Volume 10 Issue 4
Nov.  2025
Turn off MathJax
Article Contents
Fengfan Zhu, Huanhui Zhan, Chenfei Wang, Bo Fu, Jiancheng Zhou. Design of bio-based P-N synergistic aerogels: Integrating phosphorylated chitosan into sodium alginate for fire-safe thermal insulation[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 545-559. doi: 10.1016/j.jobab.2025.08.004
Citation: Fengfan Zhu, Huanhui Zhan, Chenfei Wang, Bo Fu, Jiancheng Zhou. Design of bio-based P-N synergistic aerogels: Integrating phosphorylated chitosan into sodium alginate for fire-safe thermal insulation[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 545-559. doi: 10.1016/j.jobab.2025.08.004

Design of bio-based P-N synergistic aerogels: Integrating phosphorylated chitosan into sodium alginate for fire-safe thermal insulation

doi: 10.1016/j.jobab.2025.08.004
More Information
  • Corresponding author: E-mail address: fubo@njfu.edu.cn (B. Fu); E-mail address: jczhou@seu.edu.cn (J. Zhou)
  • Received Date: 2025-04-24
  • Accepted Date: 2025-07-11
  • Rev Recd Date: 2025-06-26
  • Available Online: 2025-08-16
  • Publish Date: 2025-11-01
  • In response to the growing demand for sustainable thermal management solutions, this study developed an eco-friendly flame-retardant aerogel through a green manufacturing process that incorporates bio-derived phosphorylated chitosan (PCS) into a sodium alginate (SA) matrix. The strategic incorporation of PCS, synthesized from renewable chitin resources, significantly enhanced the interfacial compatibility and thermal stability of the composite material while introducing a phosphorus-nitrogen synergistic flame-retardant mechanism. Systematic characterization revealed that the sodium alginate mixed with 30% that mass of phosphorylated chitosan (SA-30 PCS) exhibits exceptional fire safety performance, achieving a limiting oxygen index (LOI) of 33.7% and a V-0 rating in the vertical burning test (Underwriters Laboratories Standard 94), which indicates the highest level of flame resistance. Additionally, this formulation shows a 45% reduction in total heat release compared to pristine SA aerogels. The composite maintains low thermal conductivity (0.035 0 W/(m·K)), fulfilling dual requirements for high-temperature insulation and fire protection. A sustainable hydrophobic modification strategy employing methyltrichlorosilane vapor deposition further endowed the aerogel with moisture resistance. As a wholly biomass-derived system (SA/PCS), the aerogel eliminates persistent toxic residues associated with halogenated flame retardants, while its phosphorus components are covalently bonded in polymeric chains, significantly reducing environmental mobility compared to inorganic phosphates. The inherent biopolymer composition enables potential end-of-life management via enzymatic digestion (e.g., chitinase/alginate lyase), positioning it as an eco-design alternative for sustainable insulation.

     

  • Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    CRediT authorship contribution statement
    Fengfan Zhu: Visualization, Formal analysis, Writing – original draft. Huanhui Zhan: Data curation, Formal analysis. Chenfei Wang: Visualization. Bo Fu: Conceptualization, Supervision, Funding acquisition, Writing – review & editing. Jiancheng Zhou: Supervision, Writing – review & editing.
    Data availability
    Data will be made available on request.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.08.004.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Ahmed, N., Gulzar, H., Wang, J.L., 2023. Tuning the performance of nanofiller reinforced phosphorylated chitosan-based proton exchange membrane. J. Electrochem. Soc. 170, 024501. doi: 10.1149/1945-7111/acb613
    Blais, M., Carpenter, K., 2015. Combustion characteristics of flat panel televisions with and without fire retardants in the casing. Fire Technol. 51, 19–40. doi: 10.1007/s10694-014-0420-7
    Bouissil, S., El Alaoui-Talibi, Z., Pierre, G., Michaud, P., El Modafar, C., Delattre, C., 2020. Use of alginate extracted from Moroccan brown algae to stimulate natural defense in date palm roots. Molecules 25, 720. doi: 10.3390/molecules25030720
    Cao, M., Liu, B.W., Zhang, L., Peng, Z.C., Zhang, Y.Y., Wang, H., Zhao, H.B., Wang, Y.Z., 2021. Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications. Compos. Part B Eng. 225, 109309.
    Chen, R., Luo, Z.J., Yu, X.J., Tang, H., Zhou, Y., Zhou, H., 2020. Synthesis of chitosan-based flame retardant and its fire resistance in epoxy resin. Carbohydr. Polym. 245, 116530.
    Chen, X.P., Yang, Y.S., Guan, Y.H., Luo, C.Y., Bao, M.T., Li, Y.M., 2022. A solar-heated antibacterial sodium alginate aerogel for highly efficient cleanup of viscous oil spills. J. Colloid Interface Sci. 621, 241–253. doi: 10.3390/land11020241
    Cheng, Y., Lu, L.B., Zhang, W.Y., Shi, J.J., Cao, Y., 2012. Reinforced low density alginate-based aerogels: preparation, hydrophobic modification and characterization. Carbohydr. Polym. 88, 1093–1099.
    Cui, H.L., Wu, N.J., Ma, X.B., Niu, F.K., 2023. Superior intrinsic flame-retardant phosphorylated chitosan aerogel as fully sustainable thermal insulation bio-based material. Polym. Degrad. Stab. 207, 110213.
    D'Silva, K., Fernandes, A., Rose, M., 2004. Brominated organic micropollutants: igniting the flame retardant issue. Crit. Rev. Environ. Sci. Technol. 34, 141–207.
    Fang, Y.C., Liu, X.H., Tao, X.C., 2019. Intumescent flame retardant and anti-dripping of PET fabrics through layer-by-layer assembly of chitosan and ammonium polyphosphate. Prog. Org. Coat. 134, 162–168.
    Greve, C., Preketes, N.K., Costard, R., Koeppe, B., Fidder, H., Nibbering, E.T.J., Temps, F., Mukamel, S., Elsaesser, T., 2012. N-H stretching modes of adenosine monomer in solution studied by ultrafast nonlinear infrared spectroscopy and ab initio calculations. J. Phys. Chem. A 116, 7636–7644. doi: 10.1021/jp303864m
    He, T., Chen, F.G., Zhu, W.X., Yan, N., 2022. Functionalized lignin nanoparticles for producing mechanically strong and tough flame-retardant polyurethane elastomers. Int. J. Biol. Macromol. 209, 1339–1351.
    Hendriks, H.S., Meijer, M., Muilwijk, M., van den Berg, M., Westerink, R.H.S., 2014. A comparison of the in vitro cyto- and neurotoxicity of brominated and halogen-free flame retardants: prioritization in search for safe(r) alternatives. Arch. Toxicol. 88, 857–869. doi: 10.1007/s00204-013-1187-1
    Jiao, C.L., Li, T.T., Wang, J., Wang, H., Zhang, X.L., Han, X.J., Du, Z.F., Shang, Y.L., Chen, Y.Y., 2020. Efficient removal of dyes from aqueous solution by a porous sodium alginate/gelatin/graphene oxide triple-network composite aerogel. J. Polym. Environ. 28, 1492–1502. doi: 10.1007/s10924-020-01702-1
    Jiao, C.L., Xiong, J.Q., Tao, J., Xu, S.J., Zhang, D.S., Lin, H., Chen, Y.Y., 2016. Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study. Int. J. Biol. Macromol. 83, 133–141.
    Li, J., Ke, C.H., Xu, L., Wang, Y.Z., 2012. Synergistic effect between a hyperbranched charring agent and ammonium polyphosphate on the intumescent flame retardance of acrylonitrile-butadiene-styrene polymer. Polym. Degrad. Stab. 97, 1107–1113.
    Liu, J., Zhan, H.H., Song, J.N., Wang, C.F., Zhao, T., Fu, B., 2024. Facile construction of flame-resistant and thermal-insulating sodium alginate aerogel incorporating N- and P-elements. Polymers (Basel) 16, 2814. doi: 10.3390/polym16192814
    Lou, F.F., Dong, S.J., Zhu, K.Y., Chen, X.N., Ma, Y.W., 2023. Thermal insulation performance of aerogel nano-porous materials: characterization and test methods. Gels 9, 220. doi: 10.3390/gels9030220
    Ma, J.L., Xu, C., Zhang, X.F., Li, M.J., Yao, J.F., 2025. Viscosity-mediated entrapment of ChCl/ZnCl2 deep eutectic solvent in supported liquid membranes enables efficient CO2 separation. J. Membr. Sci. 733, 124331.
    Ma, X.B., Wu, N.J., Liu, P.B., Cui, H.L., 2022. Fabrication of highly efficient phenylphosphorylated chitosan bio-based flame retardants for flammable PLA biomaterial. Carbohydr. Polym. 287, 119317.
    Mensah, R.A., Xu, Q., Asante-Okyere, S., Jin, C., Bentum-Micah, G., 2019. Correlation analysis of cone calorimetry and microscale combustion calorimetry experiments. J. Therm. Anal. Calorim. 136, 589–599. doi: 10.1007/s10973-018-7661-5
    Milivojevic, M., Pajic-Lijakovic, I., Bugarski, B., 2019. Recent Advances in Alginates As Material For Biomedical applications. Alginates. Includes bibliographical References and Index. Apple Academic Press, pp. 25–88.
    Nishi, N., Ebina, A., Nishimura, S.I., Tsutsumi, A., Hasegawa, O., Tokura, S., 1986. Highly phosphorylated derivatives of chitin, partially deacetylated chitin and chitosan as new functional polymers: preparation and characterization. Int. J. Biol. Macromol. 8, 311–317.
    Niu, Y., Wang, S., Zhu, Z.Q., Su, M., Wang, Y.J., Yan, L.J., Ma, Y.J., Sun, H.X., Liang, W.D., Li, A., 2022. Robust composite aerogels with excellent flame retardant and thermal insulation properties based on modified hollow glass microspheres. Polym. Degrad. Stab. 202, 110030.
    Phong, D.T., Hieu, N.T.N., Hai, N.D., Tu, P.M., Dat, N.M., Nam, N.T.H., Cong, C.Q., An, H., Minh, D.T.C., Thy, L.T.M., Ha, H.K.P., Hieu, N.H., 2024. Multifunctional applications of cellulose/sodium alginate aerogel material: antibacterial, adsorption, and heat insulation. Mater. Today Sustain. 25, 100618.
    Qiu, S.L., Wang, X., Yu, B., Feng, X.M., Mu, X.W., Yuen, R.K.K., Hu, Y., 2017. Flame-retardant-wrapped polyphosphazene nanotubes: a novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins. J. Hazard. Mater. 325, 327–339.
    Que, Y.S., Zhao, C.X., Wei, J.X., Yang, F.H., Li, H., Cheng, J.B., Xiang, D., Wu, Y.P., Wang, B., 2023. Phosphorus-containing polybenzoxazine aerogels with efficient flame retardation and thermal insulation. Int. J. Mol. Sci. 24, 4314. doi: 10.3390/ijms24054314
    Sahoo, D.R., Biswal, T., 2021. Alginate and its application to tissue engineering. SN Appl. Sci. 3, 30.
    Song, Q.Y., Wu, H.J., Liu, H., Wang, T., Meng, W.H., Qu, H.Q., 2021. Chitosan-regulated inorganic oxyacid salt flame retardants: preparation and application in PVC composites. J. Therm. Anal. Calorim. 146, 1629–1639. doi: 10.1007/s10973-020-10170-7
    Terkula Iber, B., Azman Kasan, N., Torsabo, D., Wese Omuwa, J., 2022. A review of various sources of chitin and chitosan in nature. J. Renew. Mater. 10, 1097–1123. doi: 10.32604/jrm.2022.018142
    Thapliyal, P.C., Singh, K., 2014. Aerogels as promising thermal insulating materials: an overview. J. Mater. 2014, 127049.
    Wang, C.F., Yu, B., Zhao, T., Yang, F., Chen, M.H., Zhu, X.B., Cai, Z.C., Fu, B., 2025a. Chitosan cryogels incorporated with phytic acid-modified UiO-66-NH2 for enhanced flame-retardant performance. Carbohydr. Polym. 353, 123259.
    Wang, D., Wang, C., Li, T.T., Yan, G.L., Jiao, Y.H., Xu, J.Z., Ma, H.Y., 2025b APP-PER-MEL aerogel based on supramolecular assembly: new insight from conventional concept. Polym. Degrad. Stab. 234, 111197.
    Wang, K.P., Liu, Q., 2014. Chemical structure analyses of phosphorylated chitosan. Carbohydr. Res. 386, 48–56.
    Wang, W., Liu, Y., Wang, Q., 2024. Synthesis of melamine cyanuric based flame retardant via hydrogen bond self-assembly and in situ dispersion strategies for improving comprehensive performance of epoxy resin. Compos. Part A Appl. Sci. Manuf. 176, 107826.
    Wen, N., Zeng, W., Yang, Y.X., Yang, Z.W., Li, H.T., Li, X.Y., Li, Q., Ding, H., Lei, Z.Q., 2022. Preparation of the intrinsic flame-retardant curing agent of inorganic epoxy resin containing nitrogen and phosphorus. J. Inorg. Organomet. Polym. Mater. 32, 412–422. doi: 10.1007/s10904-021-02153-4
    Yan, J., Xu, P.F., Zhang, P.K., Fan, H.J., 2021. Surface-modified ammonium polyphosphate for flame-retardant and reinforced polyurethane composites. Colloids Surf. A Physicochem. Eng. Aspects 626, 127092.
    Yan, J., Yang, J., Sun, L.L., Xu, G.L., Li, Z.H., 2022. Preparation, structure and application of styrene-acrylic emulsion/modified ammonium polyphosphate in flame retardant air filter paper. J. Ind. Text. 51, 7223S–7238S.
    Yang, Z.Y., Li, H.K., Niu, G., Wang, J., Zhu, D.C., 2021. Poly(vinylalcohol)/chitosan-based high-strength, fire-retardant and smoke-suppressant composite aerogels incorporating aluminum species via freeze drying. Compos. Part B Eng. 219, 108919.
    Younes, I., Rinaudo, M., 2015. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 13, 1133–1174. doi: 10.3390/md13031133
    Yu, M., Zhang, T.T., Li, J., Tan, J.H., Zhu, X.B., 2023. Enhancing toughness, flame retardant, hydrophobic and dielectric properties of epoxy resin by incorporating multifunctional additive containing phosphorus/silicon. Mater. Des. 225, 111529.
    Yuan, B.H., Fan, A., Yang, M., Chen, X.F., Hu, Y., Bao, C.L., Jiang, S.H., Niu, Y., Zhang, Y., He, S., Dai, H.M., 2017. The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym. Degrad. Stab. 143, 42–56.
    Zhan, H.H., Liu, J., Wang, P., Wang, C.F., Wang, Z.G., Chen, M.H., Zhu, X.B., Fu, B., 2024. Integration of N- and P- elements in sodium alginate aerogels for efficient flame retardant and thermal insulating properties. Int. J. Biol. Macromol. 273, 132643.
    Zhang, Q., Chen, B., Wu, K., Nan, B.F., Lu, M.P., Lu, M.G., 2021. PEG-filled kapok fiber/sodium alginate aerogel loaded phase change composite material with high thermal conductivity and excellent shape stability. Compos. Part A Appl. Sci. Manuf. 143, 106279.
    Zhang, T., Yan, H.Q., Shen, L., Fang, Z.P., Zhang, X.M., Wang, J.J., Zhang, B.Y., 2014. Chitosan/phytic acid polyelectrolyte complex: a green and renewable intumescent flame retardant system for ethylene–vinyl acetate copolymer. Ind. Eng. Chem. Res. 53, 19199–19207. doi: 10.1021/ie503421f
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (13) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return