Volume 10 Issue 4
Nov.  2025
Turn off MathJax
Article Contents
Ameena Bacchus, Weijue Gao, Pedram Fatehi. Structural insights of sulfoethylated kraft lignin at different drying temperatures ✩[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 497-512. doi: 10.1016/j.jobab.2025.09.001
Citation: Ameena Bacchus, Weijue Gao, Pedram Fatehi. Structural insights of sulfoethylated kraft lignin at different drying temperatures [J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 497-512. doi: 10.1016/j.jobab.2025.09.001

Structural insights of sulfoethylated kraft lignin at different drying temperatures

doi: 10.1016/j.jobab.2025.09.001
More Information
  • Corresponding author: E-mail address: pfatehi@lakeheadu.ca (P. Fatehi)
  • Received Date: 2025-05-16
  • Accepted Date: 2025-08-01
  • Rev Recd Date: 2025-07-20
  • Available Online: 2025-09-08
  • Publish Date: 2025-11-01
  • Sulfonated lignin has potential applications in various fields, including wastewater treatment, the textile industry, and construction. Although the reaction chemistry of sulfonated lignin has been well studied, the method of drying this material after synthesis has not been evaluated. In this study, sulfoethylated kraft lignin (SEKL) was synthesized as a representative sulfonated lignin to investigate the impact of drying temperature on its structure and properties. For SEKL, freeze-drying at –55 ℃ resulted in the highest charge density, water-solubility, and more uniform chemical structures. The sulfonic acid groups underwent alkylation reaction after the sample was oven-dried at 55 and 80 ℃, which was accompanied by a reduction in solubility and charge density of the sample, as well as an increase in glass transition temperature. Furthermore, the sample after drying at higher temperatures of 105 and 130 ℃ not only exhibited the alkylation but also underwent hydrolysis of the sulfonic acid groups at the phenolic position of lignin. This change was accompanied by a further reduction in molecular weight, solubility, and charge density, as well as a decrease in the glass transition temperature. It was found that the alkylation and hydrolysis of SEKL occurred to varying degrees, and higher temperatures promoted hydrolysis. Based on the results of this work, drying temperature has a significant effect on the properties of the SEKL sample, implying that it must be taken into account when considering its application in different fields.

     

  • Declaration of Competing Interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Author contributions
    Ammena Bacchus: Experimentation. Ammena Bacchus, Wejue Gao: Analysis. Ammena Bacchus: Writing-original draft. Wejue Gao, Pedram Fatehi: Writing-review editing. Pedram Fatehi: Supervision.
    Availability of data
    Data available on request from the authors.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.09.001.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Ail, U., Phopase, J., Nilsson, J., Khan, Z.U., Inganäs, O., Berggren, M., Crispin, X., 2020. Effect of sulfonation level on lignin/carbon composite electrodes for large-scale organic batteries. ACS Sustain. Chem. Eng. 8, 17933–17944. doi: 10.1021/acssuschemeng.0c05397
    Antony, A., Farid, M., 2022. Effect of temperatures on polyphenols during extraction. Appl. Sci. 12, 2107. doi: 10.3390/app12042107
    Aro, T., Fatehi, P., 2017. Production and application of lignosulfonates and sulfonated lignin. ChemSusChem 10, 1861–1877. doi: 10.1002/cssc.201700082
    Bacchus, A., Fatehi, P., 2024. Structural changes of cationic grafted lignin at different drying temperatures. Ind. Crops Prod. 222, 119837.
    Bahrpaima, K., Fatehi, P., 2018. Synthesis and characterization of carboxyethylated lignosulfonate. ChemSusChem 11, 2967–2980. doi: 10.1002/cssc.201800994
    Balakshin, M.Y., Capanema, E.A., Sulaeva, I., Schlee, P., Huang, Z.E., Feng, M., Borghei, M., Rojas, O.J., Potthast, A., Rosenau, T., 2021. Cover feature: new opportunities in the valorization of technical lignins. ChemSusChem 14, 992. doi: 10.1002/cssc.202100110
    Barros, J.J.P., Oliveira, R.R., Luna, C.B.B., Wellen, R.M.R., Moura, E.A.B., 2023. Effectiveness of modified lignin on poly(butylene adipate-co-terephthalate)/poly(lactic acid) mulch film performance. J. Appl. Polym. Sci. 140, e54684.
    Beaucamp, A., Muddasar, M., Amiinu, I.S., Moraes Leite, M., Culebras, M., Latha, K., Gutiérrez, M.C., Rodriguez-Padron, D., del Monte, F., Kennedy, T., Ryan, K.M., Luque, R., Titirici, M.M., Collins, M.N., 2022. Lignin for energy applications–state of the art, life cycle, technoeconomic analysis and future trends. Green Chem. 24, 8193–8226. doi: 10.1039/d2gc02724k
    Bertella, S., Luterbacher, J.S., 2020. Lignin functionalization for the production of novel materials. Trends Chem. 2, 440–453.
    Bethell, D., Fessey, R.E., Namwindwa, E., Roberts, D.W., 2001. The hydrolysis of C12 primary alkyl sulfates in concentrated aqueous solutions. Part 1. General features, kinetic form and mode of catalysis in sodium dodecyl sulfate hydrolysis. J. Chem. Soc., 2, 1489–1495.
    Breilly, D., Fadlallah, S., Froidevaux, V., Colas, A., Allais, F., 2021. Origin and industrial applications of lignosulfonates with a focus on their use as superplasticizers in concrete. Constr. Build. Mater. 301, 124065.
    Chen, Y.D., Ai, X.L., Huang, B., Huang, M.J., Huang, Y., Lu, Y., 2017. Consecutive preparation of hydrochar catalyst functionalized in situ with sulfonic groups for efficient cellulose hydrolysis. Cellulose 24, 2743–2752. doi: 10.1007/s10570-017-1306-x
    Cui, C.Z., Sadeghifar, H., Sen, S., Argyropoulos, D.S., 2013. Toward thermoplastic lignin polymers; part Ⅱ: thermal & polymer characteristics of kraft lignin & derivatives. BioResources 8, 864–886.
    Demuner, I.F., Borges Gomes, F.J., Gomes, J.S., Coura, M.R., Borges, F.P., Macedo Ladeira Carvalho, A.M., Silva, C.M., 2021. Improving kraft pulp mill sustainability by lignosulfonates production from processes residues. J. Clean. Prod. 317, 128286.
    Diaconeasa, Z., 2018. Time-dependent degradation of polyphenols from thermally-processed berries and their in vitro antiproliferative effects against melanoma. Molecules 23, 2534. doi: 10.3390/molecules23102534
    Duong, L.D., Luong, N.D., Binh, N.T.T., Park, I.K., Lee, S.H., Kim, D.S., Lee, Y.S., Lee, Y.K., Kim, B.W., Kim, K.H., Yoon, H.K., Yun, J.H., Nam, J.D., 2013. Chemical and rheological characteristics of thermally stable kraft lignin polycondensates analyzed by dielectric properties. BioResources 8, 4518–4532.
    Eraghi Kazzaz, A., Fatehi, P., 2020. Technical lignin and its potential modification routes: a mini-review. Ind. Crops Prod. 154, 112732.
    Eraghi Kazzaz, A., Hosseinpour Feizi, Z., Fatehi, P., 2019. Grafting strategies for hydroxy groups of lignin for producing materials. Green Chem. 21, 5714–5752. doi: 10.1039/c9gc02598g
    Gao, X.W., Hou, L.X., Yang, W.J., Dong, L.L., Ge, X., 2025. Lignin-based nanoparticles stabilized pickering emulsion for enhanced catalytic hydrogenation. Langmuir 41, 1937–1947. doi: 10.1021/acs.langmuir.4c04464
    Gellerstedt, G., 2015. Softwood kraft lignin: raw material for the future. Ind. Crops Prod. 77, 845–854.
    Ghavidel, N., Fatehi, P., 2020. Pickering/non-Pickering emulsions of nanostructured sulfonated lignin derivatives. ChemSusChem 13, 4567–4578. doi: 10.1002/cssc.202000965
    Ghavidel, N., Konduri, M.K.R., Fatehi, P., 2021. Chemical reactivity and sulfo-functionalization response of enzymatically produced lignin. Ind. Crops Prod. 172, 113950.
    Gil-Chávez, J., Gurikov, P., Hu, X.H., Meyer, R., Reynolds, W., Smirnova, I., 2021. Application of novel and technical lignins in food and pharmaceutical industries: structure-function relationship and current challenges. Biomass Convers. Biorefin. 11, 2387–2403. doi: 10.1007/s13399-019-00458-6
    Heitner, C., Dimmel, D., Schmidt, J.A., 2010. Lignin and Lignans: Advances in Chemistry. Taylor & Francis, Boca Raton.
    Kim, S., Silva, C., Zille, A., Lopez, C., Evtuguin, D.V., Cavaco-Paulo, A., 2009. Characterisation of enzymatically oxidised lignosulfonates and their application on lignocellulosic fabrics. Polym. Int. 58, 863–868. doi: 10.1002/pi.2600
    Komatsu, T., Yokoyama, T., 2021. Revisiting the condensation reaction of lignin in alkaline pulping with quantitativity part Ⅰ: the simplest condensation between vanillyl alcohol and creosol under soda cooking conditions. J. Wood Sci. 67, 45.
    Konduri, M.K.R., Fatehi, P., 2015. Production of water-soluble hardwood kraft lignin via sulfomethylation using formaldehyde and sodium sulfite. ACS Sustain. Chem. Eng. 3, 1172–1182. doi: 10.1021/acssuschemeng.5b00098
    Konduri, M.K.R., Fatehi, P., 2018. Designing anionic lignin based dispersant for Kaolin suspensions. Colloids Surf. A Physicochem. Eng. Aspects 538, 639–650.
    Kouisni, L., Gagné, A., Maki, K., Holt-Hindle, P., Paleologou, M., 2016. LignoForce system for the recovery of lignin from black liquor: feedstock options, odor profile, and product characterization. ACS Sustain. Chem. Eng. 4, 5152–5159. doi: 10.1021/acssuschemeng.6b00907
    Kwon, Y., Lee, S.Y., Hong, S., Jang, J.H., Henkensmeier, D., Yoo, S.J., Kim, H.J., Kim, S.H., 2015. Novel sulfonated poly(arylene ether sulfone) containing hydroxyl groups for enhanced proton exchange membrane properties. Polym. Chem. 6, 233–239.
    Lancefield, C.S., Wienk, H.J., Boelens, R., Weckhuysen, B.M., Bruijnincx, P.C.A., 2018. Identification of a diagnostic structural motif reveals a new reaction intermediate and condensation pathway in kraft lignin formation. Chem. Sci. 9, 6348–6360. doi: 10.1039/c8sc02000k
    Li, N., Li, Y.D., Yoo, C.G., Yang, X.H., Lin, X.L., Ralph, J., Pan, X.J., 2018. An uncondensed lignin depolymerized in the solid state and isolated from lignocellulosic biomass: a mechanistic study. Green Chem. 20, 4224–4235. doi: 10.1039/c8gc00953h
    Li, Q.F., Liu, S.R., Zhang, X., Hu, G.S., Xia, H.A., 2022. High-efficiency sulfur-doped carbon photocatalysts synthesized by carbonization of lignosulfonate at low temperature. Mater. Today Commun., 33.
    Luo, J., Liu, T.L., 2023. Electrochemical valorization of lignin: status, challenges, and prospects. J. Bioresour. Bioprod. 8, 1–14.
    Lv, Z.L., Zheng, Y., Zhou, H., Pan, Z., Li, C.Y., Dai, L., Zhang, M., Si, C.L., 2022. Hydrothermal method-assisted synthesis of self-crosslinked all-lignin-based hydrogels. Int. J. Biol. Macromol. 216, 670–675.
    Mazar, A., Paleologou, M., 2024. Comparison of the effects of three drying methods on lignin properties. Int. J. Biol. Macromol. 258, 128974.
    Meng, X.Z., Crestini, C., Ben, H.X., Hao, N.J., Pu, Y.Q., Ragauskas, A.J., Argyropoulos, D.S., 2019. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat. Protoc. 14, 2627–2647. doi: 10.1038/s41596-019-0191-1
    Mili, M., Hashmi, S.A.R., Ather, M., Hada, V., Markandeya, N., Kamble, S., Mohapatra, M., Rathore, S.K.S., Srivastava, A.K., Verma, S., 2022. Novel lignin as natural-biodegradable binder for various sectors: a review. J. Appl. Polym. Sci. 139, 51951.
    Mo, W.X., Chen, K.F., Yang, X., Kong, F.G., Liu, J.Y., Li, B., 2022. Elucidating the hornification mechanism of cellulosic fibers during the process of thermal drying. Carbohydr. Polym. 289, 119434.
    Mu, X.L., Han, Z., Liu, C.B., Zhang, D.J., 2019. Mechanistic insights into formaldehyde-blocked lignin condensation: a DFT study. J. Phys. Chem. C 123, 8640–8648. doi: 10.1021/acs.jpcc.9b00247
    Ouyang, X.P., Ke, L.X., Qiu, X.Q., Guo, Y.X., Pang, Y.X., 2009. Sulfonation of alkali lignin and its potential use in dispersant for cement. J. Dispers. Sci. Technol. 30, 1–6. doi: 10.1080/01932690802473560
    Pinto, P.I.F., Magina, S., Budjav, E., Pinto, P.C.R., Liebner, F., Evtuguin, D., 2022. Cationization of eucalyptus kraft LignoBoost lignin: preparation, properties, and potential applications. Ind. Eng. Chem. Res. 61, 3503–3515. doi: 10.1021/acs.iecr.1c04899
    Sallem-Idrissi, N., Vanderghem, C., Pacary, T., Richel, A., Debecker, D.P., Devaux, J., Sclavons, M., 2016. Lignin degradation and stability: volatile organic compounds (VOCs) analysis throughout processing. Polym. Degrad. Stab. 130, 30–37.
    Sarkar, D., Kang, P.Y., Nielsen, S.O., Qin, Z.P., 2019. Non-arrhenius reaction-diffusion kinetics for protein inactivation over a large temperature range. ACS Nano 13, 8669–8679. doi: 10.1021/acsnano.9b00068
    Seera, S.D.K., Pester, C.W., 2023. Surface-initiated PET-RAFT via the Z-group approach. ACS Polym. Au. 3, 428–436. doi: 10.1021/acspolymersau.3c00028
    Sen, S., Patil, S., Argyropoulos, D.S., 2015. Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem. 17, 4862–4887.
    Silverstein, R.M., Webster, F.X., Kiemle, D.J., Bryce, D.L., 2015. Spectrometric Identification of Organic Compounds. Wiley, Hoboken.
    Son, D., Cho, S., Nam, J., Lee, H., Kim, M., 2020. X-ray-based spectroscopic techniques for characterization of polymer nanocomposite materials at a molecular level. Polymers (Basel) 12, 1053. doi: 10.3390/polym12051053
    Sutradhar, S., Gao, W.J., Fatehi, P., 2023. A green cement plasticizer from softwood kraft lignin. Ind. Eng. Chem. Res. 62(3), 1676–1687. doi: 10.1021/acs.iecr.2c03970
    Tang, T., Fei, J.H., Zheng, Y., Xu, J., He, H.W., Ma, M., Shi, Y.Q., Chen, S., Wang, X., 2023. Water-soluble lignosulfonates: structure, preparation, and application. ChemistrySelect 8, e202204941.
    Vural, D., Smith, J.C., Petridis, L., 2018. Dynamics of the lignin glass transition. Phys. Chem. Chem. Phys. 20, 20504–20512. doi: 10.1039/c8cp03144d
    Wang, B.W., Qiu, D.K., Gu, Y.H., Shan, Z., Shi, R.N., Luo, J., Qi, S., Wang, Y.L., Jiang, B., Jin, Y.C., 2025. A lignin-based controlled/sustained release hydrogel by integrating mechanical strengthening and bioactivities of lignin. J. Bioresour. Bioprod. 10, 62–76. doi: 10.1117/12.3057550
    Wang, W.S., Li, Y., Zhang, H.Y., Chen, T., Sun, G.W., Han, Y., Li, J.G., 2022. Double-interpenetrating-network lignin-based epoxy resin adhesives for resistance to extreme environment. Biomacromolecules 23, 779–788. doi: 10.1021/acs.biomac.1c01204
    Xiao, X., Jiang, J.G., Wang, Y., Wang, B., Yuan, T.Q., Shi, Q., Liao, X.P., Shi, B., Sun, R.C., 2021. Microwave-assisted sulfonation of lignin for the fabrication of a high-performance dye dispersant. ACS Sustain. Chem. Eng. 9, 9053–9061. doi: 10.1021/acssuschemeng.1c02148
    Yang, J., Wang, X.T., Liu, H.L., 2023. Lignins and lignin derivatives as dispersants for copper phthalocyanine pigment nanoparticles. ACS Sustain. Chem. Eng. 11, 8199–8207. doi: 10.1021/acssuschemeng.2c04657
    Zhang, N., Li, Z., Xiao, Y.N., Pan, Z., Jia, P.Y., Feng, G.D., Bao, C.Y., Zhou, Y.H., Hua, L.L., 2020a. Lignin-based phenolic resin modified with whisker silicon and its application. J. Bioresour. Bioprod. 5, 67–77. doi: 10.1016/j.jobab.2020.03.008
    Zhang, H., Fu, S.Y., Chen, Y.C., 2020b Basic understanding of the color distinction of lignin and the proper selection of lignin in color-depended utilizations. Int. J. Biol. Macromol. 147, 607–615.
    Zhang, H., Bai, Y.C., Zhou, W.P., Chen, F.G., 2017. Color reduction of sulfonated eucalyptus kraft lignin. Int. J. Biol. Macromol. 97, 201–208.
    Zhao, X.J., Liu, Y.H., Sun, B.H., Liu, Z.C., Shao, Z.B., Liu, X.B., Zhang, H.L., Sun, Z.Y., Hu, W., 2023. Lignin-derived flame retardant for improving fire safety and mechanical properties of polypropylene. J. Appl. Polym. Sci. 140, e54739.
    Zheng, C., Li, D.F., Ek, M., 2019. Improving fire retardancy of cellulosic thermal insulating materials by coating with bio-based fire retardants. Nord. Pulp Pap. Res. J. 34, 96–106. doi: 10.1515/npprj-2018-0031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (15) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return