Citation: | Eva Pasquier, Jost Ruwoldt. Kraft lignin as wet-strength and wet-stiffness additives for molded pulp materials[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 325-335. doi: 10.1016/j.jobab.2025.05.001 |
Back, E.L., Salmén, L., 1982. Glass transitions of wood components hold implications for molding and pulping processes. Tappi J., 65, 107–110.
|
Balakshin, M.Y., Capanema, E.A., Sulaeva, I., Schlee, P., Huang, Z.E., Feng, M., et al. 2021. New opportunities in the valorization of technical lignins. Chem. Sus. Chem 14, 1016–1036. doi: 10.1002/cssc.202002553
|
Blanco, Á., Fuente, E., Monte, M.C., Cortés, N., Negro, C., 2009. Polymeric branched flocculant effect on the flocculation process of pulp suspensions in the papermaking industry. Ind. Eng. Chem. Res. 48, 4826–4836. doi: 10.1021/ie8011837
|
Bouajila, J., Dole, P., Joly, C., Limare, A., 2006. Some laws of a lignin plasticization. J. Appl. Polym. Sci. 102, 1445–1451. doi: 10.1002/app.24299
|
Curling, S.F., Laflin, N., Davies, G.M., Ormondroyd, G.A., Elias, R.M., 2017. Feasibility of using straw in a strong, thin, pulp moulded packaging material. Ind. Crops Prod. 97, 395–400.
|
Diaz-Baca, J.A., Fatehi, P., 2024. Production and characterization of starch-lignin based materials: a review. Biotechnol. Adv. 70, 108281.
|
Farooq, M., Zou, T., Riviere, G., Sipponen, M.H., Österberg, M., 2019. Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin particles. Biomacromolecules 20, 693–704. doi: 10.1021/acs.biomac.8b01364
|
Francolini, I., Galantini, L., Rea, F., Di Cosimo, C., Di Cosimo, P., 2023. Polymeric wet-strength agents in the paper industry: an overview of mechanisms and current challenges. Int. J. Mol. Sci. 24, 9268. doi: 10.3390/ijms24119268
|
Freville, E., Pescheux-Sergienko, J., Mujica, R., Rey, C., Bras, J., 2024. Novel technologies for producing tridimensional cellulosic materials for packaging: a review. Carbohydr. Polym. 342, 122413.
|
Heen Blindheim, F., Syverud, K., Ruwoldt, J., 2024. Lignin-based wax inhibitors. Energy Fuels 38, 2898–2909. doi: 10.1021/acs.energyfuels.3c04768
|
Huang, H.H., Xu, C.L., Zhu, X.H., Li, B., Huang, C.X., 2023. Lignin-enhanced wet strength of cellulose-based materials: a sustainable approach. Green Chem. 25, 4995–5009. doi: 10.1039/d3gc01505j
|
Ibrahim, I.D., Sadiku, E.R., Hamam, Y., Kupolati, W.K., Ndambuki, J.M., Jamiru, T., et al. 2023. Recent recycling innovations to facilitate sustainable packaging materials: a review. Recycling 8, 88. doi: 10.3390/recycling8060088
|
Jiang, B., Chen, C.J., Liang, Z.Q., He, S.M., Kuang, Y.D., Song, J.W., et al. 2020. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. Adv. Funct. Mater. 30, 1906307.
|
Kopacic, S., Ortner, A., Guebitz, G., Kraschitzer, T., Leitner, J., Bauer, W., 2018. Technical lignins and their utilization in the surface sizing of paperboard. Ind. Eng. Chem. Res. 57, 6284–6291. doi: 10.1021/acs.iecr.8b00974
|
Li, D.L., Wu, J.Q., Peng, W.X., Xiao, W.F., Wu, J.G., Zhuo, J.Y., et al., 2015. Effect of lignin on bamboo biomass self-bonding during hot-pressing: lignin structure and characterization. Bio. Res. 10, 6769–6782.
|
Mattsson, A., Joelsson, T., Miettinen, A., Ketoja, J.A., Pettersson, G., Engstrand, P., 2021. Lignin inter-diffusion underlying improved mechanical performance of hot-pressed paper webs. Polymers (Basel) 13, 2485. doi: 10.3390/polym13152485
|
Maximova, N., Österberg, M., Koljonen, K., Stenius, P., 2001. Lignin adsorption on cellulose fibre surfaces: effect on surface chemistry, surface morphology and paper strength. Cellulose 8, 113–125.
|
Maximova, N., Österberg, M., Laine, J., Stenius, P., 2004. The wetting properties and morphology of lignin adsorbed on cellulose fibres and mica. Colloids Surf. A Physicochem. Eng. Aspects 239, 65–75.
|
Mendes, A.C., Pedersen, G.A., 2021. Perspectives on sustainable food packaging: is bio-based plastics a solution Trends Food Sci. Technol. 112, 839–846.
|
Oliaei, E., Berthold, F., Berglund, L.A., Lindström, T., 2021. Eco-friendly high-strength composites based on hot-pressed lignocellulose microfibrils or fibers. ACS Sustainable Chem. Eng. 9, 1899–1910. doi: 10.1021/acssuschemeng.0c08498
|
Pasquier, E., Skunde, R., Ruwoldt, J., 2023. Influence of temperature and pressure during thermoforming of softwood pulp. J. Bioresour. Bioprod. 8, 408–420.
|
Sanchez-Salvador, J.L., Pettersson, G., Mattsson, A., Blanco, A., Engstrand, P., Negro, C., 2024. Extending the limits of using chemithermomechanical pulp by combining lignin microparticles and hot-pressing technology. Cellulose 31, 9335–9348. doi: 10.1007/s10570-024-06141-y
|
Schenker, U., Chardot, J., Missoum, K., Vishtal, A., Bras, J., 2021. Short communication on the role of cellulosic fiber-based packaging in reduction of climate change impacts. Carbohydr. Polym. 254, 117248.
|
Schneider, W.D.H., Dillon, A.J.P., Camassola, M., 2021. Lignin nanoparticles enter the scene: a promising versatile green tool for multiple applications. Biotechnol. Adv. 47, 107685.
|
Schäfer, J.L., Schölch, S., Prucker, O., Brandstetter, T., Rühe, J., Stockert, A.R.V., et al. 2021. Accessibility of fiber surface sites for polymeric additives determines dry and wet tensile strength of paper sheets. Cellulose 28, 5775–5791. doi: 10.1007/s10570-021-03817-7
|
Seier, M., Archodoulaki, V.M., Koch, T., 2024. The morphology and properties of recycled plastics made from multi-layered packages and the consequences for the circular economy. Resour. Conserv. Recycl. 202, 107388.
|
Semple, K.E., Zhou, C.L., Rojas, O.J., Nkeuwa, W.N., Dai, C.P., 2022. Moulded pulp fibers for disposable food packaging: a state-of-the-art review. Food Packag. Shelf Life 33, 100908.
|
Singh, V., Bachala, S.K., Madan, M., Ahuja, A., Rastogi, V.K., 2024. A comprehensive comparison between synthetic and bio-based wet-strength additives for paper manufacturing. Cellulose 31, 4645–4679. doi: 10.1007/s10570-024-05832-w
|
Tanase-Opedal, M., Ruwoldt, J., 2022. Organosolv lignin as a green sizing agent for thermoformed pulp products. ACS Omega 7, 46583–46593. doi: 10.1021/acsomega.2c05416
|
Wang, H.Q., Wang, J.L., Si, S.R., Wang, Q., Li, X.S., Wang, S.F., 2021a. Residual-lignin-endowed molded pulp lunchbox with a sustained wet support strength. Ind. Crops Prod. 170, 113756.
|
Wang, J.L., Chen, W., Dong, T.T., Wang, H.Q., Si, S.R., Li, X.S., 2021b Enabled cellulose nanopaper with outstanding water stability and wet strength via activated residual lignin as a reinforcement. Green Chem. 23, 10062–10070. doi: 10.1039/d1gc03906g
|
Wang, Q.L., Xiao, S.L., Shi, S.Q., Cai, L.P., 2019. Mechanical property enhancement of self-bonded natural fiber material via controlling cell wall plasticity and structure. Mater. Des. 172, 107763.
|
Zhang, Y.L., Duan, C., Bokka, S.K., He, Z.B., Ni, Y.H., 2022a. Molded fiber and pulp products as green and sustainable alternatives to plastics: a mini review. J. Bioresour. Bioprod. 7, 14–25.
|
Zhang, Y.Z., Qian, Y.Y., Liu, Y.J., Lei, C.F., Qiu, G., Chen, G., 2022b Multivalent metal ion cross-linked lignocellulosic nanopaper with excellent water resistance and optical performance. Biomacromolecules 23, 1920–1927.
|
Zhao, Y.L., Yue, J.Q., Tao, L.C., Liu, Y.S., Shi, S.Q., Cai, L.P., et al. 2020. Effect of lignin on the self-bonding of a natural fiber material in a hydrothermal environment: lignin structure and characterization. Int. J. Biol. Macromol. 158, 1135–1140.
|