Volume 10 Issue 4
Nov.  2025
Turn off MathJax
Article Contents
Qiang Qu, Di Xing, Yongliang Chen, Mingqiang Zhu. Modulating pore channels of activated carbon from biomass to assemble zinc ion hybrid supercapacitor with high specific capacitance[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 616-630. doi: 10.1016/j.jobab.2025.08.002
Citation: Qiang Qu, Di Xing, Yongliang Chen, Mingqiang Zhu. Modulating pore channels of activated carbon from biomass to assemble zinc ion hybrid supercapacitor with high specific capacitance[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 616-630. doi: 10.1016/j.jobab.2025.08.002

Modulating pore channels of activated carbon from biomass to assemble zinc ion hybrid supercapacitor with high specific capacitance

doi: 10.1016/j.jobab.2025.08.002
More Information
  • Corresponding author: E-mail address: zmqsx@nwsuaf.edu.cn (M. Zhu)
  • Received Date: 2025-04-09
  • Accepted Date: 2025-07-23
  • Rev Recd Date: 2025-06-12
  • Available Online: 2025-08-11
  • Publish Date: 2025-11-01
  • A notable challenge in zinc ion hybrid supercapacitor (ZiHSC) is the size discrepancy between the carbon cathode pores and the [Zn·(H2O)6]2+ (diameter of ~0.86 nm), which weakens ionic migration kinetics and reduces energy density. To address this, wood-derived porous carbon with a hierarchical pore structure was synthesized via combined chemical and physical activation. The thermal reduction reaction between H2O steam and the marginal carbon atoms in the pre-existing pores was revealed, successfully enlarging pore diameters from 0.54 nm to 0.71 nm and 1.13 nm. The optimized electrode exhibited a specific capacitance of 412.76 F/g at the scan rate of 5 mV/s in a three-electrode system, and a specific capacity of 269.54 mAh/g at 0.2 A/g current density, and a high energy density of 210.76 Wh/kg at the power density of 1 296 W/kg (based on active material). Furthermore, it exhibited accelerated ion diffusion kinetics within the ZiHSC device and excellent cycling stability (93.55% capacity retention after 20,000 cycles). In situ X-ray powder diffraction (XRD) and Raman spectra revealed that the enhanced charge storage mechanism was coupled with dynamic phase transitions of Zn4SO4(OH)6·5H2O crystallites on electrode surface and the adsorption of Zn2+/[Zn·(H2O)6]2+ into hierarchical pore channel during discharge. This study presents a novel approach for improving the structural and supercapacitive properties of activated carbon materials, demonstrating excellent potential for practical applications.

     

  • Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.08.002.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Ahmad, T., Murtaza, Shah, S.S., Khan, S., Khan, A.A., Ullah, N., Oyama, M., Aziz, M.A., 2023. Preparation and electrochemical performance of convolvulus arvensis-derived activated carbon for symmetric supercapacitors. Mater. Sci. Eng. B 292, 116430. doi: 10.1016/j.mseb.2023.116430
    Athanasiou, M., Yannopoulos, S.N., Ioannides, T., 2022. Biomass-derived graphene-like materials as active electrodes for supercapacitor applications: a critical review. Chem. Eng. J. 446, 137191. doi: 10.1016/j.cej.2022.137191
    Aziz, M.A., Shah, S.S., Mahnashi, Y.A., Mahfoz, W., Alzahrani, A.S., Hakeem, A.S., Shaikh, M.N., 2023. A high-energy asymmetric supercapacitor based on tomato-leaf-derived hierarchical porous activated carbon and electrochemically deposited polyaniline electrodes for battery-free heart-pulse-rate monitoring. Small 19, 2300258.
    Chen, B.L., Wu, D.L., Wang, T., Yuan, F., Jia, D.Z., 2023. Rapid preparation of porous carbon by flame burning carbonization method for supercapacitor. Chem. Eng. J. 462, 142163. doi: 10.1016/j.cej.2023.142163
    Cheng, Y.Y., Liu, Y.X., Chu, C., Liu, Y.L., Li, Y.X., Wu, R.Q., Wu, J.C., Zhuang, C.Q., Kang, Z.H., Li, H.T., 2023. Carbon armour with embedded carbon dots for building better supercapacitor electrodes. Nano Res 16, 6815–6824. doi: 10.1007/s12274-022-5338-7
    Cui, J.Q., Yin, J., Meng, J.S., Liu, Y., Liao, M.Y., Wu, T., Dresselhaus, M., Xie, Y.M., Wu, J.H., Lu, C.Z., Zhang, X.C., 2021. Supermolecule cucurbituril subnanoporous carbon supercapacitor (SCSCS). Nano Lett. 21, 2156–2164. doi: 10.1021/acs.nanolett.0c04938
    Das, S.K., Pradhan, L., Jena, B.K., Basu, S., 2023. Polymer derived honeycomb-like carbon nanostructures for high capacitive supercapacitor application. Carbon N Y 201, 49–59. doi: 10.1016/j.carbon.2022.09.004
    Dhakal, G., Mohapatra, D., Kim, Y.I., Lee, J., Kim, W.K., Shim, J.J., 2022. High-performance supercapacitors fabricated with activated carbon derived from Lotus calyx biowaste. Renew. Energy 189, 587–600. doi: 10.1016/j.renene.2022.01.105
    Farma, R., Tania, Y., Apriyani, I., 2023. Conversion of hazelnut seed shell biomass into porous activated carbon with KOH and CO2 activation for supercapacitors. Mater. Today Proc. 87, 51–56. doi: 10.1016/j.matpr.2023.02.099
    Gajalakshmi, T., Kalaivani, T., Thuy Lan Chi, N., Brindhadevi, K., 2023. Investigation on carbon derived from Casuarina bark using microwave activation for high performance supercapacitors. Fuel 337, 127078. doi: 10.1016/j.fuel.2022.127078
    He, Q., He, R., Zia, A., Gao, G.H., Liu, Y.F., Neupane, M., Wang, M., Benedict, Z., Al-Quraishi, K.K., Li, L., Dong, P., Yang, Y.C., 2022. Self-promoting energy storage in Balsa wood-converted porous carbon coupled with carbon nanotubes. Small 18, 2200272. doi: 10.1002/smll.202200272
    Huang, Z.H., Du, S.J., Zhang, Y., Ma, T.Y., Li, H., 2022. A high performance vanadium oxide@molybdenophosphate composite for 2.2 V aqueous symmetric supercapacitors. Chem. Eng. J. 449, 137750. doi: 10.1016/j.cej.2022.137750
    Javed, M.S., Najam, T., Hussain, I., Idrees, M., Ahmad, A., Imran, M., Ahmad Shah, S.S., Luque, R., Han, W.H., 2023. Fundamentals and scientific challenges in structural design of cathode materials for zinc-ion hybrid supercapacitors. Adv. Energy Mater. 13, 2202303. doi: 10.1002/aenm.202202303
    Jiang, X.Y., Ouyang, Z.Z., Zhang, Z.F., Yang, C., Li, X.Q., Dang, Z., Wu, P.X., 2018. Mechanism of glyphosate removal by biochar supported nano-zero-valent iron in aqueous solutions. Colloids Surf. A Physicochem. Eng. Aspects 547, 64–72. doi: 10.1016/j.colsurfa.2018.03.041
    Jiao, S.H., Zhang, L.Q., Li, C.W., Zhang, H.X., Zhang, J.L., Li, P., Tao, Y.B., Zhao, X., Chen, H.L., Jiang, J.C., 2022. Efficient construction of a carbon-based symmetric supercapacitor from soybean straw by coupling multi-stage carbonization and mild activation. Ind. Crops Prod. 183, 114906. doi: 10.1016/j.indcrop.2022.114906
    Kim, J., Park, C., Park, H., Han, J., Lee, J., Kim, S.K., 2022. Upcycling of cattle manure for simultaneous energy recovery and supercapacitor electrode production. Energy 258, 124877. doi: 10.1016/j.energy.2022.124877
    Laxman Mani Kanta, P., Venkatesh, M., Yadav, S.K., Das, B., Gopalan, R., 2023. High energy-power characteristics of microstructurally engineered sodium vanadium phosphate in full cell level. Appl. Energy 334, 120665. doi: 10.1016/j.apenergy.2023.120665
    Li, P., Feng, C.N., Li, H.P., Zhang, X.L., Zheng, X.C., 2021. Facile fabrication of carbon materials with hierarchical porous structure for high-performance supercapacitors. J. Alloys Compd. 851, 156922. doi: 10.1016/j.jallcom.2020.156922
    Li, S.Y., Zhang, Q.Y., Liu, L.N., Wang, J.G., Zhang, L., Shi, M.J., Chen, X.C., 2023. Ultra-stable sandwich shaped flexible MXene/CNT@Ni films for high performance supercapacitor. J. Alloys Compd. 941, 168963. doi: 10.1016/j.jallcom.2023.168963
    Li, Y.C., Xing, B., Ding, Y., Han, X.H., Wang, S.R., 2020. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour. Technol. 312, 123614. doi: 10.1016/j.biortech.2020.123614
    Lin, F.Y., Lin, Y.Y., Li, H.T., Ni, C.S., Liu, C.I., Guan, C.Y., Chang, C.C., Yu, C.P., Chen, W.S., Liu, T.Y., Chen, H.Y., 2022. Trapa natans husk-derived carbon as a sustainable electrode material for plant microbial fuel cells. Appl. Energy 325, 119807. doi: 10.1016/j.apenergy.2022.119807
    Liu, C.Y., Wang, L., Xia, Z.P., Chen, R.X., Wang, H.L., Liu, Y., 2022a. Carbon hollow fibers with tunable hierarchical structure as self-standing supercapacitor electrode. Chem. Eng. J. 431, 134099. doi: 10.1016/j.cej.2021.134099
    Liu, L.Q., An, X.Y., Tian, Z.J., Yang, G.H., Nie, S.X., Shang, Z., Cao, H.B., Cheng, Z.B., Wang, S.J., Liu, H.B., Ni, Y.H., 2022b. Biomass derived carbonaceous materials with tailored superstructures designed for advanced supercapacitor electrodes. Ind. Crops Prod. 187, 115457. doi: 10.1016/j.indcrop.2022.115457
    Long, Y.Y., An, X.Y., Zhang, H., Yang, J., Liu, L.Q., Tian, Z.J., Yang, G.H., Cheng, Z.B., Cao, H.B., Liu, H.B., Ni, Y.H., 2023. Highly graphitized lignin-derived porous carbon with hierarchical N/O co-doping “core-shell” superstructure supported by metal-organic frameworks for advanced supercapacitor performance. Chem. Eng. J. 451, 138877.
    Lv, C.F., Ma, X.J., Guo, R.R., Li, D.N., Hua, X.W., Jiang, T.Y., Li, H.P., Liu, Y., 2023. Polypyrrole-decorated hierarchical carbon aerogel from liquefied wood enabling high energy density and capacitance supercapacitor. Energy 270, 126830.
    Ma, C.D., Bai, J.L., Demir, M., Hu, X., Liu, S.F., Wang, L.L., 2022. Water chestnut shell-derived N/S-doped porous carbons and their applications in CO2 adsorption and supercapacitor. Fuel 326, 125119.
    Mao, X.Y., Li, Y.F., Hu, X.F., Tian, R.P., Yu, W., 2023. Expanded graphite (EG)/Ni@melamine foam (MF)/EG sandwich-structured flexible bipolar plate with excellent electrical conductivity, mechanical properties, and gas permeability. Appl. Energy 338, 120929.
    Ozpinar, P., Dogan, C., Demiral, H., Morali, U., Erol, S., Samdan, C., Yildiz, D., Demiral, I., 2022. Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis. Renew. Energy 189, 535–548.
    Pan, Z.H., Yang, C.H., Chen, Z.W., Ji, X.H., 2022. Construction of Ti3C2Tx/WOx heterostructures on carbon cloth for ultrahigh-mass loading flexible supercapacitor. Nano Res. 15, 8991–8999. doi: 10.1007/s12274-022-4561-6
    Piwek, J., Slesinski, A., Fic, K., Aina, S., Vizintin, A., Tratnik, B., Tchernychova, E., Lobera, M.P., Bernechea, M., Dominko, R., Frackowiak, E., 2022. High frequency response of adenine-derived carbon in aqueous electrochemical capacitor. Electrochim. Acta 424, 140649.
    Ponce, M.F., Mamani, A., Jerez, F., Castilla, J., Ramos, P.B., Acosta, G.G., Sardella, M.F., Bavio, M.A., 2022. Activated carbon from olive tree pruning residue for symmetric solid-state supercapacitor. Energy 260, 125092.
    Qu, Q., Chen, Z., Sun, G.T., Qiu, L., Zhu, M.Q., 2024. CoFe2O4 nanoparticles as a bifunctional agent on activated porous carbon for battery-type asymmetrical supercapacitor. Chem. Synth. 4, 26.
    Rouquerol, F., Rouquerol, J., Sing, K., 1999. Adsorption At the Liquid–Solid Interface: Thermodynamics and Methodology. Adsorption by Powders and Porous Solids. Elsevier, Amsterdam, pp. 117–163.
    Rufford, T.E., Hulicova-Jurcakova, D., Khosla, K., Zhu, Z.H., Lu, G.Q., 2010. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J. Power Sources 195, 912–918.
    Tuinstra, F., Koenig, J.L., 1970. Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130.
    Wang, B., Wang, W.L., Sun, K., Xu, Y.J., Sun, Y., Li, Q., Hu, H., Wu, M.B., 2023a. Developing in situ electron paramagnetic resonance characterization for understanding electron transfer of rechargeable batteries. Nano Res. 16, 11992–12012. doi: 10.1007/s12274-023-5855-z
    Wang, H.X., Xu, J.L., Liu, X.J., Sheng, L.X., 2021. Preparation of straw activated carbon and its application in wastewater treatment: a review. J. Clean. Prod. 283, 124671.
    Wang, T., Wu, D.L., Yuan, F., Liu, Q., Li, W.Y., Jia, D.Z., 2023b. Chitosan derived porous carbon prepared by amino acid proton salt for high-performance quasi-state-solid supercapacitor. Chem. Eng. J. 462, 142292.
    Wang, Z.W., Deuss, P.J., 2023. The isolation of lignin with native-like structure. Biotechnol. Adv. 68, 108230.
    Wang, Z.W., Liu, Y.Z., Barta, K., Deuss, P.J., 2022. The effect of acidic ternary deep eutectic solvent treatment on native lignin. ACS Sustainable Chem. Eng. 10, 12569–12579. doi: 10.1021/acssuschemeng.2c02954
    Wu, Z.Q., Li, H., Li, H., Yang, B.B., Wei, R.H., Zhu, X.G., Zhu, X.B., Sun, Y.P., 2022. Direct growth of porous vanadium nitride on carbon cloth with commercial-level mass loading for solid-state supercapacitors. Chem. Eng. J. 444, 136597.
    Xu, J., Yang, J.H., Qiu, Y.S., Jin, Y., Wang, T.Y., Sun, B., Wang, G.X., 2024. Achieving high-performance sodium metal anodes: from structural design to reaction kinetic improvement. Nano Res. 17, 1288–1312. doi: 10.1007/s12274-023-5889-2
    Yao, X.F., Ma, X.F., Pan, Y., Yue, Z., Gu, F., Zhu, M.Q., 2025. Mechanical-chemical shearing enhanced low-energy separation and transformation of multi-components from Eucommia ulmoides pericarp. Chem. Eng. J. 511, 162288.
    Yao, X.F., Pan, Y., Ma, X.F., Yin, S.S., Zhu, M.Q., 2023. Efficient separation and production of high-quality rubber, lignin nanoparticles and fermentable sugars from Eucommia ulmoides pericarp via deep eutectic solvent pretreatment. Int. J. Biol. Macromol. 253, 127221.
    Yu, M., Han, Y.Y., Li, J., Wang, L.J., 2017. CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chem. Eng. J. 317, 493–502.
    Zhang, H.Y., Zhu, Y.W., Liu, Q.Y., Li, X.W., 2022a. Preparation of porous carbon materials from biomass pyrolysis vapors for hydrogen storage. Appl. Energy 306, 118131.
    Zhang, Q.Y., Yuan, M., Liu, L.N., Li, S.Y., Chen, X.C., Liu, J., Pang, X.Y., Wang, X.J., 2024a. Study of zinc diffusion based on S, N-codoped honeycomb carbon cathodes for high-performance zinc-ion capacitors. Langmuir 40, 5326–5337. doi: 10.1021/acs.langmuir.3c03790
    Zhang, S., Cai, J., Li, H.Y., Xing, F.F., Chen, L., Wang, X.J., He, X.M., 2025. Two-electron phenothiazine based cathode achieved by raising HOMO energy level for high performance lithium organic battery. Adv. Energy Mater. 15, 2403029.
    Zhang, S., Xing, F.F., Chen, L., Wang, X.J., He, X.M., 2022b. Tuning the azo location in conjugated polymers toward high performance lithium-ion batteries. Chem. Mater. 34, 9031–9041. doi: 10.1021/acs.chemmater.2c01497
    Zhang, X.H., Han, R.Y., Liu, Y.Z., Li, H.X., Shi, W.J., Yan, X.Y., Zhao, X.X., Li, Y.F., Liu, B.S., 2023. Porous and graphitic structure optimization of biomass-based carbon materials from 0D to 3D for supercapacitors: a review. Chem. Eng. J. 460, 141607.
    Zhang, Y.F., Tian, J., Li, G.Y., Ji, D.Y., Sun, C., Fan, Z., Pan, L.J., 2025b. Design principles for gradient porous carbon on aqueous zinc-ion hybrid capacitors: a combined molecular dynamic and machine learning study. ACS Appl. Mater. Interfaces 17, 3448–3456. doi: 10.1021/acsami.4c19397
    Zhao, W.X., Jiang, H.Y., Tang, K., Pei, W.Q., Wu, Y.D., Qayoom, A., 2019. Knotted-line: a visual explorer for uncertainty in transportation system. J. Comput. Lang. 53, 1–8.
    Zhu, L.Y., Liu, X.D., Wu, Y., Wang, Q.F., Wang, H.T., Li, D.B., 2022. Fast-pyrolysis lignin-biochar as an excellent precursor for high-performance capacitors. Renew. Energy 198, 1318–1327.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (19) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return