Citation: | Xin Duan, Huanxin Huo, Hongshan Li, Yihong Gao, Haoran Shi, Feng Kuang, Yumeng Chen, Jianyong Wan, Jingjie Shen, Guanben Du, Long Yang. Fabricating ultra-robust hydrogels with adhesive properties by restraining crack propagation with bamboo cellulose-based carbon nanomaterials[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 360-372. doi: 10.1016/j.jobab.2025.05.002 |
Alsaid, Y., Wu, S.W., Wu, D., Du, Y.J., Shi, L.X., Khodambashi, R., Rico, R., Hua, M.T., Yan, Y.C., Zhao, Y.S., Aukes, D., He, X.M., 2021. Tunable sponge-like hierarchically porous hydrogels with simultaneously enhanced diffusivity and mechanical properties. Adv. Mater. 33, 2008235.
|
Bartolewska, M., Kosik-Kozioł, A., Korwek, Z., Krysiak, Z., Montroni, D., Mazur, M., Falini, G., Pierini, F., 2025. Eumelanin-enhanced photothermal disinfection of contact lenses using a sustainable marine nanoplatform engineered with electrospun nanofibers. Adv. Healthc. Mater. 14, 2402431.
|
Cha, C., Shin, S.R., Gao, X.G., Annabi, N., Dokmeci, M.R., Tang, X.W., Khademhosseini, A., 2014. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small 10, 514–523. doi: 10.1002/smll.201302182
|
Cheng, K.C., Zou, L., Chang, B.B., Liu, X., Shi, H.H., Li, T.L., Yang, Q.Q., Guo, Z.H., Liu, C.T., Shen, C.Y., 2022. Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing. Adv. Compos. Hybrid Mater. 5, 2834–2846. doi: 10.1007/s42114-022-00465-8
|
Cong, H.P., Wang, P., Yu, S.H., 2013. Stretchable and self-healing graphene oxide–polymer composite hydrogels: A dual-network design. Chem. Mater. 25, 3357–3362. doi: 10.1021/cm401919c
|
Cong, H.P., Wang, P., Yu, S.H., 2014. Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels. Small 10, 448–453. doi: 10.1002/smll.201301591
|
Dong, X.Y., Pan, M.F., Zeng, H.B., 2024. Interfacial hydrogen bond-reinforced adhesion and cohesion enabling an ultrastretchable and wet adhesive hydrogel strain sensor. Langmuir 40, 5444–5454. doi: 10.1021/acs.langmuir.3c03990
|
Du, G.L., Shao, Y.Z., Luo, B., Liu, T., Zhao, J.M., Qin, Y., Wang, J.L., Zhang, S., Chi, M.C., Gao, C., Liu, Y.H., Cai, C.C., Wang, S.F., Nie, S.X., 2024. Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nanomicro Lett. 16, 170.
|
Du, J., Xu, S.M., Feng, S., Yu, L.N., Wang, J.D., Liu, Y.M., 2016. Tough dual nanocomposite hydrogels with inorganic hybrid crosslinking. Soft Matter 12, 1649–1654.
|
Du, R., Wu, J.X., Chen, L., Huang, H., Zhang, X.T., Zhang, J., 2014. Hierarchical hydrogen bonds directed multi-functional carbon nanotube-based supramolecular hydrogels. Small 10, 1387–1393. doi: 10.1002/smll.201302649
|
Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y., 2003. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158.
|
Haider, H., Yang, C.H., Zheng, W.J., Yang, J.H., Wang, M.X., Yang, S., Zrínyi, M., Osada, Y., Suo, Z.G., Zhang, Q.Q., Zhou, J.X., Chen, Y.M., 2015. Exceptionally tough and Notch-insensitive magnetic hydrogels. Soft Matter 11, 8253–8261.
|
Han, S.W., Tan, H.H., Wei, J., Yuan, H., Li, S.W., Yang, P.P., Mi, H.Y., Liu, C.T., Shen, C.Y., 2023. Surface modification of super arborized silica for flexible and wearable ultrafast-response strain sensors with low hysteresis. Adv. Sci. 10, 2301713.
|
Hu, Y.J., Zhuo, H., Zhang, Y., Lai, H.H., Yi, J.W., Chen, Z.H., Peng, X.W., Wang, X.H., Liu, C.F., Sun, R.C., Zhong, L.X., 2021. Graphene oxide encapsulating liquid metal to toughen hydrogel. Adv. Funct. Mater. 31, 2106761.
|
Hu, Z.Q., Chen, G.M., 2014. Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv. Mater. 26, 5950–5956. doi: 10.1002/adma.201400179
|
Jaiswal, M.K., Xavier, J.R., Carrow, J.K., Desai, P., Alge, D., Gaharwar, A.K., 2016. Mechanically stiff nanocomposite hydrogels at ultralow nanoparticle content. ACS Nano 10, 246–256. doi: 10.1021/acsnano.5b03918
|
Jia, Z.R., Lv, X.H., Hou, Y., Wang, K.F., Ren, F.Z., Xu, D.G., Wang, Q., Fan, K.L., Xie, C.M., Lu, X., 2021. Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics. Bioact. Mater. 6, 2676–2687.
|
Kadumudi, F.B., Hasany, M., Pierchala, M.K., Jahanshahi, M., Taebnia, N., Mehrali, M., Mitu, C.F., Shahbazi, M.A., Zsurzsan, T.G., Knott, A., Andresen, T.L., Dolatshahi-Pirouz, A., 2021. The manufacture of unbreakable bionics via multifunctional and self-healing silk–graphene hydrogels. Adv. Mater. 33, 2100047.
|
Kailasa, S.K., Joshi, D.J., Kateshiya, M.R., Koduru, J.R., Malek, N.I., 2022. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Mater. Today Chem. 23, 100746.
|
Kong, D.S., El-Bahy, Z.M., Algadi, H., Li, T., El-Bahy, S.M., Nassan, M.A., Li, J.R., Faheim, A.A., Li, A., Xu, C.X., Huang, M.N., Cui, D.P., Wei, H.G., 2022. Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv. Compos. Hybrid Mater. 5, 1976–1987. doi: 10.1007/s42114-022-00531-1
|
Li, S.N., Yang, H.L., Zhu, N.N., Chen, G.Q., Miao, Y.Y., Zheng, J.X., Cong, Y., Chen, Y.S., Gao, J.P., Jian, X.G., Fu, J., 2023. Biotissue-inspired anisotropic carbon fiber composite hydrogels for logic gates, integrated soft actuators, and sensors with ultra-high sensitivity. Adv. Funct. Mater. 33, 2211189.
|
Li, W.Z., Zheng, S.J., Zou, X.Y., Ren, Y.Y., Liu, Z.Y., Peng, W.S., Wang, X.L., Liu, D., Shen, Z.H., Hu, Y., Guo, J.N., Sun, Z., Yan, F., 2022a. Tough hydrogels with isotropic and unprecedented crack propagation resistance. Adv. Funct. Mater. 32, 2207348.
|
Li, X., Wang, Y.L., Tian, Y.H., Zhang, L.L., Ma, J.X., 2025. Biomimetic multiscale structure with hierarchically entangled topologies of cellulose-based hydrogel sensors for human-computer interaction. Carbohydr. Polym. 348, 122825.
|
Li, Z.M., Xu, W.G., Yang, J.Z., Wang, J., Wang, J.L., Zhu, G., Li, D., Ding, J.X., Sun, T.M., 2022b. A tumor microenvironments-adapted polypeptide hydrogel/nanogel composite boosts antitumor molecularly targeted inhibition and immunoactivation. Adv. Mater. 34, 2200449.
|
Lin, F., Wang, Z., Xiang, L., Deng, L.F., Cui, W.G., 2021. Charge-guided micro/nano-hydrogel microsphere for penetrating cartilage matrix. Adv. Funct. Mater. 31, 2107678.
|
Liu, J., Scherman, O.A., 2018. Cucurbit [n] uril supramolecular hydrogel networks as tough and healable adhesives. Adv. Funct. Mater. 28, 1800848.
|
Liu, J.H., Mao, Z.Y., Chen, Y.H., Long, Y.C., Wu, H.K., Shen, J.D., Zhang, R., Yeung, O.W.H., Zhou, B.B., Zhi, C.Y., Lu, J., Yang, Y.L., 2023. Amorphous biomineral-reinforced hydrogels with dramatically enhanced toughness for strain sensing. Chem. Eng. J. 468, 143735.
|
Liu, Z.Y., Wang, Y., Ren, Y.Y., Jin, G.Q., Zhang, C.C., Chen, W., Yan, F., 2020. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater. Horiz. 7, 919–927. doi: 10.1039/c9mh01688k
|
Lu, X.Y., Si, Y., Zhang, S.C., Yu, J.Y., Ding, B., 2021. In situ synthesis of mechanically robust, transparent nanofiber-reinforced hydrogels for highly sensitive multiple sensing. Adv. Funct. Mater. 31, 2103117.
|
Luo, X.Q., Yuan, Z.Y., Xie, X.Y., Xie, Y.J., Lv, H.Y., Zhao, J., Wang, H., Gao, Y.J., Zhao, L.J., Wang, Y., Wu, J.R., 2023. Amino acid-induced rapid gelation and mechanical reinforcement of hydrogels with low-hysteresis and self-recoverable and fatigue-resistant properties. Mater. Horiz. 10, 4303–4316. doi: 10.1039/d3mh00483j
|
Ma, J., Zhang, X.Z., Yin, D.C., Cai, Y.J., Shen, Z.H., Sheng, Z., Bai, J.B., Qu, S.X., Zhu, S.Z., Jia, Z., 2024. Designing ultratough single-network hydrogels with centimeter-scale fractocohesive lengths via inelastic crack blunting. Adv. Mater. 36, 2311795.
|
Meng, X.H., Qiao, Y., Do, C., Bras, W., He, C.Y., Ke, Y.B., Russell, T.P., Qiu, D., 2022. Hysteresis-free nanoparticle-reinforced hydrogels. Adv. Mater. 34, 2108243.
|
Osi, A.R., Zhang, H., Chen, J., Zhou, Y., Wang, R., Fu, J., Müller-Buschbaum, P., Zhong, Q., 2021. Three-dimensional-printable thermo/photo-cross-linked methacrylated chitosan-gelatin hydrogel composites for tissue engineering. ACS Appl. Mater. Interfaces 13, 22902–22913. doi: 10.1021/acsami.1c01321
|
Qin, Z.H., Sun, X., Yu, Q.Y., Zhang, H.T., Wu, X.J., Yao, M.M., Liu, W.W., Yao, F.L., Li, J.J., 2020. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl. Mater. Interfaces 12, 4944–4953. doi: 10.1021/acsami.9b21659
|
Sarmah, D., Karak, N., 2022. Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel. Carbohydr. Polym. 289, 119428.
|
Shang, Z., An, X.Y., Nie, S.X., Li, N., Cao, H.B., Cheng, Z.B., Liu, H.B., Ni, Y.H., Liu, L.Q., 2023. Design of B/N Co-doped micro/meso porous carbon electrodes from CNF/BNNS/ZIF-8 nanocomposites for advanced supercapacitors. J. Bioresour. Bioprod. 8, 292–305.
|
Shi, H.R., Huo, H.X., Yang, H.X., Li, H.S., Shen, J.J., Wan, J.Y., Du, G.B., Yang, L., 2024. Cellulose-based dual-network conductive hydrogel with exceptional adhesion. Adv. Funct. Mater. 34, 2408560.
|
Steck, J., Kim, J., Kutsovsky, Y., Suo, Z.G., 2023. Multiscale stress deconcentration amplifies fatigue resistance of rubber. Nature 624, 303–308. doi: 10.1038/s41586-023-06782-2
|
Su, J.H., Zhang, L.Y., Wan, C.C., Deng, Z.J., Wei, S., Yong, K.T., Wu, Y.Q., 2022. Dual-network self-healing hydrogels composed of graphene oxide@nanocellulose and poly(AAm-co-AAc). Carbohydr. Polym. 296, 119905.
|
Sun, H.L., Han, Y.P., Huang, M.J., Li, J.W., Bian, Z.Y., Wang, Y.L., Liu, H., Liu, C.T., Shen, C.Y., 2024. Highly stretchable, environmentally stable, self-healing and adhesive conductive nanocomposite organohydrogel for efficient multimodal sensing. Chem. Eng. J. 480. 148305.
|
Thoniyot, P., Tan, M.J., Karim, A.A., Young, D.J., Loh, X.J., 2015. Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2, 1400010.
|
Tropp, J., Collins, C.P., Xie, X.R., Daso, R.E., Mehta, A.S., Patel, S.P., Reddy, M.M., Levin, S.E., Sun, C., Rivnay, J., 2024. Conducting polymer nanoparticles with intrinsic aqueous dispersibility for conductive hydrogels. Adv. Mater. 36, 2306691.
|
Wang, F.Y., Yao, K.D., Chen, C., Wang, K.W., Bai, H.W., Hao, X.L., Wang, Q., Dong, X.C., Liu, W., 2025. Lanthanide-coordinated multifunctional hydrogel for detecting human motion and encrypting information. Adv. Funct. Mater. 2025, 2418373.
|
Wang, T., Zheng, S.D., Sun, W.X., Liu, X.X., Fu, S.Y., Tong, Z., 2014. Notch insensitive and self-healing PNIPAm–PAM–clay nanocomposite hydrogels. Soft Matter 10, 3506–3512. doi: 10.1039/c3sm52961d
|
Wei, J.J., Wan, F.Q., Zhang, P.C., Zeng, Z.H., Ping, H., Xie, J.J., Zou, Z.Y., Wang, W.M., Xie, H., Shen, Z.J., Lei, L.W., Fu, Z.Y., 2021. Bioprocess-inspired synthesis of printable, self-healing mineral hydrogels for rapidly responsive, wearable ionic skin. Chem. Eng. J. 424, 130549.
|
Wen, X.L., Zong, S.Y., Zhao, Q., Wu, J.Y., Liu, L.J., Wang, K., Jiang, J.X., Duan, J.F., 2024. Environmentally stable and rapidly polymerized tin-tannin catalytic system hydroxyethyl cellulose hydrogel for wireless wearable sensing. Int. J. Biol. Macromol. 278, 134696.
|
Xiong, J.F., Wang, X.W., Li, L.L., Li, Q.N., Zheng, S.J., Liu, Z.Y., Li, W.Z., Yan, F., 2024. Low-hysteresis and high-toughness hydrogels regulated by porous cationic polymers: the effect of counteranions. Angew. Chem. Int. Ed. 63, e202316375.
|
Yu, J., Feng, Y.F., Sun, D., Ren, W.F., Shao, C.Y., Sun, R.C., 2022. Highly conductive and mechanically robust cellulose nanocomposite hydrogels with antifreezing and antidehydration performances for flexible humidity sensors. ACS Appl. Mater. Interfaces 14, 10886–10897. doi: 10.1021/acsami.2c00513
|
Yu, X.D., Li, X., Kan, L., Pan, P., Wang, X., Liu, W.T., Zhang, J.S., 2023. Double network microcrystalline cellulose hydrogels with high mechanical strength and biocompatibility for cartilage tissue engineering scaffold. Int. J. Biol. Macromol. 238, 124113.
|
Yue, X., Yang, H.B., Han, Z.M., Lu, Y.X., Yin, C.H., Zhao, X., Liu, Z.X., Guan, Q.F., Yu, S.H., 2024. Tough and moldable sustainable cellulose-based structural materials via multiscale interface engineering. Adv. Mater. 36, 2306451.
|
Zargarian, S.S., Kupikowska-Stobba, B., Kosik-Kozioł, A., Bartolewska, M., Zakrzewska, A., Rybak, D., Bochenek, K., Osial, M., Pierini, F., 2024. Light-responsive biowaste-derived and bio-inspired textiles: dancing between bio-friendliness and antibacterial functionality. Mater. Today Chem. 41, 102281.
|
Zhang, Y.S., Li, S., Gao, Z.D., Bi, D.J., Qu, N., Huang, S.Q., Zhao, X.Q., Li, R.H., 2023. Highly conductive and tough polyacrylamide/sodium alginate hydrogel with uniformly distributed polypyrrole nanospheres for wearable strain sensors. Carbohyd. Polym. 315, 120953.
|
Zhang, X.K., Su, Y., Xu, J.H., Jin, Y.X., Zhang, H., Ma, G.P., Xu, J.X., Zhou, M., Zhou, X.P., Cao, F.L., Chang, Y., Wang, Y.K., Zhao, B.Q., Yi, S.R., Chen, J.Z., Fang, D., Lv, X., Liu, L., 2025. Self-Adhesive ILn@MXene multifunctional hydrogel with excellent dispersibility for human-machine interaction, capacitor, antibacterial and detecting various physiological electrical signals in humans and animals. Nano Energy 133, 110484.
|
Zhang, Y.X., Jing, X., Zou, J., Feng, P.Y., Wang, G.R., Zeng, J.Z., Lin, L.Y., Liu, Y.J., Mi, H.Y., Nie, S.S., 2024. Mechanically robust and anti-swelling anisotropic conductive hydrogel with fluorescence for multifunctional sensing. Adv. Funct. Mater. 34, 2410698.
|
Zhang, Y.W., Dai, Y., Xia, F., Zhang, X.J., 2022. Gelatin/polyacrylamide ionic conductive hydrogel with skin temperature-triggered adhesion for human motion sensing and body heat harvesting. Nano Energy. 104. 107977.
|
Zhao, W., Wu, B.H., Lei, Z.Y., Wu, P.Y., 2024. Hydrogels with differentiated hydrogen-bonding networks for bioinspired stress response. Angew. Chem. Int. Ed. 63, e202400531.
|
Zheng, D.Y., Zhu, Y.L., Sun, X., Sun, H., Yang, P., Yu, Z.Y., Zhu, J.Y., Ye, Y.H., Zhang, Y.H., Jiang, F., 2024. Equilibrium moisture mediated esterification reaction to achieve over 100% lignocellulosic nanofibrils yield. Small 20, 2402777.
|
Zheng, H.Y., Lin, N., He, Y.Y., Zuo, B.Q., 2021. Self-healing, self-adhesive silk fibroin conductive hydrogel as a flexible strain sensor. ACS Appl. Mater. Interfaces 13, 40013–40031. doi: 10.1021/acsami.1c08395
|
Zhong, D.M., Wang, Z.C., Xu, J.W., Liu, J.J., Xiao, R., Qu, S.X., Yang, W., 2024. A strategy for tough and fatigue-resistant hydrogels via loose cross-linking and dense dehydration-induced entanglements. Nat. Commun. 15, 5896.
|
Zhou, M., Chen, D.Z., Chen, Q.Q., Chen, P., Song, G.J., Chang, C.Y., 2024. Reversible surface engineering of cellulose elementary fibrils: from ultralong nanocelluloses to advanced cellulosic materials. Adv. Mater. 36, 2312220.
|
Zou, Y.S., Liao, Z.Y., Zhang, R., Song, S.S., Yang, Y.T., Xie, D., Liu, X.R., Wei, L.S., Liu, Y., Song, Y.M., 2025. Cellulose nanofibers/liquid metal hydrogels with high tensile strength, environmental adaptability and electromagnetic shielding for temperature monitoring and strain sensors. Carbohydr. Polym. 348, 122788.
|