| Citation: | Qiang Qu, Di Xing, Yongliang Chen, Mingqiang Zhu. Modulating pore channels of activated carbon from biomass to assemble zinc ion hybrid supercapacitor with high specific capacitance[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 616-630. doi: 10.1016/j.jobab.2025.08.002 |
|
Ahmad, T., Murtaza, Shah, S.S., Khan, S., Khan, A.A., Ullah, N., Oyama, M., Aziz, M.A., 2023. Preparation and electrochemical performance of convolvulus arvensis-derived activated carbon for symmetric supercapacitors. Mater. Sci. Eng. B 292, 116430. doi: 10.1016/j.mseb.2023.116430
|
|
Athanasiou, M., Yannopoulos, S.N., Ioannides, T., 2022. Biomass-derived graphene-like materials as active electrodes for supercapacitor applications: a critical review. Chem. Eng. J. 446, 137191. doi: 10.1016/j.cej.2022.137191
|
|
Aziz, M.A., Shah, S.S., Mahnashi, Y.A., Mahfoz, W., Alzahrani, A.S., Hakeem, A.S., Shaikh, M.N., 2023. A high-energy asymmetric supercapacitor based on tomato-leaf-derived hierarchical porous activated carbon and electrochemically deposited polyaniline electrodes for battery-free heart-pulse-rate monitoring. Small 19, 2300258.
|
|
Chen, B.L., Wu, D.L., Wang, T., Yuan, F., Jia, D.Z., 2023. Rapid preparation of porous carbon by flame burning carbonization method for supercapacitor. Chem. Eng. J. 462, 142163. doi: 10.1016/j.cej.2023.142163
|
|
Cheng, Y.Y., Liu, Y.X., Chu, C., Liu, Y.L., Li, Y.X., Wu, R.Q., Wu, J.C., Zhuang, C.Q., Kang, Z.H., Li, H.T., 2023. Carbon armour with embedded carbon dots for building better supercapacitor electrodes. Nano Res 16, 6815–6824. doi: 10.1007/s12274-022-5338-7
|
|
Cui, J.Q., Yin, J., Meng, J.S., Liu, Y., Liao, M.Y., Wu, T., Dresselhaus, M., Xie, Y.M., Wu, J.H., Lu, C.Z., Zhang, X.C., 2021. Supermolecule cucurbituril subnanoporous carbon supercapacitor (SCSCS). Nano Lett. 21, 2156–2164. doi: 10.1021/acs.nanolett.0c04938
|
|
Das, S.K., Pradhan, L., Jena, B.K., Basu, S., 2023. Polymer derived honeycomb-like carbon nanostructures for high capacitive supercapacitor application. Carbon N Y 201, 49–59. doi: 10.1016/j.carbon.2022.09.004
|
|
Dhakal, G., Mohapatra, D., Kim, Y.I., Lee, J., Kim, W.K., Shim, J.J., 2022. High-performance supercapacitors fabricated with activated carbon derived from Lotus calyx biowaste. Renew. Energy 189, 587–600. doi: 10.1016/j.renene.2022.01.105
|
|
Farma, R., Tania, Y., Apriyani, I., 2023. Conversion of hazelnut seed shell biomass into porous activated carbon with KOH and CO2 activation for supercapacitors. Mater. Today Proc. 87, 51–56. doi: 10.1016/j.matpr.2023.02.099
|
|
Gajalakshmi, T., Kalaivani, T., Thuy Lan Chi, N., Brindhadevi, K., 2023. Investigation on carbon derived from Casuarina bark using microwave activation for high performance supercapacitors. Fuel 337, 127078. doi: 10.1016/j.fuel.2022.127078
|
|
He, Q., He, R., Zia, A., Gao, G.H., Liu, Y.F., Neupane, M., Wang, M., Benedict, Z., Al-Quraishi, K.K., Li, L., Dong, P., Yang, Y.C., 2022. Self-promoting energy storage in Balsa wood-converted porous carbon coupled with carbon nanotubes. Small 18, 2200272. doi: 10.1002/smll.202200272
|
|
Huang, Z.H., Du, S.J., Zhang, Y., Ma, T.Y., Li, H., 2022. A high performance vanadium oxide@molybdenophosphate composite for 2.2 V aqueous symmetric supercapacitors. Chem. Eng. J. 449, 137750. doi: 10.1016/j.cej.2022.137750
|
|
Javed, M.S., Najam, T., Hussain, I., Idrees, M., Ahmad, A., Imran, M., Ahmad Shah, S.S., Luque, R., Han, W.H., 2023. Fundamentals and scientific challenges in structural design of cathode materials for zinc-ion hybrid supercapacitors. Adv. Energy Mater. 13, 2202303. doi: 10.1002/aenm.202202303
|
|
Jiang, X.Y., Ouyang, Z.Z., Zhang, Z.F., Yang, C., Li, X.Q., Dang, Z., Wu, P.X., 2018. Mechanism of glyphosate removal by biochar supported nano-zero-valent iron in aqueous solutions. Colloids Surf. A Physicochem. Eng. Aspects 547, 64–72. doi: 10.1016/j.colsurfa.2018.03.041
|
|
Jiao, S.H., Zhang, L.Q., Li, C.W., Zhang, H.X., Zhang, J.L., Li, P., Tao, Y.B., Zhao, X., Chen, H.L., Jiang, J.C., 2022. Efficient construction of a carbon-based symmetric supercapacitor from soybean straw by coupling multi-stage carbonization and mild activation. Ind. Crops Prod. 183, 114906. doi: 10.1016/j.indcrop.2022.114906
|
|
Kim, J., Park, C., Park, H., Han, J., Lee, J., Kim, S.K., 2022. Upcycling of cattle manure for simultaneous energy recovery and supercapacitor electrode production. Energy 258, 124877. doi: 10.1016/j.energy.2022.124877
|
|
Laxman Mani Kanta, P., Venkatesh, M., Yadav, S.K., Das, B., Gopalan, R., 2023. High energy-power characteristics of microstructurally engineered sodium vanadium phosphate in full cell level. Appl. Energy 334, 120665. doi: 10.1016/j.apenergy.2023.120665
|
|
Li, P., Feng, C.N., Li, H.P., Zhang, X.L., Zheng, X.C., 2021. Facile fabrication of carbon materials with hierarchical porous structure for high-performance supercapacitors. J. Alloys Compd. 851, 156922. doi: 10.1016/j.jallcom.2020.156922
|
|
Li, S.Y., Zhang, Q.Y., Liu, L.N., Wang, J.G., Zhang, L., Shi, M.J., Chen, X.C., 2023. Ultra-stable sandwich shaped flexible MXene/CNT@Ni films for high performance supercapacitor. J. Alloys Compd. 941, 168963. doi: 10.1016/j.jallcom.2023.168963
|
|
Li, Y.C., Xing, B., Ding, Y., Han, X.H., Wang, S.R., 2020. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour. Technol. 312, 123614. doi: 10.1016/j.biortech.2020.123614
|
|
Lin, F.Y., Lin, Y.Y., Li, H.T., Ni, C.S., Liu, C.I., Guan, C.Y., Chang, C.C., Yu, C.P., Chen, W.S., Liu, T.Y., Chen, H.Y., 2022. Trapa natans husk-derived carbon as a sustainable electrode material for plant microbial fuel cells. Appl. Energy 325, 119807. doi: 10.1016/j.apenergy.2022.119807
|
|
Liu, C.Y., Wang, L., Xia, Z.P., Chen, R.X., Wang, H.L., Liu, Y., 2022a. Carbon hollow fibers with tunable hierarchical structure as self-standing supercapacitor electrode. Chem. Eng. J. 431, 134099. doi: 10.1016/j.cej.2021.134099
|
|
Liu, L.Q., An, X.Y., Tian, Z.J., Yang, G.H., Nie, S.X., Shang, Z., Cao, H.B., Cheng, Z.B., Wang, S.J., Liu, H.B., Ni, Y.H., 2022b. Biomass derived carbonaceous materials with tailored superstructures designed for advanced supercapacitor electrodes. Ind. Crops Prod. 187, 115457. doi: 10.1016/j.indcrop.2022.115457
|
|
Long, Y.Y., An, X.Y., Zhang, H., Yang, J., Liu, L.Q., Tian, Z.J., Yang, G.H., Cheng, Z.B., Cao, H.B., Liu, H.B., Ni, Y.H., 2023. Highly graphitized lignin-derived porous carbon with hierarchical N/O co-doping “core-shell” superstructure supported by metal-organic frameworks for advanced supercapacitor performance. Chem. Eng. J. 451, 138877.
|
|
Lv, C.F., Ma, X.J., Guo, R.R., Li, D.N., Hua, X.W., Jiang, T.Y., Li, H.P., Liu, Y., 2023. Polypyrrole-decorated hierarchical carbon aerogel from liquefied wood enabling high energy density and capacitance supercapacitor. Energy 270, 126830.
|
|
Ma, C.D., Bai, J.L., Demir, M., Hu, X., Liu, S.F., Wang, L.L., 2022. Water chestnut shell-derived N/S-doped porous carbons and their applications in CO2 adsorption and supercapacitor. Fuel 326, 125119.
|
|
Mao, X.Y., Li, Y.F., Hu, X.F., Tian, R.P., Yu, W., 2023. Expanded graphite (EG)/Ni@melamine foam (MF)/EG sandwich-structured flexible bipolar plate with excellent electrical conductivity, mechanical properties, and gas permeability. Appl. Energy 338, 120929.
|
|
Ozpinar, P., Dogan, C., Demiral, H., Morali, U., Erol, S., Samdan, C., Yildiz, D., Demiral, I., 2022. Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis. Renew. Energy 189, 535–548.
|
|
Pan, Z.H., Yang, C.H., Chen, Z.W., Ji, X.H., 2022. Construction of Ti3C2Tx/WOx heterostructures on carbon cloth for ultrahigh-mass loading flexible supercapacitor. Nano Res. 15, 8991–8999. doi: 10.1007/s12274-022-4561-6
|
|
Piwek, J., Slesinski, A., Fic, K., Aina, S., Vizintin, A., Tratnik, B., Tchernychova, E., Lobera, M.P., Bernechea, M., Dominko, R., Frackowiak, E., 2022. High frequency response of adenine-derived carbon in aqueous electrochemical capacitor. Electrochim. Acta 424, 140649.
|
|
Ponce, M.F., Mamani, A., Jerez, F., Castilla, J., Ramos, P.B., Acosta, G.G., Sardella, M.F., Bavio, M.A., 2022. Activated carbon from olive tree pruning residue for symmetric solid-state supercapacitor. Energy 260, 125092.
|
|
Qu, Q., Chen, Z., Sun, G.T., Qiu, L., Zhu, M.Q., 2024. CoFe2O4 nanoparticles as a bifunctional agent on activated porous carbon for battery-type asymmetrical supercapacitor. Chem. Synth. 4, 26.
|
|
Rouquerol, F., Rouquerol, J., Sing, K., 1999. Adsorption At the Liquid–Solid Interface: Thermodynamics and Methodology. Adsorption by Powders and Porous Solids. Elsevier, Amsterdam, pp. 117–163.
|
|
Rufford, T.E., Hulicova-Jurcakova, D., Khosla, K., Zhu, Z.H., Lu, G.Q., 2010. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J. Power Sources 195, 912–918.
|
|
Tuinstra, F., Koenig, J.L., 1970. Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130.
|
|
Wang, B., Wang, W.L., Sun, K., Xu, Y.J., Sun, Y., Li, Q., Hu, H., Wu, M.B., 2023a. Developing in situ electron paramagnetic resonance characterization for understanding electron transfer of rechargeable batteries. Nano Res. 16, 11992–12012. doi: 10.1007/s12274-023-5855-z
|
|
Wang, H.X., Xu, J.L., Liu, X.J., Sheng, L.X., 2021. Preparation of straw activated carbon and its application in wastewater treatment: a review. J. Clean. Prod. 283, 124671.
|
|
Wang, T., Wu, D.L., Yuan, F., Liu, Q., Li, W.Y., Jia, D.Z., 2023b. Chitosan derived porous carbon prepared by amino acid proton salt for high-performance quasi-state-solid supercapacitor. Chem. Eng. J. 462, 142292.
|
|
Wang, Z.W., Deuss, P.J., 2023. The isolation of lignin with native-like structure. Biotechnol. Adv. 68, 108230.
|
|
Wang, Z.W., Liu, Y.Z., Barta, K., Deuss, P.J., 2022. The effect of acidic ternary deep eutectic solvent treatment on native lignin. ACS Sustainable Chem. Eng. 10, 12569–12579. doi: 10.1021/acssuschemeng.2c02954
|
|
Wu, Z.Q., Li, H., Li, H., Yang, B.B., Wei, R.H., Zhu, X.G., Zhu, X.B., Sun, Y.P., 2022. Direct growth of porous vanadium nitride on carbon cloth with commercial-level mass loading for solid-state supercapacitors. Chem. Eng. J. 444, 136597.
|
|
Xu, J., Yang, J.H., Qiu, Y.S., Jin, Y., Wang, T.Y., Sun, B., Wang, G.X., 2024. Achieving high-performance sodium metal anodes: from structural design to reaction kinetic improvement. Nano Res. 17, 1288–1312. doi: 10.1007/s12274-023-5889-2
|
|
Yao, X.F., Ma, X.F., Pan, Y., Yue, Z., Gu, F., Zhu, M.Q., 2025. Mechanical-chemical shearing enhanced low-energy separation and transformation of multi-components from Eucommia ulmoides pericarp. Chem. Eng. J. 511, 162288.
|
|
Yao, X.F., Pan, Y., Ma, X.F., Yin, S.S., Zhu, M.Q., 2023. Efficient separation and production of high-quality rubber, lignin nanoparticles and fermentable sugars from Eucommia ulmoides pericarp via deep eutectic solvent pretreatment. Int. J. Biol. Macromol. 253, 127221.
|
|
Yu, M., Han, Y.Y., Li, J., Wang, L.J., 2017. CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chem. Eng. J. 317, 493–502.
|
|
Zhang, H.Y., Zhu, Y.W., Liu, Q.Y., Li, X.W., 2022a. Preparation of porous carbon materials from biomass pyrolysis vapors for hydrogen storage. Appl. Energy 306, 118131.
|
|
Zhang, Q.Y., Yuan, M., Liu, L.N., Li, S.Y., Chen, X.C., Liu, J., Pang, X.Y., Wang, X.J., 2024a. Study of zinc diffusion based on S, N-codoped honeycomb carbon cathodes for high-performance zinc-ion capacitors. Langmuir 40, 5326–5337. doi: 10.1021/acs.langmuir.3c03790
|
|
Zhang, S., Cai, J., Li, H.Y., Xing, F.F., Chen, L., Wang, X.J., He, X.M., 2025. Two-electron phenothiazine based cathode achieved by raising HOMO energy level for high performance lithium organic battery. Adv. Energy Mater. 15, 2403029.
|
|
Zhang, S., Xing, F.F., Chen, L., Wang, X.J., He, X.M., 2022b. Tuning the azo location in conjugated polymers toward high performance lithium-ion batteries. Chem. Mater. 34, 9031–9041. doi: 10.1021/acs.chemmater.2c01497
|
|
Zhang, X.H., Han, R.Y., Liu, Y.Z., Li, H.X., Shi, W.J., Yan, X.Y., Zhao, X.X., Li, Y.F., Liu, B.S., 2023. Porous and graphitic structure optimization of biomass-based carbon materials from 0D to 3D for supercapacitors: a review. Chem. Eng. J. 460, 141607.
|
|
Zhang, Y.F., Tian, J., Li, G.Y., Ji, D.Y., Sun, C., Fan, Z., Pan, L.J., 2025b. Design principles for gradient porous carbon on aqueous zinc-ion hybrid capacitors: a combined molecular dynamic and machine learning study. ACS Appl. Mater. Interfaces 17, 3448–3456. doi: 10.1021/acsami.4c19397
|
|
Zhao, W.X., Jiang, H.Y., Tang, K., Pei, W.Q., Wu, Y.D., Qayoom, A., 2019. Knotted-line: a visual explorer for uncertainty in transportation system. J. Comput. Lang. 53, 1–8.
|
|
Zhu, L.Y., Liu, X.D., Wu, Y., Wang, Q.F., Wang, H.T., Li, D.B., 2022. Fast-pyrolysis lignin-biochar as an excellent precursor for high-performance capacitors. Renew. Energy 198, 1318–1327.
|