Volume 10 Issue 3
Aug.  2025
Turn off MathJax
Article Contents
Viraj Whabi, Jianping Xu. Splitting the difference: Genetically-tunable mycelial films using natural genetic variations in schizophyllum commune[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 336-359. doi: 10.1016/j.jobab.2025.05.004
Citation: Viraj Whabi, Jianping Xu. Splitting the difference: Genetically-tunable mycelial films using natural genetic variations in schizophyllum commune[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 336-359. doi: 10.1016/j.jobab.2025.05.004

Splitting the difference: Genetically-tunable mycelial films using natural genetic variations in schizophyllum commune

doi: 10.1016/j.jobab.2025.05.004
More Information
  • Corresponding author: E-mail address: jpxu@mcmaster.ca (J. Xu)
  • Received Date: 2025-02-05
  • Accepted Date: 2025-05-15
  • Rev Recd Date: 2025-04-21
  • Available Online: 2025-05-25
  • Publish Date: 2025-08-01
  • Fungal mycelium, renowned for its robust fiber structure, is gaining widespread attention as a sustainable alternative to traditional plastics and textiles. Strain optimization offers the opportunity to improve these mycelial materials by systematically selecting specific phenotypes that have ideal mechanical and physiochemical properties. Schizophyllum commune, the common split gill mushroom, is a cosmopolitan species with over 23 000 mating types and abundant genetic diversity. In this study, this species was used as a model to explore the potential of leveraging natural genetic variation within species to develop fungal mycelial materials with diverse properties. Specifically, four divergent monokaryotic strains of S. commune sourced globally were selected, and through mating, 12 dikaryotic progeny, each with their unique combinations of nuclear and mitochondrial deoxyribonucleic acid (DNA) were derived. These 16 strains were assessed for their growth in both solid and liquid media. Their mycelia from liquid media were further processed, including by linking with two different crosslinkers, polyethylene glycol 400, and glycerol, to form mycelial films. Mechanical testing and surface characterization showed that the mycelial films differed greatly in a diversity of features, from water retention to strength, ductility, morphology, and hydrophobicity. Moreover, Fourier transform infrared spectroscopy showed that different strains had unique chemical fingerprints revealing diverse cell wall composition that interfaced with each of the crosslinkers uniquely. Statistical analyses revealed that, along with the highly influential crosslinker effects, nuclear-mitochondrial genotype interactions were key factors in tuning the performances of these materials. The two-layer tunability of the fungal materials points to the novel potential for genetically optimized strains, such as through protoplasting to separate nuclei in dikaryons to monokaryons with new nuclear-mitochondrial combinations and/or protoplast fusion to artificially create novel dikaryons, with tailored mycelial materials properties for applications in textiles, coatings, and mycoremediation.

     

  • Author contributions
    Investigation: Viraj Whabi
    Formal analysis: Viraj Whabi
    Evaluated the statistical significance: Viraj Whabi
    Writing-original draft: Viraj Whabi
    Conceptualization: Jianping Xu
    Writing-review editing: Jianping Xu
    Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Availability of data
    The raw data that support the findings of this study are available upon request.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Alam, N., Cha, Y.J., Shim, M.J., Lee, T.S., Lee, U.Y., 2010. Cultural conditions for mycelial growth and molecular phylogenetic relationship in different wild strains of Schizophyllum commune. Mycobiology 38, 17–25.
    Anderson, M.R., Deppe, C.S., 1976. Control of fungal development I. The effects of two regulatory genes on growth in Schizophyllum commune. Dev. Biol. 53, 21–29.
    Appels, F.V.W., Dijksterhuis, J., Lukasiewicz, C.E., Jansen, K.M.B., Wösten, H.A.B., Krijgsheld, P., 2018. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Sci. Rep. 8, 4703.
    Appels, F.V.W., van den Brandhof, J.G., Dijksterhuis, J., de Kort, G.W., Wösten, H.A.B., 2020. Fungal mycelium classified in different material families based on glycerol treatment. Commun. Biol. 3, 334.
    Asada, Y., Yue, C., Wu, J., Shen, G.P., Novotny, C.P., Ullrich, R.C., 1997. Schizophyllum commune aα mating-type proteins, Y and Z, form complexes in all combinations in vitro. Genetics 147, 117–123. doi: 10.1093/genetics/147.1.117
    Ashby, M.F., Cebon, D., 1993. Materials selection in mechanical design. J. Phys. IV France 3, C7–1–C7–9.
    Baars, J.J.P., Mishra, P., Hendrickx, P., van der Horst, C., van Peer, A., 2024. Development of A circular sustainable culturing process for natural leather-like materials based on fungal mycelium. Available at: https://edepot.wur.nl/676633, Accessed April 15, 2025.
    Bahua, H., Wijayanti, S.P., Putra, A.S., Ariyani, N.R., Isharyadi, F., Nuha, N.H., Paminto, A.K., Mulyono, M., Djarot, I.N., Widyastuti, N., Sitomurni, A.I., Setiawan, A.A.R., Handayani, T., 2024. Life cycle assessment (LCA) of leather-like materials from mycelium: Indonesian case study. Int. J. Life Cycle Assess. 29, 1916–1931. doi: 10.1007/s11367-024-02351-5
    Banerjee, G., Robertson, D.L., Leonard, T.J., 2008. Hydrophobins Sc3 and Sc4 gene expression in mounds, fruiting bodies and vegetative hyphae of Schizophyllum commune. Fungal Genet. Biol. 45, 171–179.
    Barh, A., Sharma, V.P., Annepu, S.K., Kamal, S., Sharma, S., Bhatt, P., 2019. Genetic improvement in Pleurotus (oyster mushroom): A review. 3 Biotech 9, 322.
    Basiak, E., Lenart, A., Debeaufort, F., 2018. How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers (Basel) 10, 412. doi: 10.3390/polym10040412
    Batasheva, S., Kotova, S., Frolova, A., Fakhrullin, R., 2024. Atomic force microscopy for characterization of decellularized extracellular matrix (dECM) based materials. Sci. Technol. Adv. Mater. 25, 2421739.
    Bikmurzin, R., Bandzevičiūtė, R., Maršalka, A., Maneikis, A., Kalėdienė, L., 2022. FT-IR method limitations for β-glucan analysis. Molecules 27, 4616. doi: 10.3390/molecules27144616
    Buller, A.H.R., 1933. Hyphal fusions and protoplasmic streaming in the higher fungi. Researches On Fungi. Longmans, Green and Co, London.
    Bustillos, J., Loganathan, A., Agrawal, R., Gonzalez, B.A., Perez, M.G., Ramaswamy, S., Boesl, B., Agarwal, A., 2020. Uncovering the mechanical, thermal, and chemical characteristics of biodegradable mushroom leather with intrinsic antifungal and antibacterial properties. ACS Appl. Bio Mater. 3, 3145–3156. doi: 10.1021/acsabm.0c00164
    Butu, A., Rodino, S., Miu, B., Butu, M., 2020. Mycelium-based materials for the ecodesign of bioeconomy. Dig. J. Nanomater. Biostruct. 15, 1129–1140. doi: 10.15251/djnb.2020.154.1129
    Callister, W.D., 2010. Materials Science and Engineering. John Wiley & Sons, Chichester.
    Cartabia, M., Girometta, C.E., Milanese, C., Baiguera, R.M., Buratti, S., Branciforti, D.S., Vadivel, D., Girella, A., Babbini, S., Savino, E., Dondi, D., 2021. Collection and characterization of wood decay fungal strains for developing pure mycelium mats. J. Fungi 7, 1008. doi: 10.3390/jof7121008
    Cervera-Gascó, J., Pardo, J.E., Álvarez-Ortí, M., López-Mata, E., Cunha Zied, D., Pardo-Giménez, A., 2023. An intelligent mushroom strain selection model based on their quality characteristics. Food Biosci. 56, 103232.
    César, E., Canche-Escamilla, G., Montoya, L., Ramos, A., Duarte-Aranda, S., Bandala, V.M., 2021. Characterization and physical properties of mycelium films obtained from wild fungi: Natural materials for potential biotechnological applications. J. Polym. Environ. 29, 4098–4105. doi: 10.1007/s10924-021-02178-3
    Chulikavit, N., Huynh, T., Dekiwadia, C., Khatibi, A., Mouritz, A., Kandare, E., 2022. Influence of growth rates, microstructural properties and biochemical composition on the thermal stability of mycelia fungi. Sci. Rep. 12, 15105.
    Dalonso, N., Petkowicz, C.L.O., Lugones, L.G., Silveira, M.L.L., Gern, R.M.M., 2021. Comparison of cell wall polysaccharides in Schizophyllum commune after changing phenotype by mutation. An. Acad. Bras. Cienc. 93, e20210047.
    De Vries, O.M.H., Wessels, J.G.H., 1972. Release of protoplasts from Schizophyllum commune by a lytic enzyme preparation from Trichoderma viride. J. Gen. Microbiol. 73, 13–22. doi: 10.1099/00221287-73-1-13
    Deeg, K., Gima, Z., Smith, A., Stoica, O., Tran, K., 2017. Greener solutions : Improving performance of mycelium-based leather final report to MycoWorks. Available at: https://bcgc.berkeley.edu/sites/default/files/gs_2017_mycoworks_finalreport.pdf, Accessed April 16, 2025.
    Domján, A., Bajdik, J., Pintye-Hódi, K., 2009. Understanding of the plasticizing effects of glycerol and PEG 400 on chitosan films using solid-state NMR spectroscopy. Macromolecules 42, 4667–4673. doi: 10.1021/ma8021234
    Gandia, A., van den Brandhof, J.G., Appels, F.V.W., Jones, M.P., 2021. Flexible fungal materials: shaping the future. Trends Biotechnol. 39, 1321–1331.
    Hadrys, H., Balick, M., Schierwater, B., 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1, 55–63.
    Haneef, M., Ceseracciu, L., Canale, C., Bayer, I.S., Heredia-Guerrero, J.A., Athanassiou, A., 2017. Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Sci. Rep. 7, 41292.
    Hansen, K.R., 2022. Comparison of Life History Strategies in Monokaryotic Versus Dikaryotic Growth Stages of Fungi. University of Oslo, Oslo.
    Ichikawa, H., Tanno-Suenaga, L., Imamura, J., 1989. Transfer of mitochondria through protoplast fusion. In: Bajaj, Y.P.S. (Ed. ), Plant Protoplasts and Genetic Engineering Ⅱ. Springer, Berlin, pp. 360–375.
    Imtiaj, A., Jayasinghe, C., Lee, G.W., Kim, H.Y., Shim, M.J., Rho, H.S., Lee, H.S., Hur, H., Lee, M.W., Lee, U.Y., Lee, T.S., 2008. Physicochemical requirement for the vegetative growth of Schizophyllum commune collected from different ecological origins. Mycobiology 36, 34–39. doi: 10.4489/MYCO.2008.36.1.034
    Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L., Picu, R.C., 2017. Morphology and mechanics of fungal mycelium. Sci. Rep. 7, 13070.
    Jones, M., Gandia, A., John, S., Bismarck, A., 2020. Leather-like material biofabrication using fungi. Nat. Sustain. 4, 9–16. doi: 10.1038/s41893-020-00606-1
    Jones, M., Weiland, K., Kujundzic, M., Theiner, J., Kählig, H., Kontturi, E., John, S., Bismarck, A., Mautner, A., 2019. Waste-derived low-cost mycelium nanopapers with tunable mechanical and surface properties. Biomacromolecules 20, 3513–3523. doi: 10.1021/acs.biomac.9b00791
    Jongjareonrak, A., Benjakul, S., Visessanguan, W., Tanaka, M., 2006. Effects of plasticizers on the properties of edible films from skin gelatin of bigeye snapper and brownstripe red snapper. Eur. Food Res. Technol. 222, 229–235. doi: 10.1007/s00217-005-0004-3
    Kassambara, A., 2019. rstatix: pipe-friendly framework for basic statistical tests. Available at: https://doi.org/10.32614/CRAN.package.rstatix.
    Kirtzel, J., Madhavan, S., Wielsch, N., Blinne, A., Hupfer, Y., Linde, J., Krause, K., Svatoš, A., Kothe, E., 2018. Enzymatic bioweathering and metal mobilization from black slate by the basidiomycete Schizophyllum commune. Front. Microbiol. 9, 2545.
    Koch, K., Barthlott, W., 2009. Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Phil. Trans. R. Soc. A 367, 1487–1509. doi: 10.1098/rsta.2009.0022
    Koltin, Y., Raper, J.R., 1968. Dikaryosis: genetic determination in Schizophyllum. Science 160, 85–86. doi: 10.1126/science.160.3823.85
    Marian, I.M., Valdes, I.D., Hayes, R.D., LaButti, K., Duffy, K., Chovatia, M., Johnson, J., Ng, V., Lugones, L.G., Wösten, H.A.B., Grigoriev, I.V., Ohm, R.A., 2024. High phenotypic and genotypic plasticity among strains of the mushroom-forming fungus schizophyllum commune. Fungal Genet. Biol. 173, 103913.
    Meyer, V., Basenko, E.Y., Benz, J.P., Braus, G.H., Caddick, M.X., Csukai, M., de Vries, R.P., Endy, D., Frisvad, J.C., Gunde-Cimerman, N., Haarmann, T., Hadar, Y., Hansen, K., Johnson, R.I., Keller, N.P., Kraševec, N., Mortensen, U.H., Perez, R., Ram, A.F.J., Record, E., Ross, P., Shapaval, V., Steiniger, C., van den Brink, H., van Munster, J., Yarden, O., Wösten, H.A.B., 2020. Growing a circular economy with fungal biotechnology: a white paper. Fungal Biol. Biotechnol. 7, 5.
    Naumann, A., 2009. A novel procedure for strain classification of fungal mycelium by cluster and artificial neural network analysis of fourier transform infrared (FTIR) spectra. Analyst 134, 1215–1223. doi: 10.1039/b821286d
    Niederpruem, D.J., 1980. Direct studies of dikaryotization in Schizophyllum commune. Ⅱ. Behavior and fate of multikaryotic hyphase. Arch. Microbiol. 128, 172–178.
    Nieuwenhuis, B.P.S., Debets, A.J.M., Aanen, D.K., 2011. Sexual selection in mushroom-forming basidiomycetes. Proc. Biol. Sci. 278, 152–157. doi: 10.1098/rspb.2010.1110
    Nieuwenhuis, B.P.S., Nieuwhof, S., Aanen, D.K., 2013. On the asymmetry of mating in natural populations of the mushroom fungus Schizophyllum commune. Fungal Genet. Biol. 56, 25–32.
    Pardo, A., de Juan, A., Alvarez-Ortí, M., Pardo, J.E., 2010. Screening of Agaricus bisporus (Lange, imbach) strains and the casing variables for quality mushroom production in Spain. HortScience 45, 231–235. doi: 10.21273/hortsci.45.2.231
    Persson, B.N.J., 2023. Surface roughness induced stress concentration. Tribol. Lett. 71, 66.
    Quarta, M., Brett, J.O., DiMarco, R., De Morree, A., Boutet, S.C., Chacon, R., Gibbons, M.C., Garcia, V.A., Su, J., Shrager, J.B., Heilshorn, S., Rando, T.A., 2016. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat. Biotechnol. 34, 752–759. doi: 10.1038/nbt.3576
    Raman, J., Kim, D.S., Kim, H.S., Oh, D.S., Shin, H.J., 2022. Mycofabrication of mycelium-based leather from brown-rot fungi. J. Fungi 8, 317. doi: 10.3390/jof8030317
    Raper, C.A., Raper, J.R., 1966. Mutations modifying sexual morphogenesis in Schizophyllum. Genetics 54, 1151–1168. doi: 10.1093/genetics/54.5.1151
    Raper, J.R., Krongelb, G.S., 1958. Genetic and environmental aspects of fruiting in Schizophyllum commune Fr. Mycologia 50, 707–740.
    Raper, J.R., Miles, P.G., 1958. The genetics of Schizophyllum commune. Genetics 43, 530–546. doi: 10.1093/genetics/43.3.530
    Raudaskoski, M., Vauras, R., 1982. Scanning electron microscope study of fruit body differentiation in Schizophyllum commune. Trans. Br. Mycol. Soc. 78, 475–481.
    Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. doi: 10.1038/nmeth.2089
    Shi, Y., 1996. Analysis of the genetic relationships among the wheat bunt fungi using RAPD and ribosomal DNA markers. Phytopathology 86, 311.
    Sigler, L., de la Maza, L.M., Tan, G., Egger, K.N., Sherburne, R.K., 1995. Diagnostic difficulties caused by a nonclamped Schizophyllum commune isolate in a case of fungus ball of the lung. J. Clin. Microbiol. 33, 1979–1983. doi: 10.1128/jcm.33.8.1979-1983.1995
    Simchen, G., 1966. Fruiting and growth rate among dikaryotic progeny of single wild isolates of Schizophyllum commune. Genetics 53, 1151–1165. doi: 10.1093/genetics/53.6.1151
    Toubas, D., Essendoubi, M., Adt, I., Pinon, J.M., Manfait, M., Sockalingum, G.D., 2007. FTIR spectroscopy in medical mycology: applications to the differentiation and typing of Candida. Anal. Bioanal. Chem. 387, 1729–1737. doi: 10.1007/s00216-006-1005-1
    van Wetter, M.A., Schuren, F.H.J., Schuurs, T.A., Wessels, J.G.H., 1996. Targeted mutation of the SC3 hydrophobin gene of Schizophyllum commune affects formation of aerial hyphae. FEMS Microbiol. Lett. 140, 265–269. doi: 10.1016/0378-1097(96)00192-9
    van Wetter, M.A., Wösten, H.A.B., Sietsma, J.H., Wessels, J.G.H., 2000. Hydrophobin gene expression affects hyphal wall composition in Schizophyllum commune. Fungal Genet. Biol. 31, 99–104.
    Vandelook, S., Elsacker, E., Van Wylick, A., De Laet, L., Peeters, E., 2021. Current state and future prospects of pure mycelium materials. Fungal Biol. Biotechnol. 8, 20.
    Whabi, V., Yu, B., Xu, J.P., 2024. From nature to design: tailoring pure mycelial materials for the needs of tomorrow. J. Fungi 10, 183. doi: 10.3390/jof10030183
    Wickham, H., 2016. ggplot2: Elegant Graphics For Data Analysis. Springer Cham, New York.
    Wijayarathna, E.R.K.B., Mohammadkhani, G., Soufiani, A.M., Adolfsson, K.H., Ferreira, J.A., Hakkarainen, M., Berglund, L., Heinmaa, I., Root, A., Zamani, A., 2022. Fungal textile alternatives from bread waste with leather-like properties. Resour. Conserv. Recycl. 179, 106041.
    Wikandari, R., Hasniah, N., Taherzadeh, M.J., 2022. The role of filamentous fungi in advancing the development of a sustainable circular bioeconomy. Bioresour. Technol. 345, 126531.
    Williams, E., Cenian, K., Golsteijn, L., Morris, B., Scullin, M.L., 2022. Life cycle assessment of MycoWorks' reishiTM: The first low-carbon and biodegradable alternative leather. Environ. Sci. Eur. 34, 120.
    Xu, J., Ramos, A.R., Vilgalys, R., Mitchell, T.G., 2000. Clonal and spontaneous origins of fluconazole resistance in Candida albicans. J. Clin. Microbiol. 38, 1214–1220. doi: 10.1128/jcm.38.3.1214-1220.2000
    Xu, J., Yoell, H.J., Anderson, J.B., 1994. An efficient protocol for isolating DNA from higher fungi. Trends Genet. 10, 226–227.
    Zhao, J., Chang, S.T., 1996. Intergeneric hybridization between Pleurotus ostreatus and Schizophyllum commune by PEG-induced protoplast fusion. World J. Microbiol. Biotechnol. 12, 573–578.
    Zhao, Y.M., Rafatian, N., Feric, N.T., Cox, B.J., Aschar-Sobbi, R., Wang, E.Y., Aggarwal, P., Zhang, B.Y., Conant, G., Ronaldson-Bouchard, K., Pahnke, A., Protze, S., Lee, J.H., Davenport Huyer, L., Jekic, D., Wickeler, A., Naguib, H.E., Keller, G.M., Vunjak-Novakovic, G., Broeckel, U., Backx, P.H., Radisic, M., 2019. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913–927.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (46) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return