Volume 10 Issue 4
Nov.  2025
Turn off MathJax
Article Contents
Wenxiang Zhai, Yijing Zhong, Wei Zhang, Zechun Ren, Tong Ji, Kejiao Ding, Song Chen, Xinli Wei, Liping Cai, Changlei Xia, Min Xu. Biofunctional cellulose fibers from mulberry bast via suberin nanointerface engineering[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 589-600. doi: 10.1016/j.jobab.2025.07.002
Citation: Wenxiang Zhai, Yijing Zhong, Wei Zhang, Zechun Ren, Tong Ji, Kejiao Ding, Song Chen, Xinli Wei, Liping Cai, Changlei Xia, Min Xu. Biofunctional cellulose fibers from mulberry bast via suberin nanointerface engineering[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 589-600. doi: 10.1016/j.jobab.2025.07.002

Biofunctional cellulose fibers from mulberry bast via suberin nanointerface engineering

doi: 10.1016/j.jobab.2025.07.002
More Information
  • Corresponding author: E-mail address: dl-xumin@nefu.edu.cn (M. Xu)
  • Received Date: 2025-04-22
  • Accepted Date: 2025-07-02
  • Rev Recd Date: 2025-05-27
  • Available Online: 2025-07-19
  • Publish Date: 2025-11-01
  • The development of yarn-free cellulose fibers from natural biomass provides a low-energy and environmentally conscious alternative for producing functional textiles. This study introduced a method for producing yarn-free cellulose fibers from the bast of Broussonetia papyrifera (paper mulberry), a fast-growing plant that does not require pesticides. The fibers were extracted using a mild alkaline treatment that preserved their alignment and allowed them to be knitted directly without traditional spinning. A coating of suberin, obtained from cork bark waste (Quercus variabilis), was applied using ethanol dispersion and fixed by heating at 110 ℃. The coating improved the fiber’s antibacterial performance, moisture response, and mechanical strength (tensile strength: 0.43 GPa; Young’s modulus: 6.4 GPa), while keeping the material flexible and washable. The suberin layer could be removed and reused through a recycling process involving ionic liquids, allowing over 95% recovery after multiple cycles. A life cycle assessment showed that this fiber system had a lower environmental impact compared to conventional synthetic textile fibers. Overall, this work provided a practical and recyclable approach to making functional textiles from natural plant materials.

     

  • Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.07.002.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Allwood, J.M., Laursen, S.E., de Rodriguez, C.M., Bocken, N.M.P., 2015. Well dressed: the present and future sustainability of clothing and textiles in the United Kingdom. J. Home Econom. Instit. Australia 22, 42.
    Correia, V.G., Bento, A., Pais, J., Rodrigues, R., Haliński, Ł.P., Frydrych, M., Greenhalgh, A., Stepnowski, P., Vollrath, F., King, A.W.T., Silva Pereira, C., 2020. The molecular structure and multifunctionality of the cryptic plant polymer suberin. Mater. Today Bio 5, 100039. doi: 10.1016/j.mtbio.2019.100039
    Garcia, H., Ferreira, R., Martins, C., Sousa, A.F., Freire, C.S.R., Silvestre, A.J.D., Kunz, W., Rebelo, L.P.N., Pereira, C.S., 2014. Ex situ reconstitution of the plant biopolyester suberin as a film. Biomacromol. 15, 1806–1813. doi: 10.1021/bm500201s
    Gonçalves, F., Correia, P., Silva, S.P., Almeida-Aguiar, C., 2015. Evaluation of antimicrobial properties of cork. FEMS Microbiol. Lett. 363, fnv231.
    Handiso, B., Valle-Delgado, J.J., Johansson, L.S., Hughes, M., 2021. The physicochemical properties of cellulose surfaces modified with (depolymerised) suberin and suberin fatty acid. Ind. Crops Prod. 159, 113070. doi: 10.1016/j.indcrop.2020.113070
    Hu, L.Q., Koppolu, R., Hämäläinen, R., Kanerva, H., Nick, T., Toivakka, M., Korpinen, R., Saranpää, P., Qasim, U., Liimatainen, H., Xu, C.L., Anghelescu-Hakala, A., 2024. Suberin-based aqueous dispersions for barrier packaging applications. ACS Sustainable Chem. Eng. 12, 8902–8912. doi: 10.1021/acssuschemeng.4c02244
    Huang, T.X., Chen, C., Li, D.F., Ek, M., 2019. Hydrophobic and antibacterial textile fibres prepared by covalently attaching betulin to cellulose. Cell. 26, 665–677. doi: 10.1007/s10570-019-02265-8
    Huang, T.X., Li, D.F., Ek, M., 2018. Water repellency improvement of cellulosic textile fibers by betulin and a betulin-based copolymer. Cell. 25, 2115–2128. doi: 10.1007/s10570-018-1695-5
    Korpinen, R.I., Kilpeläinen, P., Sarjala, T., Nurmi, M., Saloranta, P., Holmbom, T., Koivula, H., Mikkonen, K.S., Willför, S., Saranpää, P.T., 2019. The hydrophobicity of lignocellulosic fiber network can be enhanced with suberin fatty acids. Mol. 24, 4391. doi: 10.3390/molecules24234391
    Lenzing, A., 2018. The global fiber market in 2016. Available at: http://www.lenzing.com/en/investors/equity-story/global-fiber-market.html.
    Li, D.F., Iversen, T., Ek, M., 2015. Hydrophobic materials based on cotton linter cellulose and an epoxy-activated polyester derived from a suberin monomer. Holzforsch. 69, 721–730. doi: 10.1515/hf-2014-0261
    Li, J.G., Chen, C.J., Chen, Q.Y., Li, Z.H., Xiao, S.L., Gao, J.L., He, S.M., Lin, Z.W., Tang, H., Li, T., Hu, L.B., 2024. Kilogram-scale production of strong and smart cellulosic fibers featuring unidirectional fibril alignment. Natl. Sci. Rev. 11, nwae270. doi: 10.1093/nsr/nwae270
    Li, Z.H., Chen, C.J., Xie, H., Yao, Y., Zhang, X., Brozena, A., Li, J.G., Ding, Y., Zhao, X.P., Hong, M., Qiao, H.Y., Smith, L.M., Pan, X.J., Briber, R., Shi, S.Q., Hu, L.B., 2021. Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 5, 235–244. doi: 10.1038/s41893-021-00831-2
    Moriam, K., Azevedo, C., Fateixa, S., Bernardo, F., Sixta, H., Evtuguin, D.V., 2024. Modification of regenerated cellulose fibres by cork-derived suberin and the cutin fraction from grape skins. Carbohydr. Polym. Technol. Appl. 8, 100613.
    Qasim, U., Sirviö, J.A., Suopajärvi, T., Hu, L.Q., Pratiwi, F.W., Lin, M.K.T.H., Anghelescu-Hakala, A., Ronkainen, V.P., Xu, C.L., Liimatainen, H., 2024. A multifunctional biogenic films and coatings from synergistic aqueous dispersion of wood-derived suberin and cellulose nanofibers. Carbohydr. Polym. 338, 122218. doi: 10.1016/j.carbpol.2024.122218
    Roos, S., Posner, S., Jönsson, C., Peters, G.M., 2015. Is unbleached cotton better than bleached exploring the limits of life-cycle assessment in the textile sector. Cloth. Text. Res. J. 33, 231–247. doi: 10.1177/0887302X15576404
    Shen, L., Worrell, E., Patel, M.K., 2010. Environmental impact assessment of man-made cellulose fibres. Resour. Conserv. Recycl. 55, 260–274. doi: 10.1016/j.resconrec.2010.10.001
    Sun, J.R., Li, Y., Sun, K.Y., Zhang, L., Feng, X.C., Song, X.Z., 2024. Investigating the physical characteristics and antibacterial properties of the cork back from Quercus variabilis. Ind. Crops Prod. 222, 119792. doi: 10.1016/j.indcrop.2024.119792
    Yadav, P., Korpinen, R., Räty, T., Korkalo, P., Räsänen, K., Tienaho, J., Saranpää, P., 2024. Life cycle assessment of suberin and betulin production from birch bark. J. Clean. Prod. 474, 143570. doi: 10.1016/j.jclepro.2024.143570
    Zhai, W.X., Xu, M., Zhong, Y.J., Zhang, K., Li, J.M., Ding, K.J., Wei, X.L., Cai, L.P., Xia, C.L., 2023. Permanently mechanically adjustable photothermal catalytic spontaneous double cross-linking network enables durable and stretchable plant skin-like materials. Adv. Funct. Mater. 33, 2305198. doi: 10.1002/adfm.202305198
    Zhai, W.X., Zhong, Y.J., Zhang, W., Ren, Z.C., Ding, K.J., Chen, S., Wei, X.L., Xu, M., Cai, L.P., Xia, C.L., 2025. Compressible and dehydratable all-wood hydrospongel from low-value wood for sustainable water harvesting. Chem. Eng. J. 512, 162458. doi: 10.1016/j.cej.2025.162458
    Zhang, Z.G., Huang, J., Yao, Y., Peters, G., MacDonald, B., La Rosa, A.D., Wang, Z.B., Scherer, L., 2023. Environmental impacts of cotton and opportunities for improvement. Nat. Rev. Earth Environ. 4, 703–715. doi: 10.1038/s43017-023-00476-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (15) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return