Volume 10 Issue 3
Aug.  2025
Turn off MathJax
Article Contents
Qian Zhang, Hui’e Jiang, Zhijian Li, Lijuan Chen, Fengqian Yang, Jiamin Zhang, Bo Zhang, Xinhua Liu. Non-invasive, non-enzymatic, non-serodiagnostic, and home-detecting paper-based “abnormal UA alarm” for early diagnosis of UA associated diseases[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 397-409. doi: 10.1016/j.jobab.2025.06.002
Citation: Qian Zhang, Hui’e Jiang, Zhijian Li, Lijuan Chen, Fengqian Yang, Jiamin Zhang, Bo Zhang, Xinhua Liu. Non-invasive, non-enzymatic, non-serodiagnostic, and home-detecting paper-based “abnormal UA alarm” for early diagnosis of UA associated diseases[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 397-409. doi: 10.1016/j.jobab.2025.06.002

Non-invasive, non-enzymatic, non-serodiagnostic, and home-detecting paper-based “abnormal UA alarm” for early diagnosis of UA associated diseases

doi: 10.1016/j.jobab.2025.06.002
More Information
  • Corresponding author: E-mail address: jianghuie@sust.edu.cn (H. Jiang); E-mail address: lizj@sust.edu.cn (Z. Li); E-mail address: liuxinhua@sust.edu.cn (X. Liu)
  • Received Date: 2025-03-10
  • Accepted Date: 2025-06-17
  • Rev Recd Date: 2025-05-06
  • Available Online: 2025-06-30
  • Publish Date: 2025-08-01
  • Uric acid (UA) level is a pivotal clinical human-health biomarker providing predictive feedback for multitudinous well-known kidney, cardiovascular and metabolic syndrome diseases. Off-the-shelf UA detection methods clinically rely on uricase suffer from limitations such as high costs, longstanding result acquisition, circumscribed testing locations, rigorous expertise requirements, and difficulty in home-detecting due to serum testing systems. Here, inspired by the pH-paper, a scaleable, rapid, non-invasive/-enzymatic/-serodiagnostic, and home-detecting “abnormal UA alarm” platform for UA detection in saliva was developed by strategically integrating the proposed paper-based fluorescent sensing-materials (NIFP-SM) with a user-orientated intelligent red-green-blue (RGB) analysis device. Therefore, NIFP-SM is nano-engineered through straightforward interfacial interactions of functional building blocks of on-demand naphthyl imide-derived fluorescent self-assembled micro-particles (NIFS) with lamellar structure and commercially-used filter paper. The NIFS possesses dominantly wide detection range (0–5 000 µmol/L) and high sensitivity (limit of detection = 0.91 µmol/L). Surprisingly, NIFS exhibited outstanding identifiability for uric acid even in the presence of 34 interferents, substantiating accurate detection-capability in intricate environments. Thus NIFP-SM equipped with NIFS resoundingly achieved efficient, rapid, and on-site visual detection of UA in saliva, urine-simulants, and foods. Further, the NIFP-SM-based automatic analysis platform integrated with an intelligent RGB analysis device was manufactured and enabled accurate quantitative, low-cost, non-invasive/-enzymatic/-serodiagnostic, rapid, home-detecting for UA, eliminating the need for costly equipment and specialized personnel and thereby facilitating early-warning detection of abnormal UA-levels associated diseases.

     

  • Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.06.002.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Amjadi, M., Hallaj, T., Kouhi, Z., 2018. An enzyme-free fluorescent probe based on carbon dots–MnO2 nanosheets for determination of uric acid. J. Photochem. Photobiol. A Chem. 356, 603–609. http://smartsearch.nstl.gov.cn/paper_detail.html?id=f11cbb7ceecc98504e442885d40f99e9
    Bhagyashree, N., Ganesh, M., Ramaswamy, C., 2023. Correlation of salivary uric acid and cardiac autonomic modulation in metabolic syndrome population. Res. J. Pharm. Technol., 1347–1350. http://www.nstl.gov.cn/paper_detail.html?id=007e5eac7095847fa468c280370a6a02
    Bilancio, G., Cavallo, P., Lombardi, C., Guarino, E., Cozza, V., Giordano, F., Palladino, G., Cirillo, M., 2019. Saliva for assessing creatinine, uric acid, and potassium in nephropathic patients. BMC Nephrol. 20, 242. http://www.xueshufan.com/publication/2955254188
    Blicharz, T.M., Rissin, D.M., Bowden, M., Hayman, R.B., DiCesare, C., Bhatia, J.S., Grand-Pierre, N., Siqueira, W.L., Helmerhorst, E.J., Loscalzo, J., Oppenheim, F.G., Walt, D.R., 2008. Use of colorimetric test strips for monitoring the effect of hemodialysis on salivary nitrite and uric acid in patients with end-stage renal disease: a proof of principle. Clin. Chem. 54, 1473–1480. doi: 10.1373/clinchem.2008.105320
    Bukharinova, M.A., Stozhko, N.Y., Novakovskaya, E.A., Khamzina, E.I., Tarasov, A.V., Sokolkov, S.V., 2021. Developing activated carbon veil electrode for sensing salivary uric acid. Biosensors (Basel) 11, 287. doi: 10.3390/bios11080287
    Chen, W., Shen, S.Q., Dong, L.L., Zhang, J.J., Yang, Q., 2018. Selective inhibition of β-N-acetylhexosaminidases by thioglycosyl–naphthalimide hybrid molecules. Bioorg. Med. Chem. 26, 394–400.
    Choi, H.K., Atkinson, K., Karlson, E.W., Willett, W., Curhan, G., 2004. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 350, 1093–1103. http://www.zentrum-der-gesundheit.de/pdf/erbsenprotein-ia-09.pdf
    Dalapati, R., Biswas, S., 2019. A pyrene-functionalized metal-organic framework for nonenzymatic and ratiometric detection of uric acid in biological fluid via conformational change. Inorg. Chem. 58, 5654–5663. doi: 10.1021/acs.inorgchem.8b03629
    Das, L., Das, S., Chandra IR, A., Kumar Mallick, A., Gupta, A., 2021. Validation and comparison of analytical methods for the determination of uric acid in pulses and cereals by salting out assisted extraction by rapid resolution liquid chromatography. J. Chromatogr. B 1180, 122894.
    Devi, R., Pundir, C.S., 2014. Construction and application of an amperometric uric acid biosensor based on covalent immobilization of uricase on iron oxide nanoparticles/chitosan-g-polyaniline composite film electrodeposited on Pt electrode. Sens. Actuat. B Chem. 193, 608–615. http://www.sciencedirect.com/science/article/pii/S0925400513014834
    Dey, N., Bhattacharya, S., 2017. Nanomolar level detection of uric acid in blood serum and pest-infested grain samples by an amphiphilic probe. Anal. Chem. 89, 10376–10383. doi: 10.1021/acs.analchem.7b02344
    Emekli-Alturfan, E., Yarat, A., Çalışkan-Ak, E., Pisiriciler, R., Kuru, B., Noyan, Ü., 2013. Determination of storage time of saliva samples obtained from patients with and without chronic periodontitis for the comparison of some biochemical and cytological parameters. J. Clin. Lab. Anal. 27, 261–266. doi: 10.1002/jcla.21592
    Fan, K.X., Zeng, J.Y., Yang, C.Y., Wang, G.L., Lian, K., Zhou, X.H., Deng, Y.P., Liu, G.Z., 2022. Digital quantification method for sensitive point-of-care detection of salivary uric acid using smartphone-assisted μPADs. ACS Sens. 7, 2049–2057. doi: 10.1021/acssensors.2c00854
    Goll, R.D., Mookerjee, B.K., 1978. Correlation of biochemical parameters in serum and saliva in chronic azotemic patients and patients on chronic hemodialysis. J Dial 2, 399–414. doi: 10.3109/08860227809079326
    González-Hernández, J.M., Franco, L., Colomer-Poveda, D., Martinez-Subiela, S., Cugat, R., Cerón, J.J., Márquez, G., Martínez-Aranda, L.M., Jimenez-Reyes, P., Tvarijonaviciute, A., 2019. Influence of sampling conditions, salivary flow, and total protein content in uric acid measurements in saliva. Antioxidants 8, 389. doi: 10.3390/antiox8090389
    Greabu, M., Battino, M., Mohora, M., Totan, A., Didilescu, A., Spinu, T., Totan, C., Miricescu, D., Radulescu, R., 2009. Saliva: a diagnostic window to the body, both in health and in disease. J. Med. Life 2, 124–132. http://www.researchgate.net/profile/Maurizio_Battino/publication/41171852_Saliva--a_diagnostic_window_to_the_body_both_in_health_and_in_disease/links/0046351a4ccf1aadb6000000
    Guan, Y.Q., Chu, Q.C., Ye, J.N., 2004. Determination of uric acid in human saliva by capillary electrophoresis with electrochemical detection: potential application in fast diagnosis of gout. Anal. Bioanal. Chem. 380, 913–917. doi: 10.1007/s00216-004-2848-y
    Guan, Y.Q., Wu, T., Ye, J.N., 2005. Determination of uric acid and p-aminohippuric acid in human saliva and urine using capillary electrophoresis with electrochemical detection potential application in fast diagnosis of renal disease. J. Chromatogr. B 821, 229–234. http://europepmc.org/abstract/MED/15916928
    Guo, J.H., 2016. Uric acid monitoring with a smartphone as the electrochemical analyzer. Anal. Chem. 88, 11986–11989. doi: 10.1021/acs.analchem.6b04345
    Han, L.J., Kong, Y.J., Hou, G.Z., Chen, H.C., Zhang, X.M., Zheng, H.G., 2020. A europium-based MOF fluorescent probe for efficiently detecting malachite green and uric acid. Inorg. Chem. 59, 7181–7187. doi: 10.1021/acs.inorgchem.0c00620
    Inoue, K., Namiki, T., Iwasaki, Y., Yoshimura, Y., Nakazawa, H., 2003. Determination of uric acid in human saliva by high-performance liquid chromatography with amperometric electrochemical detection. J. Chromatogr. B 785, 57–63.
    Kim, J., Imani, S., de Araujo, W.R., Warchall, J., Valdés-Ramírez, G., Paixão, T.R.L.C., Mercier, P.P., Wang, J., 2015. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068. http://www.ncbi.nlm.nih.gov/pubmed/26276541
    Kim, M.C., Kwak, J., Lee, S.Y., 2016. Sensing of uric acid via cascade catalysis of uricase and a biomimetic catalyst. Sens. Actuat. B Chem. 232, 744–749. http://www.sciencedirect.com/science/article/pii/S0925400516305032
    Kumar, A.S., Shanmugam, R., 2011. Simple method for simultaneous detection of uric acid, xanthine and hypoxanthine in fish samples using a glassy carbon electrode modified with as commercially received multiwalled carbon nanotubes. Anal. Meth. 3, 2088–2094. doi: 10.1039/c1ay05065f
    Kumari, C., Sain, D., Dey, S., 2018. Highly selective and safe ‘in vitro’ detection of biologically important ‘uric acid’ in living cells by a new fluorescent ‘turn-on’ probe along with quantum chemical calculation. Sens. Actuat. B Chem. 264, 208–215.
    Li, X., Chen, W., Wu, M.Y., Yu, W.J., Wang, M.F., Niu, M.J., Meng, F.Y., Zhao, Y.W., Osman, A., Mousa, N.O., Shi, H., Qian, K., Wang, J.Y., Huang, L., 2024. Plasmonic array assisted mass spectrometry for preferential metabolite detection. Chem. Eng. J. 486, 150224. doi: 10.1016/j.cej.2024.150224
    Lian, X., Yan, B., 2017. Phosphonate MOFs composite as off-on fluorescent sensor for detecting purine metabolite uric acid and diagnosing hyperuricuria. Inorg. Chem. 56, 6802–6808. doi: 10.1021/acs.inorgchem.6b03009
    Liu, X., Qi, W., Wang, Y.F., Lin, D.W., Yang, X.J., Su, R.X., He, Z.M., 2018. Rational design of mimic multienzyme systems in hierarchically porous biomimetic metal-organic frameworks. ACS Appl. Mater. Interfaces 10, 33407–33415. doi: 10.1021/acsami.8b09388
    Liu, Z.Q., Chen, Y.Y., Zhang, M., Sun, T.C., Li, K.E., Han, S.J., Chen, H.J., 2021. Novel portable sensing system with integrated multifunctionality for accurate detection of salivary uric acid. Biosensors (Basel) 11, 242.
    Lu, Y., Lin, L., Ye, J., 2022. Human metabolite detection by surface-enhanced Raman spectroscopy. Mater. Today Bio 13, 100205.
    Martínez, A.D., Ruelas, L., Granger, D.A., 2017. Association between body mass index and salivary uric acid among Mexican-origin infants, youth and adults: gender and developmental differences. Dev. Psychobiol. 59, 225–234. doi: 10.1002/dev.21492
    Ngamchuea, K., Batchelor-McAuley, C., Compton, R.G., 2018. Understanding electroanalytical measurements in authentic human saliva leading to the detection of salivary uric acid. Sens. Actuat. B Chem. 262, 404–410. http://smartsearch.nstl.gov.cn/paper_detail.html?id=a087be68263c41f5be1db9e94a3585b2
    Ngamchuea, K., Batchelor-McAuley, C., Compton, R.G., 2017. Rapid method for the quantification of reduced and oxidized glutathione in human plasma and saliva. Anal. Chem. 89, 2901–2908. doi: 10.1021/acs.analchem.6b04186
    Ngamchuea, K., Batchelor-McAuley, C., Compton, R.G., 2016. The copper(Ⅱ)-catalyzed oxidation of glutathione. Chem. Eur. J. 22, 15937–15944. doi: 10.1002/chem.201603366
    Pixton, S.W., 1965. Detection of insect infestations in cereals by measurement of uric acid. Cereal Chem 42, 315–322.
    Riis, J.L., Bryce, C.I., Matin, M.J., Stebbins, J.L., Kornienko, O., Huisstede, L.V., Granger, D.A., 2018. The validity, stability, and utility of measuring uric acid in saliva. Biomark. Med. 12, 583–596. doi: 10.2217/bmm-2017-0336
    Sahoo, P., Sarkar, H.S., Das, S., Maiti, K., Uddin, M.R., Mandal, S., 2016. Pyrene appended thymine derivative for selective turn-on fluorescence sensing of uric acid in live cells. RSC Adv. 6, 66774–66778.
    Shatery, O.B.A., Omer, K.M., 2022. Selectivity enhancement for uric acid detection via in situ preparation of blue emissive carbon dots entrapped in chromium metal-organic frameworks. ACS Omega 7, 16576–16583. doi: 10.1021/acsomega.2c00790
    Sheshashena Reddy, T., Ram Reddy, A., 2014. 2-Hexylaminoethylamidonaphthalimide as Cu2+ sensor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 880–886. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S1386142514003187&originContentFamily=serial&_origin=article&_ts=1415628550&md5=753dda069cd81206d74dc90fc5ae9992
    Shibasaki, K., Kimura, M., Ikarashi, R., Yamaguchi, A., Watanabe, T., 2012. Uric acid concentration in saliva and its changes with the patients receiving treatment for hyperuricemia. Metabolomics 8, 484–491. doi: 10.1007/s11306-011-0334-z
    Su, C.H., Sun, C.L., Liao, Y.C., 2017. Printed combinatorial sensors for simultaneous detection of ascorbic acid, uric acid, dopamine, and nitrite. ACS Omega 2, 4245–4252. doi: 10.1021/acsomega.7b00681
    Vernerová, A., Krčmová, L.K., Heneberk, O., Radochová, V., Strouhal, O., Kašparovský, A., Melichar, B., Švec, F., 2021. Chromatographic method for the determination of inflammatory biomarkers and uric acid in human saliva. Talanta 233, 122598. http://www.nstl.gov.cn/paper_detail.html?id=0eedde55ed118d79146b8180b6888879
    Vernerová, A., Kujovská Krčmová, L., Melichar, B., Švec, F., 2020. Non-invasive determination of uric acid in human saliva in the diagnosis of serious disorders. Clin. Chem. Lab. Med. 59, 797–812.
    Waryani, B., Tahira, A., Ameen, S., Willande, M., Abbasi, A.R., Ibupoto, Z.H., 2020. The enzyme free uric acid sensor based on iron doped CuO nanostructures for the determination of uric acid from commercial seafood. J. Electron. Mater. 49, 6123–6129. doi: 10.1007/s11664-020-08345-x
    Westley, C., Xu, Y., Thilaganathan, B., Carnell, A.J., Turner, N.J., Goodacre, R., 2017. Absolute quantification of uric acid in human urine using surface enhanced Raman scattering with the standard addition method. Anal. Chem. 89, 2472–2477. doi: 10.1021/acs.analchem.6b04588
    Wu, W.B., Liu, B., 2021. Aggregation-induced emission: challenges and opportunities. Natl. Sci. Rev. 8, nwaa222.
    Xu, L.F., Cao, J.G., Zhong, S.L., Wang, J.F., Yang, Y.Y., Gao, Y., Cui, X.J., 2021. Photoluminescence of Tilapia skin collagen: aggregation-induced emission with clustering triggered emission mechanism and its multiple applications. Int. J. Biol. Macromol. 182, 1437–1444.
    Xin, X.L., Zhang, M.H., Zhao, J.W., Han, C.Y., Liu, X.P., Xiao, Z.Y., Zhang, L.L., Xu, B., Guo, W.Y., Wang, R.M., Sun, D.F., 2017. Fluorescence turn-on detection of uric acid by a water-stable metal–organic nanotube with high selectivity and sensitivity. J. Mater. Chem. C 5, 601–606.
    Yadav, A.K., Verma, D., Sajwan, R.K., Poddar, M., Yadav, S.K., Verma, A.K., Solanki, P.R., 2022. Nanomaterial-based electrochemical nanodiagnostics for human and gut metabolites diagnostics: recent advances and challenges. Biosensors (Basel) 12, 733.
    Yang, J., Fang, M.M., Li, Z., 2020. Organic luminescent materials: the concentration on aggregates from aggregation-induced emission. Aggregate 1, 6–18. doi: 10.1002/agt2.2
    Zhao, J.X., Huang, Y., 2015. Salivary uric acid as a noninvasive biomarker for monitoring the efficacy of urate-lowering therapy in a patient with chronic gouty arthropathy. Clin. Chim. Acta 450, 115–120. doi: 10.1109/ChiCC.2015.7259623
    Zheng, Q.T., Xiong, L., Yu, L., Wu, D., Yang, C.X., Xiao, Y.X., 2021. An enzyme-free fluorescent sensing platform for the detection of uric acid in human urine. J. Lumin. 236, 118076.
    Zhou, S., Zuo, R.X., Zhu, Z., Wu, D., Vasa, K., Deng, Y.W., Zuo, Y.G., 2013. An eco-friendly hydrophilic interaction HPLC method for the determination of renal function biomarkers, creatinine and uric acid, in human fluids. Anal. Meth. 5, 1307–1311. doi: 10.1039/c2ay26362a
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (53) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return