bioresour. Bioprod. 9, 174-184.
    [16]
    Li, A., Lin, R.J., Lin, C., He, B.Y., Zheng, T.T., Lu, L.B., Cao, Y., 2016. An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion. Carbohydr. Polym. 148, 272-280.
    [17]
    Li, Y.Q., Guo, C.F., Shi, R.H., Zhang, H., Gong, L.Z., Dai, L.B., 2019. Chitosan/nanofibrillated cellulose aerogel with highly oriented microchannel structure for rapid removal of Pb (II) ions from aqueous solution. Carbohydr. Polym. 223, 115048.
    [18]
    Li, D.W., Bu, X.C., Xu, Z.P., Luo, Y.W., Bai, H., 2020. Bioinspired multifunctional cellular plastics with a negative poisson's ratio for high energy dissipation. Adv. Mater. 32, e2001222.
    [19]
    Li, M., Dai, X.G., Gao, W.W., Bai, H., 2022. Ice-templated fabrication of porous materials with bioinspired architecture and functionality. Acc. Mater. Res. 3, 1173-1185.
    [20]
    Liang, S., Wang, X.C., Wei, C., Xie, L., Song, Z.M., Dang, X.G., 2025. Remediation and resource utilization of Cr(Ⅲ), Al(Ⅲ) and Zr(Ⅳ)-containing tannery effluent based on chitosan-carboxymethyl cellulose aerogel. J. Bioresour. Bioprod. 10, 77-91.
    [21]
    Lim, H.W., Lee, H.S., Lee, S.J., 2024. Laminated chitosan/graphene nanoplatelets aerogel for 3D interfacial solar desalination with harnessing wind energy. Chem. Eng. J. 480, 148197.
    [22]
    Lu, Q., Hu, X., Wang, X.Q., Kluge, J.A., Lu, S.Z., Cebe, P., Kaplan, D.L., 2010. Water-insoluble silk films with silk I structure. Acta Biomater. 6, 1380-1387.
    [23]
    Madni, A., Kousar, R., Naeem, N., Wahid, F., 2021. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J. Bioresour. Bioprod. 6, 11-25.
    [24]
    Manna, S., Seth, A., Gupta, P., Nandi, G., Dutta, R., Jana, S., Jana, S., 2023. Chitosan derivatives as carriers for drug delivery and biomedical applications. ACS Biomater. Sci. Eng. 9, 2181-2202.
    [25]
    Mao, A.R., Zhao, N.F., Liang, Y.H., Bai, H., 2021. Mechanically efficient cellular materials inspired by cuttlebone. Adv. Mater. 33, e2007348.
    [26]
    Mei, T., Chen, J.H., Zhao, Q.H., Wang, D., 2020. Nanofibrous aerogels with vertically aligned microchannels for efficient solar steam generation. ACS Appl. Mater. Interfaces 12, 42686-42695.
    [27]
    Mukhtar Ahmed, K.B., Khan, M.M.A., Siddiqui, H., Jahan, A., 2020. Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydr. Polym. 227, 115331.
    [28]
    Radeke, C., Pons, R., Mihajlovic, M., Knudsen, J.R., Butdayev, S., Kempen, P.J., Segeritz, C.P., Andresen, T.L., Pehmøller, C.K., Jensen, T.E., Lind, J.U., 2023. Transparent and cell-guiding cellulose nanofiber 3D printing bioinks. ACS Appl. Mater. Interfaces 15, 2564-2577.
    [29]
    Sanz-Fraile, H., Amoros, S., Mendizabal, I., Galvez-Monton, C., Prat-Vidal, C., Bayes-Genis, A., Navajas, D., Farre, R., Otero, J., 2020. Silk-reinforced collagen hydrogels with raised multiscale stiffness for mesenchymal cells 3D culture. Tissue Eng. Part A 26, 358-370.
    [30]
    Shahzadi, I., Wu, Y., Lin, H., Huang, J., Zhao, Z., Chen, C.J., Shi, X.W., Deng, H.B., 2023. Yeast biomass ornamented macro-hierarchical chitin nanofiber aerogel for enhanced adsorption of cadmium(II) ions. J. Hazard. Mater. 453, 131312.
    [31]
    Shao, J.Z., Liu, J.Q., Zheng, J.H., Carr, C., 2002. X-ray photoelectron spectroscopic study of silk fibroin surface. Polym. Int. 51, 1479-1483.
    [32]
    Shao, G.F., Hanaor, D.A.H., Shen, X.D., Gurlo, A., 2020. Freeze casting: from low-dimensional building blocks to aligned porous structures: A review of novel materials, methods, and applications. Adv. Mater. 32, e1907176.
    [33]
    Shome, A., Moses, J.C., Rather, A.M., Mandal, B.B., Manna, U., 2021. Unconventional and facile fabrication of chemically reactive silk fibroin sponges for environmental remediation. ACS Appl. Mater. Interfaces 13, 24258-24271.
    [34]
    Sivanesan, I., Tasneem, S., Hasan, N., Shin, J., Muthu, M., Gopal, J., Oh, J.W., 2022. Surveying the oral drug delivery avenues of novel chitosan derivatives. Polymers (Basel) 14, 2131.
    [35]
    Tan, L.N., Nguyen, N.C.T., Trinh, A.M.H., Do, N.H.N., Le, K.A., Le, P.K., 2023. Eco-friendly synthesis of durable aerogel composites from chitosan and pineapple leaf-based cellulose for Cr(VI) removal. Sep. Purif. Technol. 304, 122415.
    [36]
    Wang, Y.X., Su, Y.H., Wang, W.L., Fang, Y., Riffat, S.B., Jiang, F.T., 2019. The advances of polysaccharide-based aerogels: Preparation and potential application. Carbohydr. Polym. 226, 115242.
    [37]
    Wang, M.X., Miao, X.R., Hou, C., Xu, K., Ke, Z., Dai, F.N., Liu, M.Y., Li, H., Chen, C.H., 2024. Devisable pore structures and tunable thermal management properties of aerogels composed of carbon nanotubes and cellulose nanofibers with various aspect ratios. Carbohydr. Polym. 323, 121437.
    [38]
    Xiang, Q.X., Zhang, H., Liu, Z.Y., Zhao, Y.P., Tan, H.J., 2024. Engineered structural carbon aerogel based on bacterial cellulose/chitosan and graphene oxide/graphene for multifunctional piezoresistive sensor. Chem. Eng. J. 480, 147825.
    [39]
    Xiao, W.X., Wang, P., Song, X.R., Liao, B., Yan, K.Q., Zhang, J.J., 2021. Facile fabrication of anisotropic chitosan aerogel with hydrophobicity and thermal superinsulation for advanced thermal management. ACS Sustainable Chem. Eng. 9, 9348-9357.
    [40]
    Xu, Z.P., Shi, L.Y., Yang, M.Y., Zhang, H.P., Zhu, L.J., 2015. Fabrication of a novel blended membrane with chitosan and silk microfibers for wound healing: Characterization, in vitro and in vivo studies. J. Mater. Chem. B 3, 3634-3642.
    [41]
    Xu, Z.P., Shi, L.Y., Hu, D.D., Hu, B.H., Yang, M.Y., Zhu, L.J., 2016. Formation of hierarchical bone-like apatites on silk microfiber templates via biomineralization. RSC Adv. 6, 76426-76433.
    [42]
    Xu, W.Z., Xing, Y., Liu, J., Wu, H.P., Cui, Y., Li, D.W., Guo, D.Y., Li, C.R., Liu, A.P., Bai, H., 2019. Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 13, 7930-7938.
    [43]
    Xu, Z.P., Gao, W.W., Bai, H., 2022a. Silk-based bioinspired structural and functional materials. iScience 25, 103940.
    [44]
    Xu, Z.P., Wu, M.R., Ye, Q., Chen, D., Liu, K., Bai, H., 2022b Spinning from nature: Engineered preparation and application of high-performance bio-based fibers. Engineering 14, 100-112.
    [45]
    Xu, Z.P., He, F., Yu, J., Yang, Z.Z., Zhu, Y., Liao, R., Lyu, R.Y., Yang, M., Zhu, L.J., Yang, M.Y., 2024. From common biomass materials to high-performance tissue engineering scaffold: Biomimetic preparation, properties characterization, in vitro and in vivo evaluations. J. Bioresour. Bioprod. 9, 185-196.
    [46]
    Yang, H.W., Wang, P., Yang, Q.L., Wang, D.F., Wang, Y., Kuai, L., Wang, Z.Q., 2023. Superelastic and multifunctional fibroin aerogels from multiscale silk micro-nanofibrils exfoliated via deep eutectic solvent. Int. J. Biol. Macromol. 224, 1412-1422.
    [47]
    Yi, L.F., Yang, J.Y., Fang, X., Xia, Y., Zhao, L.J., Wu, H., Guo, S.Y., 2020. Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from water. J. Hazard. Mater. 385, 121507.
    [48]
    Zhang, M.L., Jiang, S., Han, F.Y., Li, M.M., Wang, N., Liu, L.F., 2021. Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Carbohydr. Polym. 264, 118033.
    [49]
    Zhang, X., Zhao, X.Y., Xue, T.T., Yang, F., Fan, W., Liu, T.X., 2020. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem. Eng. J. 385, 123963.
    [50]
    Zhang, X.Y., Guo, A.R., Ma, X.H., Du, H.Y., Yan, L.W., Hou, F., Liu, J.C., 2023. Cuttlefish-bone-structure-like lamellar porous fiber-based ceramics with enhanced mechanical performances. ACS Appl. Mater. Interfaces 15, 13121-13130.
    [51]
    Zhao, N.F., Li, M., Gong, H.X., Bai, H., 2020. Controlling ice formation on gradient wettability surface for high-performance bioinspired materials. Sci. Adv. 6, eabb4712.
    [52]
    Zhao, Y., Cheng, C.Q., Wang, X.Y., Yuan, Z.C., Sun, B.B., El-Newehy, M., Abdulhameed, M.M., Fang, B., Mo, X.M., 2024. Aspirin-loaded anti-inflammatory ZnO-SiO2 aerogel scaffolds for bone regeneration. ACS Appl. Mater. Interfaces 16, 17092-17108.
    [53]
    Zheng, X.Y., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X., Spadaccini, C.M., 2014. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373-1377.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return