Volume 10 Issue 4
Nov.  2025
Turn off MathJax
Article Contents
Hao Jia, Wenhui Su, Bin Huang, Xianxian He, Shaohui Fan, Zhoubin Huang, Chuanxia Pan, Chenye Liu. Hydrothermal aging of moso bamboo: Degradation mechanisms and storage life prediction[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 660-675. doi: 10.1016/j.jobab.2025.09.002
Citation: Hao Jia, Wenhui Su, Bin Huang, Xianxian He, Shaohui Fan, Zhoubin Huang, Chuanxia Pan, Chenye Liu. Hydrothermal aging of moso bamboo: Degradation mechanisms and storage life prediction[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 660-675. doi: 10.1016/j.jobab.2025.09.002

Hydrothermal aging of moso bamboo: Degradation mechanisms and storage life prediction

doi: 10.1016/j.jobab.2025.09.002
More Information
  • Corresponding author: E-mail address: swh612@icbr.ac.cn (W. Su); E-mail address: fansh@icbr.ac.cn (S. Fan)
  • Received Date: 2025-02-24
  • Accepted Date: 2025-09-02
  • Rev Recd Date: 2025-08-23
  • Available Online: 2025-09-15
  • Publish Date: 2025-11-01
  • The fluctuations of storage temperature and humidity detrimentally affect the bamboo quality and longevity, making it crucial to investigate. Herein, we explored the physical and mechanical properties of moso bamboo (Phyllostachys edulis) subjected to 100-day moist heat cycling aging (MHCA-1: transitioning from low-temperature/high-humidity to high-temperature/low-humidity; MHCA-2: transitioning from low-temperature/low-humidity to high-temperature/high-humidity; CHT: 25 ℃-constant temperature and 60% relative humidity) alongside a control group. Employing a multiscale characterization and Random Forest (RF) modeling, we evaluated the impacts of temperature and humidity fluctuations on the bamboo quality, and the influence mechanism of storage conditions on its physical and mechanical properties were elucidated. Results indicated that elevated temperature and humidity led to remarkable fluctuation in bamboo moisture (from −20.36% to 32.99%), weight gain (from −32.69% to 6.19%), and dimensional expansion (from −5.37% to 2.38%). Conversely, high-temperature and low-humidity drying conditions resulted in moisture loss and dimensional shrinkage. Total color difference (TCD) of bamboo cortex followed the order: MHCA-2 (7.46) < CHT (12.24) < MHCA-1 (20.10) < control (22.63). The TCD of bamboo pith positively was related with storage temperature. Periodic moist heat aging induced the permanent deformation in bamboo, reducing its elastic modulus by 30.05%–43.79%. Under moist heat aging conditions, the characteristic hemicellulose functional groups, including hydroxyl (−OH), carbonyl (C = O), ether (C–O–C), and aromatic C = C moieties exhibited remarkable structural modifications, i.e., peak weakening, shifting, or morphological alterations in Fourier transform infrared (FT-IR) spectra. Additionally, these conditions elevated the thermal decomposition onset temperature of cellulose while decreasing its peak intensity. Overall, the RF modeling approach demonstrated a high accuracy in predicting bamboo behavior under varying moisture-heat conditions. It improved bamboo storage and recycling by supporting sorting and grading with reliable long-term data.

     

  • Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.09.002.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Akinyemi, B.A., Omoniyi, T.E., 2020. Effect of experimental wet and dry cycles on bamboo fibre reinforced acrylic polymer modified cement composites. J. Mech. Behav. Mater. 29, 9. doi: 10.1515/jmbm-2020-0002
    Alshahrani, H., Arun Prakash, V.R., 2022. Mechanical, thermal, viscoelastic and hydrophobicity behavior of complex grape stalk lignin and bamboo fiber reinforced polyester composite. Int. J. Biol. Macromol. 223, 851–859. doi: 10.1016/j.ijbiomac.2022.10.272
    Bhowmik, S., Kumar, S., Mahakur, V.K., 2024. Various factors affecting the fatigue performance of natural fiber-reinforced polymer composites: a systematic review. Iran. Polym. J. 33, 249–271. doi: 10.1007/s13726-023-01243-z
    Binfield, L., Nasir, V., Dai, C.P., 2024. Bamboo industrialization in the era of industry 5.0: an exploration of key concepts, synergies and gaps. Environ. Dev. Sustain. doi: 10.1007/s10668-024-05584-4.
    Castro, O., Bruneau, P., Sottet, J.S., Torregrossa, D., 2023. Landscape of high-performance python to develop data science and machine learning applications. ACM Comput. Surv. 56(3), 1–30. doi: 10.5455/ijmrcr.172-1656142184
    Chakkour, M., Moussa, M.O., Khay, I., Balli, M., Ben Zineb, T., 2024. Hygroscopic aging cycles of bamboo fiber/epoxy composites: comparative study between distilled water and sea water. Ind. Crops Prod. 209, 117957. doi: 10.1016/j.indcrop.2023.117957
    Chakkour, M., Ould Moussa, M., Khay, I., Balli, M., Ben Zineb, T., 2023. Effects of humidity conditions on the physical, morphological and mechanical properties of bamboo fibers composites. Ind. Crops Prod. 192, 116085. doi: 10.1016/j.indcrop.2022.116085
    Chang, F.C., Chen, K.S., Yang, P.Y., Ko, C.H., 2018. Environmental benefit of utilizing bamboo material based on life cycle assessment. J. Clean. Prod. 204, 60–69. doi: 10.1016/j.jclepro.2018.08.248
    Chen, D.Y., Zhou, J.B., Zhang, Q.S., 2014. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresour. Technol. 169, 313–319. doi: 10.1016/j.biortech.2014.07.009
    Chen, G.W., Luo, H.Y., 2023. Effects of moisture content and fibrous structure on the uniaxial compression behavior of natural bamboo. Constr. Build. Mater. 408, 133711. doi: 10.1016/j.conbuildmat.2023.133711
    Chen, M.L., Ye, L., Li, H., Wang, G., Chen, Q., Fang, C.H., Dai, C.P., Fei, B.H., 2020. Flexural strength and ductility of moso bamboo. Constr. Build. Mater. 246, 118418. doi: 10.1016/j.conbuildmat.2020.118418
    Chen, X.Y., Jiang, H., Wang, G., Wang, J.Z., Chen, F.M., 2024. Disposable bamboo fiber meal boxes characterized by efficient preparation, excellent performance, and the potential for beneficial degradation. J. Clean. Prod. 434, 139973. doi: 10.1016/j.jclepro.2023.139973
    Cheng, A.K., Ma, H.X., Liu, Y., Wang, X.J., Hu, C.S., Lin, X.Y., Zhou, Q.F., Tu, D.Y., 2023. Effect of drying method on the surface color of Bambusa textilis McClure. Ind. Crops Prod. 198, 116670. doi: 10.1016/j.indcrop.2023.116670
    Correal, J.F., Ramirez, F., Peña, F.O., 2025. Behavior of bamboo properties as a construction material under artificial aging and weathering acceleration factors. Constr. Build. Mater. 464, 140058. doi: 10.1016/j.conbuildmat.2025.140058
    Deng, J., Wei, Y., Chen, S., Huang, S.L., Ding, M.M., Li, G.F., 2024. Aging properties of bamboo scrimber after cyclic dry-wet exposure. Constr. Build. Mater. 453, 139043. doi: 10.1016/j.conbuildmat.2024.139043
    Depuydt, D.E.C., Soete, J., Asfaw, Y.D., Wevers, M., Ivens, J., van Vuure, A.W., 2019. Sorption behaviour of bamboo fibre reinforced composites, why do they retain their properties? Compos. Part A Appl. Sci. Manuf. 119, 48–60. doi: 10.1016/j.compositesa.2019.01.020
    Dubey, S., Gupta, D., Mallik, M., 2024. Foretelling the compressive strength of bamboo using machine learning techniques. Eng. Comput. 41, 2251–2288. doi: 10.1108/ec-06-2024-0507
    Gao, Q., Gan, J., Wang, P.X., Huang, Y.X., Zhang, D.H., Yu, W.J., 2025. Bio-inspired hierarchical bamboo-based air filters for efficient removal of particulate matter and toxic gases. Exploration 5, 20240012. doi: 10.1002/EXP.20240012
    Habibi, M.K., Samaei, A.T., Gheshlaghi, B., Lu, J., Lu, Y., 2015. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms. Acta Biomater. 16, 178–186. doi: 10.1016/j.actbio.2015.01.038
    Han, S.Y., Xu, H.Q., Chen, F.M., Wang, G., 2023. Construction relationship between a functionally graded structure of bamboo and its strength and toughness: underlying mechanisms. Constr. Build. Mater. 379, 131241. doi: 10.1016/j.conbuildmat.2023.131241
    Hone, T., Cahill, L., Robinson, A., Korde, C., Taylor, D., 2020. The splitting of bamboo in response to changes in humidity and temperature. J. Mech. Behav. Biomed. Mater. 111, 103990. doi: 10.1016/j.jmbbm.2020.103990
    Huang, B., Wang, X.K., Chen, L., Su, N., Liu, L.T., Luan, Y., Ma, X.X., Fei, B.H., Fang, C.H., 2024. Impact of the natural structure of cortex and pith ring on water loss and deformation in bamboo processing. Constr. Build. Mater. 411, 134396. doi: 10.1016/j.conbuildmat.2023.134396
    Huang, H.H., Xu, C.L., Zhu, X.H., Li, B., Huang, C.X., 2023. Lignin-enhanced wet strength of cellulose-based materials: a sustainable approach. Green Chem. 25, 4995–5009. doi: 10.1039/d3gc01505j
    Huang, Y.X., Jiang, K.X., He, Y.Q., Hu, J., Dyer, K., Chen, S., Akinlabi, E., Zhang, D.H., Zhang, X.H., Yu, Y.L., Yu, W.J., Xu, B.B., 2025. A natural lignification inspired super-hard wood-based composites with extreme resilience. Adv. Mater. 37, 2502266. doi: 10.1002/adma.202502266
    Jawaid, M., Chee, S.S., Asim, M., Saba, N., Kalia, S., 2022. Sustainable kenaf/bamboo fibers/clay hybrid nanocomposites: properties, environmental aspects and applications. J. Clean. Prod. 330, 129938. doi: 10.1016/j.jclepro.2021.129938
    Jin, K.Y., Zhong, Z.Z., Zhao, E.Y., 2024. Sustainable digital marketing under big data: an AI random forest model approach. IEEE Trans. Eng. Manag. 71, 3566–3579. doi: 10.1109/tem.2023.3348991
    Kelkar, B.U., Shukla, S.R., Yadav, S.M., Bansal, R., 2023. Performance of laminated bamboo lumber and bamboo strand lumber coated with solvent and water-based polyurethane against accelerated UV and natural weathering. Ind. Crops Prod. 192, 116058. doi: 10.1016/j.indcrop.2022.116058
    Leng, Y.B., Xu, Q.F., Chen, L.Z., 2018. Research progress of application of engineered bamboo in building structures. Build. Struct. 48(10), 89–97. doi: 10.1504/ijnm.2018.10009999
    Leng, Y.B., Xu, Q.F., Chen, L.Z., Wang, M.Q., Harries, K.A., Chen, X., 2023. Mechanical performance of engineered bamboo subjected to accelerated aging with single and multiple durability exposures. Constr. Build. Mater. 388, 131725. doi: 10.1016/j.conbuildmat.2023.131725
    Li, H.D., Chen, F.M., Xian, Y., Deng, J.C., Wang, G., Cheng, H.T., 2017. An empirical model for predicting the mechanical properties degradation of bamboo bundle laminated veneer lumber (BLVL) by hygrothermal aging treatment. Eur. J. Wood Wood Prod. 75, 553–560. doi: 10.1007/s00107-016-1100-8
    Li, H.T., Liu, Y., Wu, Y.Q., Dauletbek, A., Duan, Y.J., Corbi, O., 2024a. The aging behavior of moso bamboo in natural weathering condition. Ind. Crops Prod. 222, 119901. doi: 10.1016/j.indcrop.2024.119901
    Li, J.N., Guan, Y., Ma, X.X., Wang, S.Y., Xia, C.L., Cai, L.P., Fei, B.H., 2024b Multiscale viscoelasticity response for bamboo after partial hemicellulose removal treatment. Ind. Crops Prod. 209, 117983. doi: 10.1016/j.indcrop.2023.117983
    Li, J.N., Yan, J., Zhou, Y.Y., Yang, S.L., Singh, A., 2024c. Analyzing the effects of size and density on the ultimate compressive strength of structural laminated bamboo parallel to the grain. J. Build. Eng. 90, 109481. doi: 10.1016/j.jobe.2024.109481
    Li, X.Z., Ji, S.Y., Li, T., Liu, Z.X., Hao, X.F., Chen, Z.J., Zhong, Y., Li, X.J., 2023. The physical, mechanical and fire performance of bamboo scrimber processed with thermal-treated bamboo bundles. Ind. Crops Prod. 205, 117549. doi: 10.1016/j.indcrop.2023.117549
    Li, X.Z., Mou, Q.Y., Ji, S.Y., Li, X.J., Chen, Z.J., Yuan, G.M., 2022a. Effect of elevated temperature on physical and mechanical properties of engineered bamboo composites. Ind. Crops Prod. 189, 115847. doi: 10.1016/j.indcrop.2022.115847
    Li, Z.Z., Luan, Y., Hu, J.B., Fang, C.H., Liu, L.T., Ma, Y.F., Liu, Y., Fei, B.H., 2022b Bamboo heat treatments and their effects on bamboo properties. Constr. Build. Mater. 331, 127320. doi: 10.1016/j.conbuildmat.2022.127320
    Liese, W., 1987. Research on bamboo. Wood Sci. Technol. 21, 189–209. doi: 10.1007/bf00351391
    Lin, F., Zhong, H., Bao, Y.J., Li, N., Zheng, Y.X., Gong, Y., Wu, X.J., Li, Y.J., Bao, M.Z., Zhang, W.G., 2025. An efficient high-temperature saturated-steam process for bamboo flattening: crack generation and improvement mechanisms. Constr. Build. Mater. 473, 141074. doi: 10.1016/j.conbuildmat.2025.141074
    Liu, J.L., Kim, J.I., Cusumano, J.C., Chapple, C., Venugopalan, N., Fischetti, R.F., Makowski, L., 2016. The impact of alterations in lignin deposition on cellulose organization of the plant cell wall. Biotechnol. Biofuels 9, 126. doi: 10.1186/s13068-016-0540-z
    Liu, Y., Li, H.T., Dauletbek, A., 2024. Effects of natural weathering on the mechanical properties of moso bamboo internodes and nodes. Constr. Build. Mater. 417, 135313. doi: 10.1016/j.conbuildmat.2024.135313
    Liu, Y.D., 2012. Bamboo timber mildew and anti-mold technology. Adv. Eng. Forum 4, 139–144. doi: 10.4028/www.scientific.net/AEF.4.139
    Lou, Z.C., Wang, Q.Y., Sun, W., Liu, J., Yan, H., Han, H., Bian, H.Y., Li, Y.J., 2022. Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability. Chem. Eng. J. 430, 133178. doi: 10.1016/j.cej.2021.133178
    Luan, Y., Liu, L.T., Ma, Y.F., Yang, Y.T., Jiang, M.H., Semple, K., Dai, C.P., Fei, B.H., Fang, C.H., 2023. An integrated hydrothermal process of bamboo flattening, densification and drying: mechanical properties and strengthening mechanisms. Mater. Des. 226, 111610. doi: 10.1016/j.matdes.2023.111610
    Madhushan, S., Buddika, S., Bandara, S., Navaratnam, S., Abeysuriya, N., 2023. Uses of bamboo for sustainable construction: a structural and durability perspective: a review. Sustainability 15, 11137. doi: 10.3390/su151411137
    Peng, H., Jiang, J., Zhan, T.Y., Lyu, J.X., 2025. Moisture-dependent asymmetric flexural performance of moso bamboo (Phyllostachys pubescens). Constr. Build. Mater. 461, 139930. doi: 10.1016/j.conbuildmat.2025.139930
    Peng, P., She, D., 2014. Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: a review. Carbohydr. Polym. 112, 701–720. doi: 10.1016/j.carbpol.2014.06.068
    Raviduth, R., 2024. In situ durability assessment of natural composite structures by considering artificial neural network (ANN) modelling. In: Fowdur, T.P., Rosunee, S., Ah King, R.T.F., Jeetah, P., Gooroochurn, M. (Eds.), Artificial Intelligence, Engineering Systems and Sustainable Development. Emerald Publishing Limited, Leeds, England, pp. 219–230.
    Ren, W.T., Zhang, D.S., Zhou, Y., Wang, H., Xia, L.M., Tan, C.S., Guo, F., Zhang, X.X., Yang, R.L., Yu, Y., 2024. Lignin's complex role in lignocellulosic biomass recalcitrance: a case study on bamboo. Chem. Eng. J. 490, 151422. doi: 10.1016/j.cej.2024.151422
    Ronald Aseer, J., Sankaranarayanasamy, K., Renold Elsen, S., Thakur, A.K., 2022. Experimental studies on water absorption properties of acetic acid treated banana fiber composites. Mater. Today Proc. 49, 453–456. doi: 10.1016/j.matpr.2021.02.518
    Schmidt, G., Stute, T., Lenz, M.T., Melcher, E., Ressel, J.B., 2020. Fungal deterioration of a novel scrimber composite made from industrially heat treated African highland bamboo. Ind. Crops Prod. 147, 112225. doi: 10.1016/j.indcrop.2020.112225
    Sen, S., Patil, S., Argyropoulos, D.S., 2015. Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem. 17, 4862–4887. doi: 10.1039/C5GC01066G
    Shangguan, W.W., Gong, Y.C., Zhao, R.J., Ren, H.Q., 2016. Effects of heat treatment on the properties of bamboo scrimber. J. Wood Sci. 62, 383–391. doi: 10.1007/s10086-016-1574-3
    Shi, J.J., Yuan, S.F., Zhang, W.F., Zhang, J., Chen, H., 2023. Hydrothermal aging mechanisms and service life prediction of twisted bamboo fiber wound composites. Mater. Des. 227, 111716. doi: 10.1016/j.matdes.2023.111716
    Su, N., Fang, C.H., Zhou, H., Tang, T., Zhang, S.Q., Fei, B.H., 2021. Hydrophobic treatment of bamboo with rosin. Constr. Build. Mater. 271, 121507. doi: 10.1016/j.conbuildmat.2020.121507
    Tang, Q.H., Chen, Y.Q., Yang, H.P., Liu, M., Xiao, H.Y., Wang, S.R., Chen, H.P., Raza Naqvi, S., 2021. Machine learning prediction of pyrolytic gas yield and compositions with feature reduction methods: effects of pyrolysis conditions and biomass characteristics. Bioresour. Technol. 339, 125581. doi: 10.1016/j.biortech.2021.125581
    Tang, T., Fang, C.H., Sui, Z., Fu, C.L., Li, X.L., 2025. Hygrothermal treatment improves the dimensional stability and visual appearance of round bamboo. Polymers (Basel) 17, 747. doi: 10.3390/polym17060747
    Vuković, F., Walsh, T.R., 2020. Moisture ingress at the molecular scale in hygrothermal aging of fiber-epoxy interfaces. ACS Appl. Mater. Interfaces 12, 55278–55289. doi: 10.1021/acsami.0c17027
    Wang, H.H., Wang, X., Cui, Y.S., Xue, Z.C., Ba, Y.X., 2018. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): product yield prediction and biochar formation mechanism. Bioresour. Technol. 263, 444–449. doi: 10.1016/j.biortech.2018.05.040
    Wang, X.K., Zhang, S.Q., Chen, L., Huang, B., Fang, C.H., Ma, X.X., Liu, H.R., Sun, F.B., Fei, B.H., 2022. Effects of pith ring on the hygroscopicity and dimensional stability of bamboo. Ind. Crops Prod. 184, 115027. doi: 10.1016/j.indcrop.2022.115027
    Wei, X., Chen, Z.J., Li, L., Qin, Z.K., Wang, G., 2025. Bamboo as a substitute for plastic: effects of moisture content on the flexibility and flexural toughness of bamboo with cellulose fibers at multiple scales. Int. J. Biol. Macromol. 305, 141193. doi: 10.1016/j.ijbiomac.2025.141193
    Wei, X., Wang, G., Smith, L.M., Jiang, H., 2021. The hygroscopicity of moso bamboo (Phyllostachys edulis) with a gradient fiber structure. J. Mater. Res. Technol. 15, 4309–4316. doi: 10.1016/j.jmrt.2021.10.038
    Youssefian, S., Jakes, J.E., Rahbar, N., 2017. Variation of nanostructures, molecular interactions, and anisotropic elastic moduli of lignocellulosic cell walls with moisture. Sci. Rep. 7, 2054. doi: 10.1038/s41598-017-02288-w
    Yuan, J., Chen, L., Mi, B.B., Lei, Y.F., Yan, L., Fei, B.H., 2023. Synergistic effects of bamboo cells during shrinkage process. Ind. Crops Prod. 193, 116232. doi: 10.1016/j.indcrop.2022.116232
    Yuan, J., Chen, Q., Fang, C.H., Zhang, S.Q., Liu, X.M., Fei, B.H., 2021a. Effect of chemical composition of bamboo fibers on water sorption. Cellulose 28, 7273–7282. doi: 10.1007/s10570-021-03988-3
    Yuan, J., Fang, C.H., Chen, Q., Fei, B.H., 2021b Observing bamboo dimensional change caused by humidity. Constr. Build. Mater. 309, 124988. doi: 10.1016/j.conbuildmat.2021.124988
    Zhang, X.X., Li, J., Yu, Y., Wang, H.K., 2018. Investigating the water vapor sorption behavior of bamboo with two sorption models. J. Mater. Sci. 53, 8241–8249. doi: 10.1007/s10853-018-2166-y
    Zhang, Y.H., Ma, H.X., Qi, Y., Zhu, R.X., Li, X.W., Yu, W.J., Rao, F., 2022. Study of the long-term degradation behavior of bamboo scrimber under natural weathering. NPJ Mater. Degrad. 6, 63. doi: 10.1038/s41529-022-00273-x
    Zhang, Y.M., Huang, X.A., Yu, Y.L., Yu, W.J., 2019. Effects of internal structure and chemical compositions on the hygroscopic property of bamboo fiber reinforced composites. Appl. Surf. Sci. 492, 936–943. doi: 10.1016/j.apsusc.2019.05.279
    Zhao, X., Ye, H.Z., Chen, F.M., Wang, G., 2024. Bamboo as a substitute for plastic: research on the application performance and influencing mechanism of bamboo buttons. J. Clean. Prod. 446, 141297. doi: 10.1016/j.jclepro.2024.141297
    Zhu, J.W., Wang, H.K., Guo, F., Salmén, L., Yu, Y., 2021. Cell wall polymer distribution in bamboo visualized with in situ imaging FTIR. Carbohydr. Polym. 274, 118653. doi: 10.1016/j.carbpol.2021.118653
    Zhu, Y., Guan, M.J., Jia, Q.D., Wang, G.N., Pan, L.C., Li, Y.J., 2024. Degradation mechanism of cuticular wax composition and surface properties of bamboo culm during storage. Ind. Crops Prod. 214, 118558. doi: 10.1016/j.indcrop.2024.118558
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (18) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return