Volume 10 Issue 3
Aug.  2025
Turn off MathJax
Article Contents
Muzamil Jalil Ahmed, Baohu Wu, Antoni Sánchez-Ferrer. Anion exchangers prepared from graft polymerisation of microfibrillated cellulose using the reactive ionic liquid[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 310-324. doi: 10.1016/j.jobab.2025.04.001
Citation: Muzamil Jalil Ahmed, Baohu Wu, Antoni Sánchez-Ferrer. Anion exchangers prepared from graft polymerisation of microfibrillated cellulose using the reactive ionic liquid[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 310-324. doi: 10.1016/j.jobab.2025.04.001

Anion exchangers prepared from graft polymerisation of microfibrillated cellulose using the reactive ionic liquid

doi: 10.1016/j.jobab.2025.04.001
More Information
  • Corresponding author: E-mail address: sanchez@hfm.tum.de (A. Sánchez-Ferrer)
  • Received Date: 2025-01-31
  • Accepted Date: 2025-04-10
  • Rev Recd Date: 2025-03-24
  • Available Online: 2025-04-22
  • Publish Date: 2025-08-01
  • Microfibrillated cellulose (MFC) was functionalised using a reactive ionic liquid monomer, i.e., glycidyltriethylammonium chloride (GTEAC), via chain-growth polymerisation, resulting in a novel cationic polyelectrolyte-grafted quaternised MFC (QMFC). The degree of quaternisation and maximum ion exchange capacity of the resulting QMFC were 2.13 mmol/g (i.e., 132 mg/g) and 1.51 mmol/g (i.e., 94 mg/g), respectively. Small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) experiments confirmed the retention of monoclinic crystalline structure for cellulose I with the corresponding decrease in the degree of crystallinity from 85% to 56% and the increase in the spacing between cellulose crystallites by 35%. The presence of the amorphous and grafted polymers was confirmed by microscopy, thermal analysis, and water sorption experiments. QMFC filter cartridges were prepared and tested under dynamic flow conditions with a pressure of 0.2 MPa (retention time of 0.5 min). These cationic polyelectrolytes enhanced multi-site ion exchange interactions as evidenced by the Freundlich sorption isotherm. The QMFC filter cartridges demonstrated high anion removal efficiency values of 83.2%, 98.1%, and 94.9% for NO3-, SO42-, and PO43-, respectively. This system achieved a process mass efficiency of 2.79, an E-factor of 1.97, and an energy efficiency score of 66.3, which conforms to the green chemistry principles and demonstrates high potential for sustainable water purification.

     

  • Availability of data
    Data has been disclosed herein in its entirety and is available upon request.
    Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    CRediT authorship contribution statement
    Muzamil Jalil Ahmed: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Visualization, Writing – original draft. Baohu Wu: Investigation, Writing – original draft. Antoni Sánchez-Ferrer: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing – original draft, Project administration, Resources, Software, Supervision, Validation, Writing – review & editing.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.04.001.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Ahmed, M.J., Ashfaq, J., Sohail, Z., Channa, I.A., Sánchez-Ferrer, A., Ali, S.N., Chandio, A.D., 2024. Lignocellulosic bioplastics in sustainable packaging–Recent developments in materials design and processing: a comprehensive review. Sustain. Mater. Technol. 41, e01077.
    Ahmed, M.J., Sánchez-Ferrer, A., 2025. Wood-supported cationic polyelectrolyte membranes from a reactive ionic liquid for water detoxification. Chem. Eng. J. 505, 158841.
    Anastas, P.T., Warner, J.C., 2000. Green Chemistry: Theory and Practice. Oxford University Press, New York, p. 30.
    Arcari, M., Zuccarella, E., Axelrod, R., Adamcik, J., Sánchez-Ferrer, A., Mezzenga, R., et al. 2019. Nanostructural properties and twist periodicity of cellulose nanofibrils with variable charge density. Biomacromolecules 20, 1288–1296. doi: 10.1021/acs.biomac.8b01706
    Azizian, S., Eris, S., 2021. Adsorption isotherms and kinetics. In: Ghaedi, M. (Ed.), Interface Science and Technology. Elsevier, Amsterdam, pp. 445–509.
    Berthold, J., Rinaudo, M., Salmeń, L., 1996. Association of water to polar groups; estimations by an adsorption model for ligno-cellulosic materials. Colloids Surf. A Physicochem. Eng. Aspects 112, 117–129.
    Bertsch, P., Sánchez-Ferrer, A., Bagnani, M., Isabettini, S., Kohlbrecher, J., Mezzenga, R., et al. 2019. Ion-induced formation of nanocrystalline cellulose colloidal glasses containing nematic domains. Langmuir 35, 4117–4124. doi: 10.1021/acs.langmuir.9b00281
    Brodin, M., Vallejos, M., Opedal, M.T., Area, M.C., Chinga-Carrasco, G., 2017. Lignocellulosics as sustainable resources for production of bioplastics–A review. J. Clean. Prod. 162, 646–664.
    Cheng, X., Wang, J.C., Liao, Y.C., Li, C.P., Wei, Z.D., 2018. Enhanced conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal. ACS Appl. Mater. Interfaces 10, 23774–23782. doi: 10.1021/acsami.8b05298
    DeVierno Kreuder, A., House-Knight, T., Whitford, J., Ponnusamy, E., Miller, P., Jesse, N., et al. 2017. A method for assessing greener alternatives between chemical products following the 12 principles of green chemistry. ACS Sustainable Chem. Eng. 5, 2927–2935. doi: 10.1021/acssuschemeng.6b02399
    Eftekhari, A., Saito, T., 2017. Synthesis and properties of polymerized ionic liquids. Eur. Polym. J. 90, 245–272.
    Eiberweiser, A., Nazet, A., Hefter, G., Buchner, R., 2015. Ion hydration and association in aqueous potassium phosphate solutions. J. Phys. Chem. B 119, 5270–5281. doi: 10.1021/acs.jpcb.5b01417
    Engelhardt, M., Gilg, H.A., Richter, K., Sanchez-Ferrer, A., 2024. Adhesion-related properties of silver birch (Betula Pendula Roth) wood as affected by hydrophilic extraction. Wood Sci. Technol. 58, 379–402. doi: 10.1007/s00226-023-01526-x
    Escolà Casas, M., Guivernau, M., Viñas, M., Fernández, B., Cáceres, R., Biel, C., et al., 2023. Use of wood and cork in biofilters for the simultaneous removal of nitrates and pesticides from groundwater. Chemosphere 313, 137502.
    Fida, M., Li, P.Y., Wang, Y.H., Khorshed Alam, S.M., Nsabimana, A., 2022. Water contamination and human health risks in Pakistan: a review. Expo. Health 15, 619–639.
    Gogoi, H., Leiviskä, T., Rämö, J., Tanskanen, J., 2019. Production of aminated peat from branched polyethylenimine and glycidyltrimethylammonium chloride for sulphate removal from mining water. Environ. Res. 175, 323–334.
    Gupta, P.K., Uniyal, V., Naithani, S., 2013. Polymorphic transformation of cellulose I to cellulose II by alkali pretreatment and urea as an additive. Carbohydr. Polym. 94, 843–849.
    Hassan, M.L., 2006. Quaternization and anion exchange capacity of Sponge Gourd (Luffa cylindrica). J. Appl. Polym. Sci. 101, 2495–2503. doi: 10.1002/app.23747
    Hernández Cifre, J.G., de la Torre, J.G., 2014. Ionic strength effect in polyelectrolyte dilute solutions within the Debye–Hückel approximation: monte Carlo and Brownian dynamics simulations. Polym. Bull. 71, 2269–2285. doi: 10.1007/s00289-014-1186-2
    Hong, S.Q., Cannon, F.S., Hou, P., Byrne, T., Nieto-Delgado, C., 2017. Adsorptive removal of sulfate from acid mine drainage by polypyrrole modified activated carbons: effects of polypyrrole deposition protocols and activated carbon source. Chemosphere 184, 429–437.
    Huang, K.H., Maltais, A., Liu, J.X., Wang, Y.X., 2022. Wood cellulose films regenerated from NaOH/urea aqueous solution and treated by hot pressing for food packaging application. Food Biosci. 50, 102177.
    Israelachvili, J.N., 2011. Electrostatic forces between surfaces in liquids. In: Intermolecular and Surface Forces. Elsevier, Amsterdam, pp. 291–340.
    Jakubovic, A.O., Brook, B.N., 1961. Anion exchangers based on cellulose: I. preparation and general properties. Polymer (Guildf) 2, 18–26.
    Koga, Y., Sebe, F., Nishikawa, K., 2013. Effects of tetramethyl- and tetraethylammonium chloride on H2O: calorimetric and near-infrared spectroscopic study. J. Phys. Chem. B 117, 877–883. doi: 10.1021/jp3082744
    Kono, H., 2017. Cationic flocculants derived from native cellulose: preparation, biodegradability, and removal of dyes in aqueous solution. Resour. Effic. Technol. 3, 55–63.
    Kopač, T., Krajnc, M., Ručigaj, A., 2022. A rheological study of cationic micro- and nanofibrillated cellulose: quaternization reaction optimization and fibril characteristic effects. Cellulose 29, 1435–1450. doi: 10.1007/s10570-021-04365-w
    Krishna B.A., Lindhoud, S., de Vos, W.M., 2021. Hot-pressed polyelectrolyte complexes as novel alkaline stable monovalent-ion selective anion exchange membranes. J. Colloid Interface Sci. 593, 11–20.
    Lavoine, N., Desloges, I., Dufresne, A., Bras, J., 2012. Microfibrillated cellulose: its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90, 735–764.
    Li, H., Guo, R., Tian, X., Fan, Y.B., Wang, C.Y., Huan S.Q., 2024. Preparation of lignin/nanocellulose hybrid particles by co-precipitation method. Journal of Forestry Engineering 9, 107–114. doi: 10.54254/2753-7048/33/20231534
    Li, H.C., Shan, C., Zhang, Y.Y., Cai, J.G., Zhang, W.M., Pan, B.C., 2016. Arsenate adsorption by hydrous ferric oxide nanoparticles embedded in cross-linked anion exchanger: effect of the host pore structure. ACS Appl. Mater. Interfaces 8, 3012–3020. doi: 10.1021/acsami.5b09832
    Lu, Y.C., He, Q., Fan, G.Z., Cheng, Q.P., Song, G.S., 2021. Extraction and modification of hemicellulose from lignocellulosic biomass: a review. Green Process. Synth. 10, 779–804. doi: 10.1515/gps-2021-0065
    Maculewicz, J., O'Sullivan, A.D., Barker, D., Wai, K.T., Basharat, S., Bello-Mendoza, R., 2024. Novel quaternary ammonium functionalized cellulosic materials for nitrate adsorption from polluted waters. Water Air Soil Pollut. 236, 47.
    Marcus, Y., 1988. Ionic radii in aqueous solutions. Chem. Rev. 88, 1475–1498. doi: 10.1021/cr00090a003
    Marcus, Y., Hefter, G., 2006. Ion pairing. Chem. Rev. 106, 4585–4621. doi: 10.1021/cr040087x
    Marković-Nikolić, D.Z., Bojić, A.L., Savić, S.R., Petrović, S.M., Cvetković, D.J., Cakić, M.D., et al. 2018. Synthesis and physicochemical characterization of anion exchanger based on green modified bottle gourd shell. J. Spectrosc. 2018, 1–16. doi: 10.1155/2018/1856109
    Mautner, A., Kobkeatthawin, T., Bismarck, A., 2017. Efficient continuous removal of nitrates from water with cationic cellulose nanopaper membranes. Resour. Effic. Technol. 3, 22–28.
    McClure, J.D., 1970. Glycidyltrimethylammonium chloride and related compounds. J. Org. Chem. 35, 2059–2061. doi: 10.1021/jo00831a093
    Misak, N.Z., 1993. Langmuir isotherm and its application in ion-exchange reactions. React. Polym. 21, 53–64.
    Muqeet, M., Malik, H., Mahar, R.B., Ahmed, F., Khatri, Z., Carlson, K., 2017. Cationization of cellulose nanofibers for the removal of sulfate ions from aqueous solutions. Ind. Eng. Chem. Res. 56, 14078–14088. doi: 10.1021/acs.iecr.7b03739
    Olszewska, A., Eronen, P., Johansson, L.S., Malho, J.M., Ankerfors, M., Lindström, T., et al. 2011. The behaviour of cationic nanofibrillar cellulose in aqueous media. Cellulose 18, 1213–1226. doi: 10.1007/s10570-011-9577-0
    Pei, A.H., Butchosa, N., Berglund, L.A., Zhou, Q., 2013. Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9, 2047–2055. doi: 10.1039/c2sm27344f
    Qin, H.G., Du, Y.F., Bai, Y.Y., Li, F.Z., Yue, X., Wang, H., et al. 2023. Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte. Nat. Commun. 14, 5640.
    Sánchez-Ferrer, A., Engelhardt, M., 2025. Determination of the water diffusivity dependence with the flow rate using a DVS equipment. Eur. J. Wood Wood Prod. 83, 24.
    Sánchez-Ferrer, A., Engelhardt, M., Richter, K., 2023. Anisotropic wood–water interactions determined by gravimetric vapor sorption experiments. Cellulose 30, 3869–3885. doi: 10.1007/s10570-023-05093-z
    Sandoval, A.J., Barreiro, J.A., Müller, A.J., 2011. Determination of moisture adsorption isotherms of rice flour using a dynamic vapor sorption technique. Interciencia 36, 848–852.
    Sata, T., 2004. Ion Exchange membranes: preparation, characterization, modification and application. Royal Society of Chemistry, Cambridge.
    Scheuchzer, P., Zimmerman, M.B., Zeder, C., Sánchez-Ferrer, A., Moretti, D., 2022. Higher extrusion temperature induces greater formation of less digestible type Ⅴ and retrograded starch in iron-fortified rice grains but does not affect iron bioavailability: stable isotope studies in young women. J. Nutr. 152, 1220–1227. doi: 10.1093/jn/nxab435
    Schmitt, F., Granet, R., Sarrazin, C., MacKenzie, G., Krausz, P., 2011. Synthesis of anion exchange membranes from cellulose: crosslinking with diiodobutane. Carbohydr. Polym. 86, 362–366.
    Sehaqui, H., Mautner, A., Perez de Larraya, U., Pfenninger, N., Tingaut, P., Zimmermann, T., 2016. Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties. Carbohydr. Polym. 135, 334–340.
    Shao, X.Y., Wang, J., Yao, X.J., Wang, Y.B., Song, W.B., Xu, D.H., et al. 2024. Cellulose based hierarchically structured anion-exchange fiber for efficient dye adsorption. Cellulose 31, 411–426. doi: 10.1007/s10570-023-05605-x
    Sheldon, R.A., 2007. The E factor: fifteen years on. Green Chem. 9, 1273–1283. doi: 10.1039/b713736m
    Sheldon, R.A., 2018. Metrics of green chemistry and sustainability: past, present, and future. ACS Sustainable Chem. Eng. 6, 32–48. doi: 10.1021/acssuschemeng.7b03505
    Song, Y.B., Sun, Y.X., Zhang, X.Z., Zhou, J.P., Zhang, L.N., 2008. Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 9, 2259–2264. doi: 10.1021/bm800429a
    Tan, H.K.S., 2003. Ion exchange accompanied by neutralization in an anion bed. Chem. Eng. J. 91, 59–66.
    Viollaz, P.E., Rovedo, C.O., 1999. Equilibrium sorption isotherms and thermodynamic properties of starch and gluten. J. Food Eng. 40, 287–292.
    Wang, J.L., Guo, X., 2020. Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 258, 127279.
    Waseem, A., Arshad, J., Iqbal, F., Sajjad, A., Mehmood, Z., Murtaza, G., 2014. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables. Biomed Res. Int. 2014, 813206.
    Willems, W., 2014. The water vapor sorption mechanism and its hysteresis in wood: the water/void mixture postulate. Wood Sci. Technol. 48, 499–518. doi: 10.1007/s00226-014-0617-4
    Willems, W., 2015. A critical review of the multilayer sorption models and comparison with the sorption site occupancy (SSO) model for wood moisture sorption isotherm analysis. Holzforschung 69, 67–75. doi: 10.1515/hf-2014-0069
    Wu, F., Misra, M., Mohanty, A.K., 2021. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 117, 101395.
    Xia, H.F., Lin, D.Q., Yao, S.J., 2008. Chromatographic performance of macroporous cellulose-tungsten carbide composite beads as anion-exchanger for expanded bed adsorption at high fluid velocity. J. Chromatogr. A 1195, 60–66.
    Xu, X., Gao, B.Y., Yue, Q.Y., Zhong, Q.Q., Zhan, X., 2010. Preparation, characterization of wheat residue based anion exchangers and its utilization for the phosphate removal from aqueous solution. Carbohydr. Polym. 82, 1212–1218.
    Xue, Z.M., Yan, H.L., 2024. Advances on lignocellulose pretreatment by choline chloride-based deep eutectic solvents. J. Forest. Engineer. 9, 32–44.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (73) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return