Volume 10 Issue 4
Nov.  2025
Turn off MathJax
Article Contents
Jinpeng Zhu, Yunhao Lu, Yumeng Xia, Qiang He. Cellulose nanofibrils-stabilized legume protein-based pickering emulsions for capsaicin delivery: Fabrication, characterization, and encapsulation mechanism exploration☆[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 560-575. doi: 10.1016/j.jobab.2025.09.004
Citation: Jinpeng Zhu, Yunhao Lu, Yumeng Xia, Qiang He. Cellulose nanofibrils-stabilized legume protein-based pickering emulsions for capsaicin delivery: Fabrication, characterization, and encapsulation mechanism exploration[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 560-575. doi: 10.1016/j.jobab.2025.09.004

Cellulose nanofibrils-stabilized legume protein-based pickering emulsions for capsaicin delivery: Fabrication, characterization, and encapsulation mechanism exploration

doi: 10.1016/j.jobab.2025.09.004
More Information
  • Corresponding author: E-mail address: natsuamex@gmail.com (Y. Xia); E-mail address: heq361@163.com (Q. He)
  • Received Date: 2025-06-08
  • Accepted Date: 2025-09-03
  • Rev Recd Date: 2025-08-31
  • Available Online: 2025-09-22
  • Publish Date: 2025-11-01
  • Capsaicin (CAP) faces limitations in its widespread application due to its low bioaccessibility. Pickering emulsions based on legume proteins are efficient for encapsulating bioactive compounds, but poor solubility and environmental sensitivity of proteins undermine emulsion stability. To tackle these challenges, this study developed a novel Pickering emulsion by using cellulose nanofibrils (CNFs) and chickpea protein isolate (CPI) for efficient CAP delivery. The combination of CPI and CNF at a ratio of 20꞉1 (w/w) exhibited the highest encapsulation efficiency (70.90% ± 1.66%) and sustained release properties during in vitro digestion, thereby enhancing CAP bioaccessibility from 39.40% ± 2.33% to 81.54% ± 1.95%. Notably, CNF also enhanced emulsion stability through enhanced hydrogen bonding, reduced droplet size (589.51 ± 47.08 nm), and increased hydrophobicity (contact angle: 85.83° ± 1.20°). Comprehensive characterization revealed that the incorporation of CNF significantly improved the colloidal properties of the emulsion, including its rheological behavior and thermal stability. Mechanistic investigations demonstrated that the enhanced encapsulation capability was attributed to the formation of stable hydrogen-bonding networks between CNF and CPI. Moreover, CAP is bound with CPI through synergistic hydrogen bonding and van der Waals interactions, with Arginine-179 identified as the key residue for binding (binding free energy: 10.46 kJ/mol). These findings offer valuable insights into the development of plant-based nanocarrier systems and highlight the potential of CNF-legume protein complexes in the delivery of bioactive compounds.

     

  • Declaration of competing interest
    The authors declare that they have known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Data availability
    Data will be made available on request.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.09.004.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Alizadeh Sani, M., Mozafarpour, R., Kia, A.G., Khorasani, S., Dara, A., McClements, D.J., 2024. Grass pea protein as an emerging source of sustainable plant proteins: Structure, modification, functionality, and applications. Food Biosci. 62, 105092. doi: 10.1016/j.fbio.2024.105092
    Bai, L., Huan, S.Q., Zhu, Y., Chu, G., McClements, D.J., Rojas, O.J., 2021. Recent advances in food emulsions and engineering foodstuffs using plant-based nanocelluloses. Annu. Rev. Food Sci. Technol. 12, 383–406. doi: 10.1146/annurev-food-061920-123242
    Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., Carrière, F., Clemente, A., Corredig, M., Dupont, D., Dufour, C., Edwards, C., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A.R., Martins, C., Marze, S., McClements, D.J., Ménard, O., Minekus, M., Portmann, R., Santos, C.N., Souchon, I., Singh, R.P., Vegarud, G.E., Wickham, M.S.J., Weitschies, W., Recio, I., 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 14, 991–1014. doi: 10.1038/s41596-018-0119-1
    Castro-Muñoz, R., Gontarek-Castro, E., Jafari, S.M., 2022. Up-to-date strategies and future trends towards the extraction and purification of Capsaicin: A comprehensive review. Trends Food Sci. Technol. 123, 161–171. doi: 10.1016/j.tifs.2022.03.014
    Chen, H., Ji, A.G., Qiu, S., Liu, Y., Zhu, Q.M., Yin, L.J., 2018. Covalent conjugation of bovine serum album and sugar beet pectin through Maillard reaction/laccase catalysis to improve the emulsifying properties. Food Hydrocoll. 76, 173–183. doi: 10.1016/j.foodhyd.2016.12.004
    Dai, H.J., Chen, Y., Zhang, S.M., Feng, X., Cui, B., Ma, L., Zhang, Y.H., 2021. Enhanced interface properties and stability of lignocellulose nanocrystals stabilized Pickering emulsions: The leading role of tannic acid. J. Agric. Food Chem. 69(48), 14650–14661. doi: 10.1021/acs.jafc.1c04930
    Dickinson, E., 2016. Exploring the frontiers of colloidal behaviour where polymers and particles meet. Food Hydrocoll. 52, 497–509. doi: 10.1016/j.foodhyd.2015.07.029
    Dima, C., Assadpour, E., Dima, S., Jafari, S.M., 2020. Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods. Compr. Rev. Food Sci. Food Saf. 19, 2862–2884. doi: 10.1111/1541-4337.12623
    Doi, T., Wang, M.Q., McClements, D.J., 2019. Impact of proteins and polysaccharides on flavor release from oil-in-water emulsions during simulated cooking. Food Res. Int. 125, 108549. doi: 10.1016/j.foodres.2019.108549
    Feng, X., Dai, H.J., Tan, H.X., Tang, M., Ma, L., Zhang, Y.H., 2023. Improvement of low-oil gelatin emulsions performance by adjusting the electrostatic interaction between gelatin and nanocellulose with different morphologies. Food Hydrocoll. 139, 108592. doi: 10.1016/j.foodhyd.2023.108592
    Grundy, M.M.L., Moughan, P.J., Wilde, P.J., 2024. Bioaccessibility and associated concepts: Need for a consensus. Trends Food Sci. Technol. 145, 104373. doi: 10.1016/j.tifs.2024.104373
    Huang, L.Y., Xu, C., Gao, W.H., Rojas, O.J., Jiao, W.J., Guo, S.S., Li, J., 2024. Formulation and stabilization of high internal phase emulsions via mechanical cellulose nanofibrils/ethyl lauroyl arginate complexes. Carbohydr. Polym. 324, 121541. doi: 10.1016/j.carbpol.2023.121541
    Kang, L., Bhutto, R.A., Bhutto, N.U.A.H., Fan, Y.T., Yi, J., 2024. Formation, physiochemical stability, and bioaccessibility of quercetin-loaded α-lactalbumin amyloid-like fibril nanocomposite with ultrasound and its application in yogurt. Food Hydrocoll. 157, 110435. doi: 10.1016/j.foodhyd.2024.110435
    Kim, M.S., Simons, C.T., 2024. The role of TRPA1 and TRPV1 in the perception of astringency. Chem. Senses 49, bjae031. doi: 10.1093/chemse/bjae031
    Ladjal-Ettoumi, Y., Boudries, H., Chibane, M., Romero, A., 2016. Pea, chickpea and lentil protein isolates: Physicochemical characterization and emulsifying properties. Food Biophys. 11, 43–51. doi: 10.1007/s11483-015-9411-6
    Lawless, H.T., Hartono, C., Hernandez, S., 2000. Thresholds and suprathreshold intensity functions for capsaicin in oil and aqueous based carriers. J. Sens. Stud. 15, 437–477. doi: 10.1111/j.1745-459X.2000.tb00281.x
    Lee, T.S., Allen, B.K., Giese, T.J., Guo, Z.Y., Li, P.F., Lin, C., McGee, T.D. Jr, Pearlman, D.A., Radak, B.K., Tao, Y.J., Tsai, H.C., Xu, H.F., Sherman, W., York, D.M., 2020. Alchemical binding free energy calculations in AMBER20: Advances and best practices for drug discovery. J. Chem. Inf. Model. 60(11), 5595–5623. doi: 10.1021/acs.jcim.0c00613
    Li, M., Yang, R., Feng, X.C., Fan, X.J., Liu, Y.P., Xu, X.L., Zhou, G.H., Zhu, B.W., Ullah, N., Chen, L., 2022. Effects of low-frequency and high-intensity ultrasonic treatment combined with curdlan gels on the thermal gelling properties and structural properties of soy protein isolate. Food Hydrocoll. 127, 107506. doi: 10.1016/j.foodhyd.2022.107506
    Lin, J.Q., Yang, J., Kong, J., Shen, M.Y., Yu, Q., Chen, Y., Xie, J.H., 2024. Effect of cellulose nanofibrils on stability and digestive properties of legume protein-based emulsions. Food Hydrocoll. 151, 109779. doi: 10.1016/j.foodhyd.2024.109779
    Liu, Y.X., Liang, Q.F., Liu, Y., Rashid, A., Qayum, A., Tuly, J.A., Ma, H.L., Miao, S., Ren, X.F., 2024. Sodium caseinate/pectin complex-stabilized emulsion: Multi-frequency ultrasound regulation, characterization and its application in quercetin delivery. Food Hydrocoll. 156, 110316. doi: 10.1016/j.foodhyd.2024.110316
    Lu, Z., Lee, P.R., Yang, H.S., 2023. Kappa-carrageenan improves the gelation and structures of soy protein isolate through the formation of hydrogen bonding and electrostatic interactions. Food Hydrocoll. 140, 108585. doi: 10.1016/j.foodhyd.2023.108585
    Luo, X.M., Ji, L.F., Ao, F., Yang, C., Chang, J., Yin, C.Y., Ren, H.J., Teng, M., Li, L.Y., Liu, X.H., 2024. On-demand engineered double-network gelatin/silicate composited hydrogels with enhanced wet adhesion and stable release of bioactive ion for promoting wound healing. Collagen Leather 6, 18. doi: 10.1186/s42825-024-00161-x
    Lv, J.Y., Wang, H., Zhu, M.Q., Chen, Q., Huan, S.Q., Liu, Y., Liu, S.X., Li, Z.G., Bai, L., 2024. High internal phase Pickering emulsions via complexation of cellulose nanofibrils and nanochitin: Enhanced interfacial adsorption and structured aqueous network. Food Hydrocoll. 157, 110383. doi: 10.1016/j.foodhyd.2024.110383
    Muhoza, B., Qi, B.K., Harindintwali, J.D., Farag Koko, M.Y., Zhang, S., Li, Y., 2022. Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocoll. 124, 107239. doi: 10.1016/j.foodhyd.2021.107239
    Nimaming, N., Sadeghpour, A., Murray, B.S., Sarkar, A., 2024. Pickering oil-in-water emulsions stabilized by hybrid plant protein-flavonoid conjugate particles. Food Hydrocoll. 154, 110146. doi: 10.1016/j.foodhyd.2024.110146
    Picone, C.S.F., Bueno, A.C., Michelon, M., Cunha, R.L., 2017. Development of a probiotic delivery system based on gelation of water-in-oil emulsions. LWT 86, 62–68. doi: 10.1016/j.lwt.2017.07.045
    Ranjbar, B., Gill, P., 2009. Circular dichroism techniques: biomolecular and nanostructural analyses: A review. Chem. Biol. Drug Des. 74, 101–120. doi: 10.1111/j.1747-0285.2009.00847.x
    Ren, X.F., Zhang, X., Liang, Q.F., Hou, T., Zhou, H.J., 2017. Effects of different working modes of ultrasound on structural characteristics of zein and ACE inhibitory activity of hydrolysates. J. Food Qual. 2017, 7896037.
    Ryu, J., McClements, D.J., 2025. Potential for fabricating tough double network hydrogels using mixed polysaccharides: High-acyl gellan with low-acyl gellan, agar, or κ-carrageenan. Food Hydrocoll. 162, 110898. doi: 10.1016/j.foodhyd.2024.110898
    Sahin, S.S., Hernández-Álvarez, A.J., Ke, L., Sadeghpour, A., Ho, P., Goycoolea, F.M., 2024. Composition, characterisation and emulsifying properties of natural nanoparticles in chickpea aquafaba for the formation of chilli oleoresin-in-water pickering emulsions. Food Hydrocoll. 150, 109728. doi: 10.1016/j.foodhyd.2024.109728
    Seo, H.M., Seo, M., Shin, K., Choi, S., Kim, J.W., 2021. Bacterial cellulose nanofibrils-armored pickering emulsions with limited influx of metal ions. Carbohydr. Polym. 258, 117730. doi: 10.1016/j.carbpol.2021.117730
    Shen, R.X., Tian, X.J., Yang, Q.H., Zhang, K., Zhang, H., Wang, X.H., Bai, L., Wang, W.H., 2023. Using nanocellulose to improve heat-induced cull cow meat myofibrillar protein gels: Effects of particle morphology and content. J. Sci. Food Agric. 103, 7550–7559. doi: 10.1002/jsfa.12834
    Wang, K.Y., Zhu, M.Q., Yang, Z.L., Bai, L., Huan, S.Q., Wang, C.Y., 2023. Sustainable production of stable lignin nanoparticle-stabilized Pickering emulsions via cellulose nanofibril-induced depletion effect. ACS Sustainable Chem. Eng. 11(24), 9132–9142. doi: 10.1021/acssuschemeng.3c01972
    Wu, X.L., Xu, N., Cheng, C., McClements, D.J., Chen, X., Zou, L.Q., Liu, W., 2022. Encapsulation of hydrophobic capsaicin within the aqueous phase of water-in-oil high internal phase emulsions: Controlled release, reduced irritation, and enhanced bioaccessibility. Food Hydrocoll. 123, 107184. doi: 10.1016/j.foodhyd.2021.107184
    Wu, H.L., Xiao, Z.J., Xiao, N., Jin, Z.J., Xu, P., Liu, H.N., Li, Z., Ming, L.S., 2025. Molecular interaction of cyclodextrins with cellulose nanocrystals: A new venue for improving the functional properties of Pickering emulsions. Food Hydrocoll. 158, 110542. doi: 10.1016/j.foodhyd.2024.110542
    Xiang, C.Y., Gao, J., Ye, H.X., Ren, G.R., Ma, X.J., Xie, H.J., Fang, S., Lei, Q.F., Fang, W.J., 2020. Development of ovalbumin-pectin nano complexes for vitamin D3 encapsulation: Enhanced storage stability and sustained release in simulated gastrointestinal digestion. Food Hydrocoll. 106, 105926. doi: 10.1016/j.foodhyd.2020.105926
    Xie, H.J., Liu, C.Z., Gao, J., Shi, J.Y., Ni, F.F., Luo, X., He, Y., Ren, G.R., Luo, Z.S., 2021. Fabrication of Zein-Lecithin-EGCG complex nanoparticles: Characterization, controlled release in simulated gastrointestinal digestion. Food Chem. 365, 130542. doi: 10.1016/j.foodchem.2021.130542
    Yin, M., Zhang, Q., Zhong, F., 2024. Construction of double network gel for co-encapsulation of probiotics and capsaicin: Enhanced the physicochemical stability and controlled release. Food Biosci. 58, 103715. doi: 10.1016/j.fbio.2024.103715
    Zhan, F.C., Youssef, M., Li, J., Li, B., 2022. Beyond particle stabilization of emulsions and foams: Proteins in liquid-liquid and liquid-gas interfaces. Adv. Colloid Interface Sci. 308, 102743. doi: 10.1016/j.cis.2022.102743
    Zhang, Y., Huo, M.R., Zhou, J.P., Zou, A.F., Li, W.Z., Yao, C.L., Xie, S.F., 2010. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. Aaps J. 12, 263–271. doi: 10.1208/s12248-010-9185-1
    Zhang, X.Z., Wu, Y.H., Li, Y., Li, B., Pei, Y., Liu, S.L., 2022. Effects of the interaction between bacterial cellulose and soy protein isolate on the oil-water interface on the digestion of the Pickering emulsions. Food Hydrocoll. 126, 107480. doi: 10.1016/j.foodhyd.2021.107480
    Zhang, R.X., Li, B., Song, Y., Li, L., Zhang, X., 2024. Tailoring stability in oil-in-water high internal phase pickering emulsions (HIPPEs) through surface modification of beeswax-based solid lipid particles (SLPs) with various surfactants. Food Hydrocoll. 156, 110264. doi: 10.1016/j.foodhyd.2024.110264
    Zhao, X.J., Chen, B.F., Liu, T.X., Cai, Y.J., Huang, L.H., Zhao, M.M., Zhao, Q.Z., 2023. The formation, structural and rheological properties of emulsion gels stabilized by egg white protein-insoluble soybean fiber complex. Food Hydrocoll. 134, 108035. doi: 10.1016/j.foodhyd.2022.108035
    Zhu, J.P., Li, Z.T., Wu, C.E., Fan, G.J., Li, T.T., Shen, D.B., Dou, J.F., Liang, Y., 2023. Insight into the self-assembly behavior of α-zein by multi-spectroscopic and molecular simulations: An example of combination with the main component of jujube peel pigments–Rutin. Food Chem. 404, 134684. doi: 10.1016/j.foodchem.2022.134684
    Zhu, J.P., Lu, Y.H., He, Q., 2025. Cocktail enzyme-assisted natural deep eutectic solvent for enhanced extraction of capsaicin from chili peppers: Mechanism exploration based on multi-experiments and molecular dynamic simulation. Food Chem. 465, 141959. doi: 10.1016/j.foodchem.2024.141959
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (22) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return