Citation: | Qian Zhang, Hui’e Jiang, Zhijian Li, Lijuan Chen, Fengqian Yang, Jiamin Zhang, Bo Zhang, Xinhua Liu. Non-invasive, non-enzymatic, non-serodiagnostic, and home-detecting paper-based “abnormal UA alarm” for early diagnosis of UA associated diseases[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 397-409. doi: 10.1016/j.jobab.2025.06.002 |
Amjadi, M., Hallaj, T., Kouhi, Z., 2018. An enzyme-free fluorescent probe based on carbon dots–MnO2 nanosheets for determination of uric acid. J. Photochem. Photobiol. A Chem. 356, 603–609. http://smartsearch.nstl.gov.cn/paper_detail.html?id=f11cbb7ceecc98504e442885d40f99e9
|
Bhagyashree, N., Ganesh, M., Ramaswamy, C., 2023. Correlation of salivary uric acid and cardiac autonomic modulation in metabolic syndrome population. Res. J. Pharm. Technol., 1347–1350. http://www.nstl.gov.cn/paper_detail.html?id=007e5eac7095847fa468c280370a6a02
|
Bilancio, G., Cavallo, P., Lombardi, C., Guarino, E., Cozza, V., Giordano, F., Palladino, G., Cirillo, M., 2019. Saliva for assessing creatinine, uric acid, and potassium in nephropathic patients. BMC Nephrol. 20, 242. http://www.xueshufan.com/publication/2955254188
|
Blicharz, T.M., Rissin, D.M., Bowden, M., Hayman, R.B., DiCesare, C., Bhatia, J.S., Grand-Pierre, N., Siqueira, W.L., Helmerhorst, E.J., Loscalzo, J., Oppenheim, F.G., Walt, D.R., 2008. Use of colorimetric test strips for monitoring the effect of hemodialysis on salivary nitrite and uric acid in patients with end-stage renal disease: a proof of principle. Clin. Chem. 54, 1473–1480. doi: 10.1373/clinchem.2008.105320
|
Bukharinova, M.A., Stozhko, N.Y., Novakovskaya, E.A., Khamzina, E.I., Tarasov, A.V., Sokolkov, S.V., 2021. Developing activated carbon veil electrode for sensing salivary uric acid. Biosensors (Basel) 11, 287. doi: 10.3390/bios11080287
|
Chen, W., Shen, S.Q., Dong, L.L., Zhang, J.J., Yang, Q., 2018. Selective inhibition of β-N-acetylhexosaminidases by thioglycosyl–naphthalimide hybrid molecules. Bioorg. Med. Chem. 26, 394–400.
|
Choi, H.K., Atkinson, K., Karlson, E.W., Willett, W., Curhan, G., 2004. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 350, 1093–1103. http://www.zentrum-der-gesundheit.de/pdf/erbsenprotein-ia-09.pdf
|
Dalapati, R., Biswas, S., 2019. A pyrene-functionalized metal-organic framework for nonenzymatic and ratiometric detection of uric acid in biological fluid via conformational change. Inorg. Chem. 58, 5654–5663. doi: 10.1021/acs.inorgchem.8b03629
|
Das, L., Das, S., Chandra IR, A., Kumar Mallick, A., Gupta, A., 2021. Validation and comparison of analytical methods for the determination of uric acid in pulses and cereals by salting out assisted extraction by rapid resolution liquid chromatography. J. Chromatogr. B 1180, 122894.
|
Devi, R., Pundir, C.S., 2014. Construction and application of an amperometric uric acid biosensor based on covalent immobilization of uricase on iron oxide nanoparticles/chitosan-g-polyaniline composite film electrodeposited on Pt electrode. Sens. Actuat. B Chem. 193, 608–615. http://www.sciencedirect.com/science/article/pii/S0925400513014834
|
Dey, N., Bhattacharya, S., 2017. Nanomolar level detection of uric acid in blood serum and pest-infested grain samples by an amphiphilic probe. Anal. Chem. 89, 10376–10383. doi: 10.1021/acs.analchem.7b02344
|
Emekli-Alturfan, E., Yarat, A., Çalışkan-Ak, E., Pisiriciler, R., Kuru, B., Noyan, Ü., 2013. Determination of storage time of saliva samples obtained from patients with and without chronic periodontitis for the comparison of some biochemical and cytological parameters. J. Clin. Lab. Anal. 27, 261–266. doi: 10.1002/jcla.21592
|
Fan, K.X., Zeng, J.Y., Yang, C.Y., Wang, G.L., Lian, K., Zhou, X.H., Deng, Y.P., Liu, G.Z., 2022. Digital quantification method for sensitive point-of-care detection of salivary uric acid using smartphone-assisted μPADs. ACS Sens. 7, 2049–2057. doi: 10.1021/acssensors.2c00854
|
Goll, R.D., Mookerjee, B.K., 1978. Correlation of biochemical parameters in serum and saliva in chronic azotemic patients and patients on chronic hemodialysis. J Dial 2, 399–414. doi: 10.3109/08860227809079326
|
González-Hernández, J.M., Franco, L., Colomer-Poveda, D., Martinez-Subiela, S., Cugat, R., Cerón, J.J., Márquez, G., Martínez-Aranda, L.M., Jimenez-Reyes, P., Tvarijonaviciute, A., 2019. Influence of sampling conditions, salivary flow, and total protein content in uric acid measurements in saliva. Antioxidants 8, 389. doi: 10.3390/antiox8090389
|
Greabu, M., Battino, M., Mohora, M., Totan, A., Didilescu, A., Spinu, T., Totan, C., Miricescu, D., Radulescu, R., 2009. Saliva: a diagnostic window to the body, both in health and in disease. J. Med. Life 2, 124–132. http://www.researchgate.net/profile/Maurizio_Battino/publication/41171852_Saliva--a_diagnostic_window_to_the_body_both_in_health_and_in_disease/links/0046351a4ccf1aadb6000000
|
Guan, Y.Q., Chu, Q.C., Ye, J.N., 2004. Determination of uric acid in human saliva by capillary electrophoresis with electrochemical detection: potential application in fast diagnosis of gout. Anal. Bioanal. Chem. 380, 913–917. doi: 10.1007/s00216-004-2848-y
|
Guan, Y.Q., Wu, T., Ye, J.N., 2005. Determination of uric acid and p-aminohippuric acid in human saliva and urine using capillary electrophoresis with electrochemical detection potential application in fast diagnosis of renal disease. J. Chromatogr. B 821, 229–234. http://europepmc.org/abstract/MED/15916928
|
Guo, J.H., 2016. Uric acid monitoring with a smartphone as the electrochemical analyzer. Anal. Chem. 88, 11986–11989. doi: 10.1021/acs.analchem.6b04345
|
Han, L.J., Kong, Y.J., Hou, G.Z., Chen, H.C., Zhang, X.M., Zheng, H.G., 2020. A europium-based MOF fluorescent probe for efficiently detecting malachite green and uric acid. Inorg. Chem. 59, 7181–7187. doi: 10.1021/acs.inorgchem.0c00620
|
Inoue, K., Namiki, T., Iwasaki, Y., Yoshimura, Y., Nakazawa, H., 2003. Determination of uric acid in human saliva by high-performance liquid chromatography with amperometric electrochemical detection. J. Chromatogr. B 785, 57–63.
|
Kim, J., Imani, S., de Araujo, W.R., Warchall, J., Valdés-Ramírez, G., Paixão, T.R.L.C., Mercier, P.P., Wang, J., 2015. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068. http://www.ncbi.nlm.nih.gov/pubmed/26276541
|
Kim, M.C., Kwak, J., Lee, S.Y., 2016. Sensing of uric acid via cascade catalysis of uricase and a biomimetic catalyst. Sens. Actuat. B Chem. 232, 744–749. http://www.sciencedirect.com/science/article/pii/S0925400516305032
|
Kumar, A.S., Shanmugam, R., 2011. Simple method for simultaneous detection of uric acid, xanthine and hypoxanthine in fish samples using a glassy carbon electrode modified with as commercially received multiwalled carbon nanotubes. Anal. Meth. 3, 2088–2094. doi: 10.1039/c1ay05065f
|
Kumari, C., Sain, D., Dey, S., 2018. Highly selective and safe ‘in vitro’ detection of biologically important ‘uric acid’ in living cells by a new fluorescent ‘turn-on’ probe along with quantum chemical calculation. Sens. Actuat. B Chem. 264, 208–215.
|
Li, X., Chen, W., Wu, M.Y., Yu, W.J., Wang, M.F., Niu, M.J., Meng, F.Y., Zhao, Y.W., Osman, A., Mousa, N.O., Shi, H., Qian, K., Wang, J.Y., Huang, L., 2024. Plasmonic array assisted mass spectrometry for preferential metabolite detection. Chem. Eng. J. 486, 150224. doi: 10.1016/j.cej.2024.150224
|
Lian, X., Yan, B., 2017. Phosphonate MOFs composite as off-on fluorescent sensor for detecting purine metabolite uric acid and diagnosing hyperuricuria. Inorg. Chem. 56, 6802–6808. doi: 10.1021/acs.inorgchem.6b03009
|
Liu, X., Qi, W., Wang, Y.F., Lin, D.W., Yang, X.J., Su, R.X., He, Z.M., 2018. Rational design of mimic multienzyme systems in hierarchically porous biomimetic metal-organic frameworks. ACS Appl. Mater. Interfaces 10, 33407–33415. doi: 10.1021/acsami.8b09388
|
Liu, Z.Q., Chen, Y.Y., Zhang, M., Sun, T.C., Li, K.E., Han, S.J., Chen, H.J., 2021. Novel portable sensing system with integrated multifunctionality for accurate detection of salivary uric acid. Biosensors (Basel) 11, 242.
|
Lu, Y., Lin, L., Ye, J., 2022. Human metabolite detection by surface-enhanced Raman spectroscopy. Mater. Today Bio 13, 100205.
|
Martínez, A.D., Ruelas, L., Granger, D.A., 2017. Association between body mass index and salivary uric acid among Mexican-origin infants, youth and adults: gender and developmental differences. Dev. Psychobiol. 59, 225–234. doi: 10.1002/dev.21492
|
Ngamchuea, K., Batchelor-McAuley, C., Compton, R.G., 2018. Understanding electroanalytical measurements in authentic human saliva leading to the detection of salivary uric acid. Sens. Actuat. B Chem. 262, 404–410. http://smartsearch.nstl.gov.cn/paper_detail.html?id=a087be68263c41f5be1db9e94a3585b2
|
Ngamchuea, K., Batchelor-McAuley, C., Compton, R.G., 2017. Rapid method for the quantification of reduced and oxidized glutathione in human plasma and saliva. Anal. Chem. 89, 2901–2908. doi: 10.1021/acs.analchem.6b04186
|
Ngamchuea, K., Batchelor-McAuley, C., Compton, R.G., 2016. The copper(Ⅱ)-catalyzed oxidation of glutathione. Chem. Eur. J. 22, 15937–15944. doi: 10.1002/chem.201603366
|
Pixton, S.W., 1965. Detection of insect infestations in cereals by measurement of uric acid. Cereal Chem 42, 315–322.
|
Riis, J.L., Bryce, C.I., Matin, M.J., Stebbins, J.L., Kornienko, O., Huisstede, L.V., Granger, D.A., 2018. The validity, stability, and utility of measuring uric acid in saliva. Biomark. Med. 12, 583–596. doi: 10.2217/bmm-2017-0336
|
Sahoo, P., Sarkar, H.S., Das, S., Maiti, K., Uddin, M.R., Mandal, S., 2016. Pyrene appended thymine derivative for selective turn-on fluorescence sensing of uric acid in live cells. RSC Adv. 6, 66774–66778.
|
Shatery, O.B.A., Omer, K.M., 2022. Selectivity enhancement for uric acid detection via in situ preparation of blue emissive carbon dots entrapped in chromium metal-organic frameworks. ACS Omega 7, 16576–16583. doi: 10.1021/acsomega.2c00790
|
Sheshashena Reddy, T., Ram Reddy, A., 2014. 2-Hexylaminoethylamidonaphthalimide as Cu2+ sensor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 880–886. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S1386142514003187&originContentFamily=serial&_origin=article&_ts=1415628550&md5=753dda069cd81206d74dc90fc5ae9992
|
Shibasaki, K., Kimura, M., Ikarashi, R., Yamaguchi, A., Watanabe, T., 2012. Uric acid concentration in saliva and its changes with the patients receiving treatment for hyperuricemia. Metabolomics 8, 484–491. doi: 10.1007/s11306-011-0334-z
|
Su, C.H., Sun, C.L., Liao, Y.C., 2017. Printed combinatorial sensors for simultaneous detection of ascorbic acid, uric acid, dopamine, and nitrite. ACS Omega 2, 4245–4252. doi: 10.1021/acsomega.7b00681
|
Vernerová, A., Krčmová, L.K., Heneberk, O., Radochová, V., Strouhal, O., Kašparovský, A., Melichar, B., Švec, F., 2021. Chromatographic method for the determination of inflammatory biomarkers and uric acid in human saliva. Talanta 233, 122598. http://www.nstl.gov.cn/paper_detail.html?id=0eedde55ed118d79146b8180b6888879
|
Vernerová, A., Kujovská Krčmová, L., Melichar, B., Švec, F., 2020. Non-invasive determination of uric acid in human saliva in the diagnosis of serious disorders. Clin. Chem. Lab. Med. 59, 797–812.
|
Waryani, B., Tahira, A., Ameen, S., Willande, M., Abbasi, A.R., Ibupoto, Z.H., 2020. The enzyme free uric acid sensor based on iron doped CuO nanostructures for the determination of uric acid from commercial seafood. J. Electron. Mater. 49, 6123–6129. doi: 10.1007/s11664-020-08345-x
|
Westley, C., Xu, Y., Thilaganathan, B., Carnell, A.J., Turner, N.J., Goodacre, R., 2017. Absolute quantification of uric acid in human urine using surface enhanced Raman scattering with the standard addition method. Anal. Chem. 89, 2472–2477. doi: 10.1021/acs.analchem.6b04588
|
Wu, W.B., Liu, B., 2021. Aggregation-induced emission: challenges and opportunities. Natl. Sci. Rev. 8, nwaa222.
|
Xu, L.F., Cao, J.G., Zhong, S.L., Wang, J.F., Yang, Y.Y., Gao, Y., Cui, X.J., 2021. Photoluminescence of Tilapia skin collagen: aggregation-induced emission with clustering triggered emission mechanism and its multiple applications. Int. J. Biol. Macromol. 182, 1437–1444.
|
Xin, X.L., Zhang, M.H., Zhao, J.W., Han, C.Y., Liu, X.P., Xiao, Z.Y., Zhang, L.L., Xu, B., Guo, W.Y., Wang, R.M., Sun, D.F., 2017. Fluorescence turn-on detection of uric acid by a water-stable metal–organic nanotube with high selectivity and sensitivity. J. Mater. Chem. C 5, 601–606.
|
Yadav, A.K., Verma, D., Sajwan, R.K., Poddar, M., Yadav, S.K., Verma, A.K., Solanki, P.R., 2022. Nanomaterial-based electrochemical nanodiagnostics for human and gut metabolites diagnostics: recent advances and challenges. Biosensors (Basel) 12, 733.
|
Yang, J., Fang, M.M., Li, Z., 2020. Organic luminescent materials: the concentration on aggregates from aggregation-induced emission. Aggregate 1, 6–18. doi: 10.1002/agt2.2
|
Zhao, J.X., Huang, Y., 2015. Salivary uric acid as a noninvasive biomarker for monitoring the efficacy of urate-lowering therapy in a patient with chronic gouty arthropathy. Clin. Chim. Acta 450, 115–120. doi: 10.1109/ChiCC.2015.7259623
|
Zheng, Q.T., Xiong, L., Yu, L., Wu, D., Yang, C.X., Xiao, Y.X., 2021. An enzyme-free fluorescent sensing platform for the detection of uric acid in human urine. J. Lumin. 236, 118076.
|
Zhou, S., Zuo, R.X., Zhu, Z., Wu, D., Vasa, K., Deng, Y.W., Zuo, Y.G., 2013. An eco-friendly hydrophilic interaction HPLC method for the determination of renal function biomarkers, creatinine and uric acid, in human fluids. Anal. Meth. 5, 1307–1311. doi: 10.1039/c2ay26362a
|