Volume 10 Issue 3
Aug.  2025
Turn off MathJax
Article Contents
Xin Duan, Huanxin Huo, Hongshan Li, Yihong Gao, Haoran Shi, Feng Kuang, Yumeng Chen, Jianyong Wan, Jingjie Shen, Guanben Du, Long Yang. Fabricating ultra-robust hydrogels with adhesive properties by restraining crack propagation with bamboo cellulose-based carbon nanomaterials[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 360-372. doi: 10.1016/j.jobab.2025.05.002
Citation: Xin Duan, Huanxin Huo, Hongshan Li, Yihong Gao, Haoran Shi, Feng Kuang, Yumeng Chen, Jianyong Wan, Jingjie Shen, Guanben Du, Long Yang. Fabricating ultra-robust hydrogels with adhesive properties by restraining crack propagation with bamboo cellulose-based carbon nanomaterials[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 360-372. doi: 10.1016/j.jobab.2025.05.002

Fabricating ultra-robust hydrogels with adhesive properties by restraining crack propagation with bamboo cellulose-based carbon nanomaterials

doi: 10.1016/j.jobab.2025.05.002
More Information
  • The bamboo fiber functionalized with phthalic anhydride underwent carbonization, yielding bamboo cellulose-derived carbon nanomaterials (C-BCN). These C-BCN were subsequently integrated into an acrylamide precursor solution to synthesize an ultra-robust, fatigue-resistant conductive hydrogel (PAM-C-BCN). During in situ polymerization, the abundant active sites on the C-BCN surface facilitated covalent cross-linking with the polyacrylamide (PAM) matrix. This interfacial interaction promoted strong adhesion between the PAM chains and the carbon nanostructures, forming a densely interpenetrated network through macromolecular entanglement. The synergistic coupling of the rigid C-BCN framework with the flexible polymer chains conferred exceptional mechanical resilience and energy dissipation capabilities to the composite hydrogel. Compared to the PAM hydrogel, the PAM-C-BCN hydrogel exhibited an improvement in mechanical properties, with a fracture strength of 363 kPa (a 2.5% increase), an elongation of approximately 2 254% (a 2.0% increase), a fracture energy of 30 kJ/m2 (a 3.1% increase), and a toughness of 3.04 MJ/m3 (a 4.1% increase). Moreover, PAM-C-BCN hydrogel demonstrated high adhesion (up to 7.5 kPa on pigskin) and conductivity (0.21 S/m). This strategy required neither complex design nor processing, offering a simple and efficient approach with great potential for hydrogel applications requiring high mechanical performance. At the crack tip of PAM-C-BCN hydrogel, C-BCN exhibited superior crack propagation resistance compared to SiO2 nanoparticles. Importantly, this strategy offered valuable insights for developing tough and stretchable hydrogels.

     

  • Author contributions
    Long Yang, Guanben Du, Jianyong Wan, and Jingjie Shen conceived and supervised the project; Xin Duan, Huanxin Huo, Hongshan Li, Yihong Gao, Haoran Shi, Feng Kuang, and Yumeng Chen performed the experiments and characterizations; Long Yang, Guanben Du, Jianyong Wan, and Jingjie Shen reviewed the paper. All authors discussed the results and commented on the manuscript. All authors have given approval to the final version of the manuscript.
    Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.05.002.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Alsaid, Y., Wu, S.W., Wu, D., Du, Y.J., Shi, L.X., Khodambashi, R., Rico, R., Hua, M.T., Yan, Y.C., Zhao, Y.S., Aukes, D., He, X.M., 2021. Tunable sponge-like hierarchically porous hydrogels with simultaneously enhanced diffusivity and mechanical properties. Adv. Mater. 33, 2008235.
    Bartolewska, M., Kosik-Kozioł, A., Korwek, Z., Krysiak, Z., Montroni, D., Mazur, M., Falini, G., Pierini, F., 2025. Eumelanin-enhanced photothermal disinfection of contact lenses using a sustainable marine nanoplatform engineered with electrospun nanofibers. Adv. Healthc. Mater. 14, 2402431.
    Cha, C., Shin, S.R., Gao, X.G., Annabi, N., Dokmeci, M.R., Tang, X.W., Khademhosseini, A., 2014. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small 10, 514–523. doi: 10.1002/smll.201302182
    Cheng, K.C., Zou, L., Chang, B.B., Liu, X., Shi, H.H., Li, T.L., Yang, Q.Q., Guo, Z.H., Liu, C.T., Shen, C.Y., 2022. Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing. Adv. Compos. Hybrid Mater. 5, 2834–2846. doi: 10.1007/s42114-022-00465-8
    Cong, H.P., Wang, P., Yu, S.H., 2013. Stretchable and self-healing graphene oxide–polymer composite hydrogels: A dual-network design. Chem. Mater. 25, 3357–3362. doi: 10.1021/cm401919c
    Cong, H.P., Wang, P., Yu, S.H., 2014. Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels. Small 10, 448–453. doi: 10.1002/smll.201301591
    Dong, X.Y., Pan, M.F., Zeng, H.B., 2024. Interfacial hydrogen bond-reinforced adhesion and cohesion enabling an ultrastretchable and wet adhesive hydrogel strain sensor. Langmuir 40, 5444–5454. doi: 10.1021/acs.langmuir.3c03990
    Du, G.L., Shao, Y.Z., Luo, B., Liu, T., Zhao, J.M., Qin, Y., Wang, J.L., Zhang, S., Chi, M.C., Gao, C., Liu, Y.H., Cai, C.C., Wang, S.F., Nie, S.X., 2024. Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nanomicro Lett. 16, 170.
    Du, J., Xu, S.M., Feng, S., Yu, L.N., Wang, J.D., Liu, Y.M., 2016. Tough dual nanocomposite hydrogels with inorganic hybrid crosslinking. Soft Matter 12, 1649–1654.
    Du, R., Wu, J.X., Chen, L., Huang, H., Zhang, X.T., Zhang, J., 2014. Hierarchical hydrogen bonds directed multi-functional carbon nanotube-based supramolecular hydrogels. Small 10, 1387–1393. doi: 10.1002/smll.201302649
    Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y., 2003. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158.
    Haider, H., Yang, C.H., Zheng, W.J., Yang, J.H., Wang, M.X., Yang, S., Zrínyi, M., Osada, Y., Suo, Z.G., Zhang, Q.Q., Zhou, J.X., Chen, Y.M., 2015. Exceptionally tough and Notch-insensitive magnetic hydrogels. Soft Matter 11, 8253–8261.
    Han, S.W., Tan, H.H., Wei, J., Yuan, H., Li, S.W., Yang, P.P., Mi, H.Y., Liu, C.T., Shen, C.Y., 2023. Surface modification of super arborized silica for flexible and wearable ultrafast-response strain sensors with low hysteresis. Adv. Sci. 10, 2301713.
    Hu, Y.J., Zhuo, H., Zhang, Y., Lai, H.H., Yi, J.W., Chen, Z.H., Peng, X.W., Wang, X.H., Liu, C.F., Sun, R.C., Zhong, L.X., 2021. Graphene oxide encapsulating liquid metal to toughen hydrogel. Adv. Funct. Mater. 31, 2106761.
    Hu, Z.Q., Chen, G.M., 2014. Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv. Mater. 26, 5950–5956. doi: 10.1002/adma.201400179
    Jaiswal, M.K., Xavier, J.R., Carrow, J.K., Desai, P., Alge, D., Gaharwar, A.K., 2016. Mechanically stiff nanocomposite hydrogels at ultralow nanoparticle content. ACS Nano 10, 246–256. doi: 10.1021/acsnano.5b03918
    Jia, Z.R., Lv, X.H., Hou, Y., Wang, K.F., Ren, F.Z., Xu, D.G., Wang, Q., Fan, K.L., Xie, C.M., Lu, X., 2021. Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics. Bioact. Mater. 6, 2676–2687.
    Kadumudi, F.B., Hasany, M., Pierchala, M.K., Jahanshahi, M., Taebnia, N., Mehrali, M., Mitu, C.F., Shahbazi, M.A., Zsurzsan, T.G., Knott, A., Andresen, T.L., Dolatshahi-Pirouz, A., 2021. The manufacture of unbreakable bionics via multifunctional and self-healing silk–graphene hydrogels. Adv. Mater. 33, 2100047.
    Kailasa, S.K., Joshi, D.J., Kateshiya, M.R., Koduru, J.R., Malek, N.I., 2022. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Mater. Today Chem. 23, 100746.
    Kong, D.S., El-Bahy, Z.M., Algadi, H., Li, T., El-Bahy, S.M., Nassan, M.A., Li, J.R., Faheim, A.A., Li, A., Xu, C.X., Huang, M.N., Cui, D.P., Wei, H.G., 2022. Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv. Compos. Hybrid Mater. 5, 1976–1987. doi: 10.1007/s42114-022-00531-1
    Li, S.N., Yang, H.L., Zhu, N.N., Chen, G.Q., Miao, Y.Y., Zheng, J.X., Cong, Y., Chen, Y.S., Gao, J.P., Jian, X.G., Fu, J., 2023. Biotissue-inspired anisotropic carbon fiber composite hydrogels for logic gates, integrated soft actuators, and sensors with ultra-high sensitivity. Adv. Funct. Mater. 33, 2211189.
    Li, W.Z., Zheng, S.J., Zou, X.Y., Ren, Y.Y., Liu, Z.Y., Peng, W.S., Wang, X.L., Liu, D., Shen, Z.H., Hu, Y., Guo, J.N., Sun, Z., Yan, F., 2022a. Tough hydrogels with isotropic and unprecedented crack propagation resistance. Adv. Funct. Mater. 32, 2207348.
    Li, X., Wang, Y.L., Tian, Y.H., Zhang, L.L., Ma, J.X., 2025. Biomimetic multiscale structure with hierarchically entangled topologies of cellulose-based hydrogel sensors for human-computer interaction. Carbohydr. Polym. 348, 122825.
    Li, Z.M., Xu, W.G., Yang, J.Z., Wang, J., Wang, J.L., Zhu, G., Li, D., Ding, J.X., Sun, T.M., 2022b. A tumor microenvironments-adapted polypeptide hydrogel/nanogel composite boosts antitumor molecularly targeted inhibition and immunoactivation. Adv. Mater. 34, 2200449.
    Lin, F., Wang, Z., Xiang, L., Deng, L.F., Cui, W.G., 2021. Charge-guided micro/nano-hydrogel microsphere for penetrating cartilage matrix. Adv. Funct. Mater. 31, 2107678.
    Liu, J., Scherman, O.A., 2018. Cucurbit [n] uril supramolecular hydrogel networks as tough and healable adhesives. Adv. Funct. Mater. 28, 1800848.
    Liu, J.H., Mao, Z.Y., Chen, Y.H., Long, Y.C., Wu, H.K., Shen, J.D., Zhang, R., Yeung, O.W.H., Zhou, B.B., Zhi, C.Y., Lu, J., Yang, Y.L., 2023. Amorphous biomineral-reinforced hydrogels with dramatically enhanced toughness for strain sensing. Chem. Eng. J. 468, 143735.
    Liu, Z.Y., Wang, Y., Ren, Y.Y., Jin, G.Q., Zhang, C.C., Chen, W., Yan, F., 2020. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater. Horiz. 7, 919–927. doi: 10.1039/c9mh01688k
    Lu, X.Y., Si, Y., Zhang, S.C., Yu, J.Y., Ding, B., 2021. In situ synthesis of mechanically robust, transparent nanofiber-reinforced hydrogels for highly sensitive multiple sensing. Adv. Funct. Mater. 31, 2103117.
    Luo, X.Q., Yuan, Z.Y., Xie, X.Y., Xie, Y.J., Lv, H.Y., Zhao, J., Wang, H., Gao, Y.J., Zhao, L.J., Wang, Y., Wu, J.R., 2023. Amino acid-induced rapid gelation and mechanical reinforcement of hydrogels with low-hysteresis and self-recoverable and fatigue-resistant properties. Mater. Horiz. 10, 4303–4316. doi: 10.1039/d3mh00483j
    Ma, J., Zhang, X.Z., Yin, D.C., Cai, Y.J., Shen, Z.H., Sheng, Z., Bai, J.B., Qu, S.X., Zhu, S.Z., Jia, Z., 2024. Designing ultratough single-network hydrogels with centimeter-scale fractocohesive lengths via inelastic crack blunting. Adv. Mater. 36, 2311795.
    Meng, X.H., Qiao, Y., Do, C., Bras, W., He, C.Y., Ke, Y.B., Russell, T.P., Qiu, D., 2022. Hysteresis-free nanoparticle-reinforced hydrogels. Adv. Mater. 34, 2108243.
    Osi, A.R., Zhang, H., Chen, J., Zhou, Y., Wang, R., Fu, J., Müller-Buschbaum, P., Zhong, Q., 2021. Three-dimensional-printable thermo/photo-cross-linked methacrylated chitosan-gelatin hydrogel composites for tissue engineering. ACS Appl. Mater. Interfaces 13, 22902–22913. doi: 10.1021/acsami.1c01321
    Qin, Z.H., Sun, X., Yu, Q.Y., Zhang, H.T., Wu, X.J., Yao, M.M., Liu, W.W., Yao, F.L., Li, J.J., 2020. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl. Mater. Interfaces 12, 4944–4953. doi: 10.1021/acsami.9b21659
    Sarmah, D., Karak, N., 2022. Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel. Carbohydr. Polym. 289, 119428.
    Shang, Z., An, X.Y., Nie, S.X., Li, N., Cao, H.B., Cheng, Z.B., Liu, H.B., Ni, Y.H., Liu, L.Q., 2023. Design of B/N Co-doped micro/meso porous carbon electrodes from CNF/BNNS/ZIF-8 nanocomposites for advanced supercapacitors. J. Bioresour. Bioprod. 8, 292–305.
    Shi, H.R., Huo, H.X., Yang, H.X., Li, H.S., Shen, J.J., Wan, J.Y., Du, G.B., Yang, L., 2024. Cellulose-based dual-network conductive hydrogel with exceptional adhesion. Adv. Funct. Mater. 34, 2408560.
    Steck, J., Kim, J., Kutsovsky, Y., Suo, Z.G., 2023. Multiscale stress deconcentration amplifies fatigue resistance of rubber. Nature 624, 303–308. doi: 10.1038/s41586-023-06782-2
    Su, J.H., Zhang, L.Y., Wan, C.C., Deng, Z.J., Wei, S., Yong, K.T., Wu, Y.Q., 2022. Dual-network self-healing hydrogels composed of graphene oxide@nanocellulose and poly(AAm-co-AAc). Carbohydr. Polym. 296, 119905.
    Sun, H.L., Han, Y.P., Huang, M.J., Li, J.W., Bian, Z.Y., Wang, Y.L., Liu, H., Liu, C.T., Shen, C.Y., 2024. Highly stretchable, environmentally stable, self-healing and adhesive conductive nanocomposite organohydrogel for efficient multimodal sensing. Chem. Eng. J. 480. 148305.
    Thoniyot, P., Tan, M.J., Karim, A.A., Young, D.J., Loh, X.J., 2015. Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2, 1400010.
    Tropp, J., Collins, C.P., Xie, X.R., Daso, R.E., Mehta, A.S., Patel, S.P., Reddy, M.M., Levin, S.E., Sun, C., Rivnay, J., 2024. Conducting polymer nanoparticles with intrinsic aqueous dispersibility for conductive hydrogels. Adv. Mater. 36, 2306691.
    Wang, F.Y., Yao, K.D., Chen, C., Wang, K.W., Bai, H.W., Hao, X.L., Wang, Q., Dong, X.C., Liu, W., 2025. Lanthanide-coordinated multifunctional hydrogel for detecting human motion and encrypting information. Adv. Funct. Mater. 2025, 2418373.
    Wang, T., Zheng, S.D., Sun, W.X., Liu, X.X., Fu, S.Y., Tong, Z., 2014. Notch insensitive and self-healing PNIPAm–PAM–clay nanocomposite hydrogels. Soft Matter 10, 3506–3512. doi: 10.1039/c3sm52961d
    Wei, J.J., Wan, F.Q., Zhang, P.C., Zeng, Z.H., Ping, H., Xie, J.J., Zou, Z.Y., Wang, W.M., Xie, H., Shen, Z.J., Lei, L.W., Fu, Z.Y., 2021. Bioprocess-inspired synthesis of printable, self-healing mineral hydrogels for rapidly responsive, wearable ionic skin. Chem. Eng. J. 424, 130549.
    Wen, X.L., Zong, S.Y., Zhao, Q., Wu, J.Y., Liu, L.J., Wang, K., Jiang, J.X., Duan, J.F., 2024. Environmentally stable and rapidly polymerized tin-tannin catalytic system hydroxyethyl cellulose hydrogel for wireless wearable sensing. Int. J. Biol. Macromol. 278, 134696.
    Xiong, J.F., Wang, X.W., Li, L.L., Li, Q.N., Zheng, S.J., Liu, Z.Y., Li, W.Z., Yan, F., 2024. Low-hysteresis and high-toughness hydrogels regulated by porous cationic polymers: the effect of counteranions. Angew. Chem. Int. Ed. 63, e202316375.
    Yu, J., Feng, Y.F., Sun, D., Ren, W.F., Shao, C.Y., Sun, R.C., 2022. Highly conductive and mechanically robust cellulose nanocomposite hydrogels with antifreezing and antidehydration performances for flexible humidity sensors. ACS Appl. Mater. Interfaces 14, 10886–10897. doi: 10.1021/acsami.2c00513
    Yu, X.D., Li, X., Kan, L., Pan, P., Wang, X., Liu, W.T., Zhang, J.S., 2023. Double network microcrystalline cellulose hydrogels with high mechanical strength and biocompatibility for cartilage tissue engineering scaffold. Int. J. Biol. Macromol. 238, 124113.
    Yue, X., Yang, H.B., Han, Z.M., Lu, Y.X., Yin, C.H., Zhao, X., Liu, Z.X., Guan, Q.F., Yu, S.H., 2024. Tough and moldable sustainable cellulose-based structural materials via multiscale interface engineering. Adv. Mater. 36, 2306451.
    Zargarian, S.S., Kupikowska-Stobba, B., Kosik-Kozioł, A., Bartolewska, M., Zakrzewska, A., Rybak, D., Bochenek, K., Osial, M., Pierini, F., 2024. Light-responsive biowaste-derived and bio-inspired textiles: dancing between bio-friendliness and antibacterial functionality. Mater. Today Chem. 41, 102281.
    Zhang, Y.S., Li, S., Gao, Z.D., Bi, D.J., Qu, N., Huang, S.Q., Zhao, X.Q., Li, R.H., 2023. Highly conductive and tough polyacrylamide/sodium alginate hydrogel with uniformly distributed polypyrrole nanospheres for wearable strain sensors. Carbohyd. Polym. 315, 120953.
    Zhang, X.K., Su, Y., Xu, J.H., Jin, Y.X., Zhang, H., Ma, G.P., Xu, J.X., Zhou, M., Zhou, X.P., Cao, F.L., Chang, Y., Wang, Y.K., Zhao, B.Q., Yi, S.R., Chen, J.Z., Fang, D., Lv, X., Liu, L., 2025. Self-Adhesive ILn@MXene multifunctional hydrogel with excellent dispersibility for human-machine interaction, capacitor, antibacterial and detecting various physiological electrical signals in humans and animals. Nano Energy 133, 110484.
    Zhang, Y.X., Jing, X., Zou, J., Feng, P.Y., Wang, G.R., Zeng, J.Z., Lin, L.Y., Liu, Y.J., Mi, H.Y., Nie, S.S., 2024. Mechanically robust and anti-swelling anisotropic conductive hydrogel with fluorescence for multifunctional sensing. Adv. Funct. Mater. 34, 2410698.
    Zhang, Y.W., Dai, Y., Xia, F., Zhang, X.J., 2022. Gelatin/polyacrylamide ionic conductive hydrogel with skin temperature-triggered adhesion for human motion sensing and body heat harvesting. Nano Energy. 104. 107977.
    Zhao, W., Wu, B.H., Lei, Z.Y., Wu, P.Y., 2024. Hydrogels with differentiated hydrogen-bonding networks for bioinspired stress response. Angew. Chem. Int. Ed. 63, e202400531.
    Zheng, D.Y., Zhu, Y.L., Sun, X., Sun, H., Yang, P., Yu, Z.Y., Zhu, J.Y., Ye, Y.H., Zhang, Y.H., Jiang, F., 2024. Equilibrium moisture mediated esterification reaction to achieve over 100% lignocellulosic nanofibrils yield. Small 20, 2402777.
    Zheng, H.Y., Lin, N., He, Y.Y., Zuo, B.Q., 2021. Self-healing, self-adhesive silk fibroin conductive hydrogel as a flexible strain sensor. ACS Appl. Mater. Interfaces 13, 40013–40031. doi: 10.1021/acsami.1c08395
    Zhong, D.M., Wang, Z.C., Xu, J.W., Liu, J.J., Xiao, R., Qu, S.X., Yang, W., 2024. A strategy for tough and fatigue-resistant hydrogels via loose cross-linking and dense dehydration-induced entanglements. Nat. Commun. 15, 5896.
    Zhou, M., Chen, D.Z., Chen, Q.Q., Chen, P., Song, G.J., Chang, C.Y., 2024. Reversible surface engineering of cellulose elementary fibrils: from ultralong nanocelluloses to advanced cellulosic materials. Adv. Mater. 36, 2312220.
    Zou, Y.S., Liao, Z.Y., Zhang, R., Song, S.S., Yang, Y.T., Xie, D., Liu, X.R., Wei, L.S., Liu, Y., Song, Y.M., 2025. Cellulose nanofibers/liquid metal hydrogels with high tensile strength, environmental adaptability and electromagnetic shielding for temperature monitoring and strain sensors. Carbohydr. Polym. 348, 122788.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (47) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return