Volume 10 Issue 4
Nov.  2025
Turn off MathJax
Article Contents
Jiawei Yang, Qingyuan Li, Shengchang Lu, Hui Wu, Liulian Huang, Lihui Chen, Jianguo Li. Catalyst-free engineered robust cellulose ionogel for high-performance ionotronic devices[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 601-615. doi: 10.1016/j.jobab.2025.08.001
Citation: Jiawei Yang, Qingyuan Li, Shengchang Lu, Hui Wu, Liulian Huang, Lihui Chen, Jianguo Li. Catalyst-free engineered robust cellulose ionogel for high-performance ionotronic devices[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 601-615. doi: 10.1016/j.jobab.2025.08.001

Catalyst-free engineered robust cellulose ionogel for high-performance ionotronic devices

doi: 10.1016/j.jobab.2025.08.001
More Information
  • Ionogels, a newly emerging type of gel material, are considered the most attractive candidate for constructing the next-generation ionotronic devices in the Internet of Things era. However, building robust and sustainable ionogels toward high-performance ionotronic devices in broad scenarios remains a huge challenge. Herein, a mechanically robust cellulose ionogel (RCI) via the facile “catalyst-free” yet chemically cross-linked engineering of cellulose molecules was developed. More specifically, ionic liquid, a typical cellulose solvent, and an ion-conductive component of cellulose ionogel were employed to afford the proton and replace the conventional, additional chemical catalyst, which indeed triggers the chemical reactions between cellulose and glutaraldehyde molecules, and thus creates the chemical-bonded, robust cellulose network of RCI. The prepared RCI (0.4 g glutaraldehyde to 0.6 g cellulose) demonstrated surprisingly high strength of ~11 MPa with 1 000% improvement and toughness of 2.8 MJ/m3 with 700% increase compared to the original cellulose ionogel (CI), as well as acceptable conductivity of 29.1 ms/cm, surpassing most ionogel materials. Such RCI easily constructed versatile ionotronic devices with unexpected voltage-pressure sensitivity, wide-range loading, and linear and steady-state output for self-powered, body motion, human health, and Morse-code information communication applications. The catalyst-free engineering paves the way toward easy-to-prepare, robust, and promising ionogels in our sustainable society, beyond the cellulose material.

     

  • Availability of data
    Data are available on request from the authors.
    Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.08.001.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Angell, C.A., Byrne, N., Belieres, J.P., 2007. Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. Acc. Chem. Res. 40, 1228–1236. doi: 10.1021/ar7001842
    Bai, M.T., Yang, Y., Zhang, L., Huo, H.F., Zhang, J.J., Wang, Z.F., Zhang, Z.F., 2025. Preparation of energy-efficient, environmentally friendly and high-strength biocomposites from wood fibre ultramicro self-composite cellulose matrices. Compos. Part B Eng. 291, 112047. doi: 10.1016/j.compositesb.2024.112047
    Bernhard, S., Ritter, L., Müller, M., Guo, W.Q., Guzzi, E.A., Bovone, G., Tibbitt, M.W., 2024. Modular and photoreversible polymer–nanoparticle hydrogels via host–guest interactions. Small 20, 2401870. doi: 10.1002/smll.202401870
    Cao, K.Y., Zhu, Y., Zheng, Z.H., Cheng, W.K., Zi, Y.F., Zeng, S.Q., Zhao, D.W., Yu, H.P., 2023. Bio-inspired multiscale design for strong and tough biological ionogels. Adv. Sci. 10, 2207233. doi: 10.1002/advs.202207233
    Chen, Q.F., Cheng, B.B., Wang, Z.Q., Sun, X.H., Liu, Y., Sun, H.D., Li, J.W., Chen, L.H., Zhu, X.H., Huang, L.L., Ni, Y.H., An, M., Li, J.G., 2023. Rarely negative-thermovoltage cellulose ionogel with simultaneously boosted mechanical strength and ionic conductivity via ion-molecular engineering. J. Mater. Chem. A 11, 2145–2154. doi: 10.1039/d2ta09068f
    Chen, Q.F., Liu, Y., Yang, J.W., Rehman, M.H.U., Zhang, H.J., Chen, L.H., Li, J.G., 2024. Cellulose ionogels: recent advancement in material, design, performance and applications. Resour. Chem. Mater. 4, 100088. doi: 10.59717/j.xinn-geo.2024.100088
    Chen, S.Q., Meldrum, O.W., Liao, Q.D., Li, Z.F., Cao, X., Guo, L., Zhang, S.Y., Zhu, J., Li, L., 2021. The influence of alkaline treatment on the mechanical and structural properties of bacterial cellulose. Carbohydr. Polym. 271, 118431. doi: 10.1016/j.carbpol.2021.118431
    Cheng, Y., Zhu, H.N., Li, S.J., Xu, M., Li, T.C., Yang, X.M., Song, H.Z., 2023. Stretchable, low-hysteresis, and recyclable ionogel by ionic liquid catalyst and mixed ionic liquid-induced phase separation. ACS Sustainable Chem. Eng. 11, 15031–15042. doi: 10.1021/acssuschemeng.3c03791
    Chizallet, C., Bouchy, C., Larmier, K., Pirngruber, G., 2023. Molecular views on mechanisms of Brønsted acid-catalyzed reactions in zeolites. Chem. Rev. 123, 6107–6196. doi: 10.1021/acs.chemrev.2c00896
    Choi, H.W., Shin, D.W., Yang, J.J., Lee, S., Figueiredo, C., Sinopoli, S., Ullrich, K., Jovančić, P., Marrani, A., Momentè, R., Gomes, J., Branquinho, R., Emanuele, U., Lee, H., Bang, S.Y., Jung, S.M., Han, S.D., Zhan, S.J., Harden-Chaters, W., Suh, Y.H., Fan, X.-B., Lee, T.H., Chowdhury, M., Choi, Y., Nicotera, S., Torchia, A., Moncunill, F.M., Candel, V.G., Durães, N., Chang, K., Cho, S., Kim, C.H., Lucassen, M., Nejim, A., Jiménez, D., Springer, M., Lee, Y.W., Cha, S., Sohn, J.I., Igreja, R., Song, K., Barquinha, P., Martins, R., Amaratunga, G.A.J., Occhipinti, L.G., Chhowalla, M., Kim, J.M., 2022. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat. Commun. 13, 814. doi: 10.1038/s41467-022-28459-6
    Cui, J.J., Liu, F.K., Lu, Z., Feng, S.W., Liang, C., Sun, Y.D., Cui, J., Zhang, B., 2023. Repeatedly recyclable 3D printing catalyst-free dynamic thermosetting photopolymers. Adv. Mater. 35, 2211417. doi: 10.1002/adma.202211417
    Dias, O.A.T., Konar, S., Pakharenko, V., Graziano, A., Leão, A.L., Tjong, J., Jaffer, S., Sain, M., 2021. Regioselective protection and deprotection of nanocellulose molecular design architecture: robust platform for multifunctional applications. Biomacromolecules 22, 4980–4987. doi: 10.1021/acs.biomac.1c00909
    Eyckens, D.J., Demir, B., Walsh, T.R., Welton, T., Henderson, L.C., 2016. Determination of Kamlet–Taft parameters for selected solvate ionic liquids. Phys. Chem. Chem. Phys. 18, 13153–13157. doi: 10.1039/C6CP01216G
    Gong, K., Hou, L., Wu, P.Y., 2022. Hydrogen-bonding affords sustainable plastics with ultrahigh robustness and water-assisted arbitrarily shape engineering. Adv. Mater. 34, 2201065. doi: 10.1002/adma.202201065
    Guo, S.F., Zhao, K., Feng, Z.Q., Hou, Y.D., Li, H., Zhao, J., Tian, Y.L., Song, H.Z., 2018. High performance liquid crystalline bionanocomposite ionogels prepared by in situ crosslinking of cellulose/halloysite nanotubes/ionic liquid dispersions and its application in supercapacitors. Appl. Surf. Sci. 455, 599–607. doi: 10.1016/j.apsusc.2018.06.026
    Guyomard-Lack, A., Buchtová, N., Humbert, B., Le Bideau, J., 2015. Ion segregation in an ionic liquid confined within chitosan based chemical ionogels. Phys. Chem. Chem. Phys. 17, 23947–23951. doi: 10.1039/C5CP04198H
    Han, S.W., Hu, Y.K., Wei, J., Li, S.W., Yang, P.P., Mi, H.Y., Liu, C.T., Shen, C.Y., 2024. A semi-interpenetrating poly(ionic liquid) network-driven low hysteresis and transparent hydrogel as a self-powered multifunctional sensor. Adv. Funct. Mater. 34, 2401607. doi: 10.1002/adfm.202401607
    Hawtof, R., Ghosh, S., Guarr, E., Xu, C.Y., Mohan Sankaran, R., Renner, J.N., 2019. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system. Sci. Adv. 5, eaat5778. doi: 10.1126/sciadv.aat5778
    He, X.N., Zhang, B., Liu, Q.J., Chen, H., Cheng, J.X., Jian, B.C., Yin, H.L., Li, H.G., Duan, K., Zhang, J.W., Ge, Q., 2024. Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance. Nat. Commun. 15, 6431. doi: 10.1038/s41467-024-50797-w
    Hu, X.J., Li, Z.X., Xue, H., Huang, X.S., Cao, R., Liu, T.F., 2020. Designing a bifunctional Brønsted acid-base heterogeneous catalyst through precise installation of ligands on metal-organic frameworks. CCS Chem. 2, 616–622. doi: 10.31635/ccschem.019.201900040
    Hu, Y., Zhang, M., Qin, C.R., Qian, X.Y., Zhang, L.N., Zhou, J.P., Lu, A., 2021. Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Carbohydr. Polym. 265, 118078. doi: 10.1016/j.carbpol.2021.118078
    Jiang, G.Y., Wang, G., Zhu, Y., Cheng, W.K., Cao, K.Y., Xu, G.W., Zhao, D.W., Yu, H.P., 2022. A scalable bacterial cellulose ionogel for multisensory electronic skin. Research 2022, 9814767.
    Kunchornsup, W., Sirivat, A., 2010. Effects of crosslinking ratio and aging time on properties of physical and chemical cellulose gels via 1-butyl-3-methylimidazolium chloride solvent. J. Sol Gel Sci. Technol. 56, 19–26. doi: 10.1007/s10971-010-2266-x
    Lai, C.W., Yu, S.S., 2020. 3D printable strain sensors from deep eutectic solvents and cellulose nanocrystals. ACS Appl. Mater. Interfaces 12, 34235–34244. doi: 10.1021/acsami.0c11152
    Lee, H., Erwin, A., Buxton, M.L., Kim, M., Stryutsky, A.V., Shevchenko, V.V., Sokolov, A.P., Tsukruk, V.V., 2021. Shape persistent, highly conductive ionogels from ionic liquids reinforced with cellulose nanocrystal network. Adv. Funct. Mater. 31, 2103083. doi: 10.1002/adfm.202103083
    Li, N., Yu, Q.Y., Duan, S.D., Du, Y.J., Shi, X.J., Li, X.Y., Jiao, T.F., Qin, Z.H., He, X.M., 2024. Anti-swelling, high-strength, anisotropic conductive hydrogel with excellent biocompatibility for implantable electronic tendon. Adv. Funct. Mater. 34, 2309500. doi: 10.1002/adfm.202309500
    Li, Z.L., Lin, Z.Q., 2021. Recent advances in polysaccharide-based hydrogels for synthesis and applications. Aggregate 2, e21. doi: 10.1002/agt2.21
    Lin, J.H., Zhou, Q.F., Liao, Z.S., Chen, Y.H., Liu, Y.K., Liu, Q., Xiong, X.H., 2024. Steric hindrance engineering to modulate the closed pores formation of polymer-derived hard carbon for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 63, e202409906. doi: 10.1002/anie.202409906
    Liu, X.H., Taiwo, O.O., Yin, C.Y., Ouyang, M.Z., Chowdhury, R., Wang, B.F., Wang, H.Z., Wu, B., Brandon, N.P., Wang, Q.G., Cooper, S.J., 2019. Aligned ionogel electrolytes for high-temperature supercapacitors. Adv. Sci. 6, 1801337. doi: 10.1002/advs.201801337
    Long, Y., Jiang, B., Huang, T.C., Liu, Y.X., Niu, J.N., Wang, Z.L., Hu, W.G., 2023. Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics. Adv. Funct. Mater. 33, 2304625. doi: 10.1002/adfm.202304625
    Ma, H.W., Cheng, Z.Y., Li, X.B., Li, B., Fu, Y.J., Jiang, J.C., 2023. Advances and challenges of cellulose functional materials in sensors. J. Bioresour. Bioprod. 8, 15–32.
    Ma, L.L., Wang, J.X., He, J.M., Yao, Y.L., Zhu, X.D., Peng, L., Yang, J., Liu, X.R., Qu, M.N., 2021. Ultra-sensitive, durable and stretchable ionic skins with biomimetic micronanostructures for multi-signal detection, high-precision motion monitoring, and underwater sensing. J. Mater. Chem. A 9, 26949–26962. doi: 10.1039/d1ta08093h
    Matsuno, R., Kokubo, Y., Kumagai, S., Takamatsu, S., Hashimoto, K., Takahara, A., 2020. Molecular design and characterization of ionic monomers with varying ion pair interaction energies. Macromolecules 53, 1629–1637. doi: 10.1021/acs.macromol.9b02731
    Nordness, O., Brennecke, J.F., 2020. Ion dissociation in ionic liquids and ionic liquid solutions. Chem. Rev. 120, 12873–12902. doi: 10.1021/acs.chemrev.0c00373
    Oh, S.J., Bae, J.W., 2023. All-in-one plasticized ionogel-based stretchable electrochromic devices. Chem. Eng. J. 467, 143367. doi: 10.1016/j.cej.2023.143367
    Pang, Y.J., Luan, X.X., Zhang, K.F., Liu, Y.X., Li, L., Xie, C.X., Pang, J.H., 2023. Self-adhesive frost-resistant conductive hydrogel electrolytes based on TA@WSCA-Zn autocatalytic system for flexible and foldable solid-state capacitors. Chem. Eng. J. 469, 143943. doi: 10.1016/j.cej.2023.143943
    Pu, X., Liu, M.M., Chen, X.Y., Sun, J.M., Du, C.H., Zhang, Y., Zhai, J.Y., Hu, W.G., Wang, Z.L., 2017. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3, e1700015. doi: 10.1126/sciadv.1700015
    Rahmani, P., Shojaei, A., Sakorikar, T., Wang, M.X., Mendoza-Apodaca, Y., Dickey, M.D., 2024. Liquid metal nanoparticles physically hybridized with cellulose nanocrystals initiate and toughen hydrogels with piezoionic properties. ACS Nano. 18, 8038–8050. doi: 10.1021/acsnano.3c11063
    Shen, X.P., Zhao, D.W., Xie, Y.J., Wang, Q.W., Shamshina, J.L., Rogers, R.D., Sun, Q.F., 2023. Cellulose gel mechanoreceptors–principles, applications and prospects. Adv. Funct. Mater. 33, 2214317. doi: 10.1002/adfm.202214317
    Shi, J.Y., Kim, S., Li, P.J., Dong, F.Y., Yang, C.W., Nam, B., Han, C., Eig, E., Shi, L.L., Niu, S.M., Yue, J.P., Tian, B.Z., 2024. Active biointegrated living electronics for managing inflammation. Science 384, 1023–1030. doi: 10.1126/science.adl1102
    Silva, S.S., Mano, J.F., Reis, R.L., 2017. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem. 19, 1208–1220. doi: 10.1039/C6GC02827F
    Someya, T., Amagai, M., 2019. Toward a new generation of smart skins. Nat. Biotechnol. 37, 382–388. doi: 10.1038/s41587-019-0079-1
    Sun, Y.D., Li, X.F., Hu, T., Zhang, S.F., Niu, W.B., 2023. Dynamic acylhydrazone bonds cross-linked chromotropic photonic-ionic skin with self-healing and high resilience for interactive human-machine interface. Chem. Eng. J. 475, 146188. doi: 10.1016/j.cej.2023.146188
    Tie, J.F., Mao, Z.P., Zhang, L.P., Zhong, Y., Xu, H., 2023. Strong and ultratough ionogel enabled by ingenious combined ionic liquids induced microphase separation. Adv. Funct. Mater. 33, 2307367. doi: 10.1002/adfm.202307367
    Wang, B.H., Facchetti, A., 2019. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices. Adv. Mater. 31, 1901408. doi: 10.1002/adma.201901408
    Wang, F., Li, Q.C., Park, J.O., Zheng, S.H., Choi, E., 2021. Ultralow voltage high-performance bioartificial muscles based on ionically crosslinked polypyrrole-coated functional carboxylated bacterial cellulose for soft robots. Adv. Funct. Mater. 31, 2007749. doi: 10.1002/adfm.202007749
    Wang, K., Liu, S.Z., Yu, J.H., Hong, P.X., Wang, W.Y., Cai, W.L., Huang, J.Y., Jiang, X.C., Lai, Y.K., Lin, Z.Q., 2025. Hofmeister effect-enhanced, nanoparticle-shielded, thermally stable hydrogels for anti-UV, fast-response, and all-day-modulated smart windows. Adv. Mater. 37, 2418372. doi: 10.1002/adma.202418372
    Wang, L., Liu, Y.L., Wang, M.S., 2023. Effects of atypical hydrogen bonds and π-π interactions on nonlinear optical properties: dimers of triangular structures based on perylene, naphthalene, and pyromellitic diimides. Langmuir 39, 357–366. doi: 10.1021/acs.langmuir.2c02594
    Xia, Q.Q., Liu, Y.Z., Meng, J., Cheng, W.K., Chen, W.S., Liu, S.X., Liu, Y.X., Li, J., Yu, H.P., 2018. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem. 20, 2711–2721. doi: 10.1039/c8gc00900g
    Xia, Z.H., Li, J.Y., Zhang, J.M., Zhang, X.C., Zheng, X.J., Zhang, J., 2020. Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. J. Bioresour. Bioprod. 5, 79–95. doi: 10.1016/j.jobab.2020.04.001
    Xue, Z.M., Zhao, X.H., Sun, R.C., Mu, T.C., 2016. Biomass-derived γ-valerolactone-based solvent systems for highly efficient dissolution of various lignins: dissolution behavior and mechanism study. Acs Sustain. Chem. Eng. 4, 3864–3870. doi: 10.1021/acssuschemeng.6b00639
    Yang, X.Y., Tian, Y.Q., Wu, B., Jia, W., Hou, C.Y., Zhang, Q.H., Li, Y.G., Wang, H.Z., 2022. High-performance ionic thermoelectric supercapacitor for integrated energy conversion-storage. Energy Environmental Mater. 5, 954–961. doi: 10.1002/eem2.12220
    Yao, X., Zhang, S.F., Wei, N., Qian, L.W., Coseri, S., 2024a. Cellulose-based conductive hydrogels for emerging intelligent sensors. Adv. Fiber Mater. 6, 1256–1305. doi: 10.1007/s42765-024-00418-4
    Yao, X., Zhang, S.F., Wei, N., Qian, L.W., Ding, H., Liu, J.T., Song, W.Q., Coseri, S., 2024b. Poly(ionic liquid) functionalization: a general strategy for strong, tough, ionic conductive, and multifunctional polysaccharide hydrogels toward sensors. SusMat 4, e249. doi: 10.1002/sus2.249
    Ye, H.R., Jiang, J.X., Yang, Y., Shi, J.T., Sun, H.B., Zhang, L., Ge, S.B., Zhang, Y.D., Zhou, Y.H., Liew, R.K., Zhang, Z.F., 2023a. Ultra-strong and environmentally friendly waste polyvinyl chloride/paper biocomposites. Adv. Compos. Hybrid Mater. 6, 81. doi: 10.1007/s42114-023-00664-x
    Ye, Y.H., Oguzlu, H., Zhu, J.Y., Zhu, P.H., Yang, P., Zhu, Y.L., Wan, Z.M., Rojas, O.J., Jiang, F., 2023b. Ultrastretchable ionogel with extreme environmental resilience through controlled hydration interactions. Adv. Funct. Mater. 33, 2209787. doi: 10.1002/adfm.202209787
    Zhang, H.Y., Yang, Q.N., Xu, L.J., Li, N., Tan, H.H., Du, J.J., Yu, M.L., Xu, J.X., 2024. Triboelectric nanogenerators based on hydrated lithium ions incorporated double-network hydrogels for biomechanical sensing and energy harvesting at low temperature. Nano Energy 125, 109521. doi: 10.1016/j.nanoen.2024.109521
    Zhang, L., Jiang, D.W., Dong, T.H., Das, R., Pan, D., Sun, C.Y., Wu, Z.J., Zhang, Q.B., Liu, C.T., Guo, Z.H., 2020. Overview of ionogels in flexible electronics. Chem. Rec. 20, 948–967. doi: 10.1002/tcr.202000041
    Zhang, W., Wu, B.H., Sun, S.T., Wu, P.Y., 2021. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 12, 4082. doi: 10.1038/s41467-021-24382-4
    Zhao, D.W., Zhu, Y., Cheng, W.K., Xu, G.W., Wang, Q.W., Liu, S.X., Li, J., Chen, C.J., Yu, H.P., Hu, L.B., 2020. A dynamic gel with reversible and tunable topological networks and performances. Matter 2, 390–403. doi: 10.1016/j.matt.2019.10.020
    Zheng, S.Q., Chen, X.L., Shen, K.X., Cheng, Y.L., Ma, L., Ming, X.Q., 2024. Hydrogen bonds reinforced ionogels with high sensitivity and stable autonomous adhesion as versatile ionic skins. ACS Appl. Mater. Interfaces 16, 4035–4044. doi: 10.1021/acsami.3c16195
    Zhong, D.L., Wu, C., Jiang, Y.W., Yuan, Y.J., Kim, M.G., Nishio, Y., Shih, C.C., Wang, W.C., Lai, J.C., Ji, X.Z., Gao, T.Z., Wang, Y.X., Xu, C.Y., Zheng, Y., Yu, Z.A., Gong, H.X., Matsuhisa, N., Zhao, C.Z., Lei, Y.S., Liu, D.Y., Zhang, S., Ochiai, Y., Liu, S.H., Wei, S.Y., Tok, J.B.H., Bao, Z.N., 2024. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320. doi: 10.1038/s41586-024-07096-7
    Zhu, A.T., Huang, J., Xie, H.B., Yue, W., Qin, S.D., Zhang, F.Z., Xu, Q.Q., 2022. Use of a superbase/DMSO/CO2 solvent in order to incorporate cellulose into organic ionogel electrolyte for flexible supercapacitors. Chem. Eng. J. 446, 137032. doi: 10.1016/j.cej.2022.137032
    Zhu, R.X., Zhu, D.D., Zheng, Z., Wang, X.L., 2024. Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks. Nat. Commun. 15, 1344. doi: 10.1038/s41467-024-45485-8
    Zhu, T.X., Ni, Y.M., Biesold, G.M., Cheng, Y., Ge, M.Z., Li, H.Q., Huang, J.Y., Lin, Z.Q., Lai, Y.K., 2023a. Recent advances in conductive hydrogels: classifications, properties, and applications. Chem. Soc. Rev. 52, 473–509. doi: 10.1039/d2cs00173j
    Zhu, Y., Guo, Y.H., Cao, K.Y., Zeng, S.Q., Jiang, G.Y., Liu, Y.Z., Cheng, W.K., Bai, W.J., Weng, X.L., Chen, W.S., Zhao, D.W., Yu, H.P., Yu, G.H., 2023b. A general strategy for synthesizing biomacromolecular ionogel membranes via solvent-induced self-assembly. Nat. Synth. 2, 864–872. doi: 10.1038/s44160-023-00315-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (16) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return