Volume 10 Issue 4
Nov.  2025
Turn off MathJax
Article Contents
Shuang Qi, Hui Yang, Tian Fang, Tingwei Zhang, Bo Jiang, Sehrish Manan, Chaofeng Zhang, Peng Wang, Caoxing Huang, Wenjuan Wu, Yongcan Jin. Antioxidative lignin materials attenuate type 2 diabetes mellitus (T2DM) progression by preserving glutathione via insulin receptor substrate 1/phosphoinositide 3-kinase/protein kinase B (IRS1/PI3K/AKT) axis[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 631-647. doi: 10.1016/j.jobab.2025.10.001
Citation: Shuang Qi, Hui Yang, Tian Fang, Tingwei Zhang, Bo Jiang, Sehrish Manan, Chaofeng Zhang, Peng Wang, Caoxing Huang, Wenjuan Wu, Yongcan Jin. Antioxidative lignin materials attenuate type 2 diabetes mellitus (T2DM) progression by preserving glutathione via insulin receptor substrate 1/phosphoinositide 3-kinase/protein kinase B (IRS1/PI3K/AKT) axis[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 631-647. doi: 10.1016/j.jobab.2025.10.001

Antioxidative lignin materials attenuate type 2 diabetes mellitus (T2DM) progression by preserving glutathione via insulin receptor substrate 1/phosphoinositide 3-kinase/protein kinase B (IRS1/PI3K/AKT) axis

doi: 10.1016/j.jobab.2025.10.001
More Information
  • Corresponding author: E-mail address: peng_wang0324@163.com (P. Wang); E-mail address: jinyongcan@njfu.edu.cn (Y. Jin)
  • Received Date: 2025-05-12
  • Accepted Date: 2025-09-25
  • Rev Recd Date: 2025-09-19
  • Available Online: 2025-10-08
  • Publish Date: 2025-11-01
  • Lignin, a natural and renewable aromatic biopolymer, has gained attention in various biomedical applications due to its diverse structure, excellent biocompatibility, and antioxidant activity. However, the effects of lignin with tailored molecular weight on treating type 2 diabetes mellitus (T2DM) remain largely unexplored. In this study, a series of heterogeneous natural phenolic kraft lignin (KL) with tailored molecular weights, derived through an anti-sugar strategy, were prepared by continuous fractionation. The lignin fractions were categorized as F1, F2, and F3, corresponding to high, medium, and low molecular weights, respectively. Their therapeutic effects on T2DM were evaluated using a fractionated lignin culture cell model and intravenous injection into the tail vein of diabetic rats. The results demonstrated that lignin's protective effects in attenuating T2DM progression were molecular weight-dependent. Specifically, F3 reduced fasting blood glucose, reversed insulin resistance, and improved insulin sensitivity by mitigating oxidative stress and inflammatory responses. Mechanistic investigations revealed that F3 positively regulated glucose and lipid metabolism, inhibited hepatic gluconeogenesis, and enhanced hepatic glycogen synthesis by activating the insulin receptor substrate 1/phosphoinositide 3-kinase/protein kinase B (IRS1/PI3K/AKT) signaling pathway. Results revealed that lignin exerts its therapeutic effects on T2DM in a molecular weight-dependent manner, with IRS1/PI3K/AKT signaling as a potential underlying mechanism. This highlights lignin with a defined molecular weight as a promising candidate for T2DM treatment.

     

  • Ethics approval
    All the experimental protocols in this study were approved by the Committee of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University (2023AE02011).
    Declaration of competing interest
    There are no conflicts to declare.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.10.001.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Banihani, S., Swedan, S., Alguraan, Z., 2013. Pomegranate and type 2 diabetes. Nutr. Res. 33, 341–348. doi: 10.1016/j.nutres.2013.03.003
    Barapatre, A., Meena, A.S., Mekala, S., Das, A., Jha, H., 2016. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica. Int. J. Biol. Macromol. 86, 443–453. doi: 10.1016/j.ijbiomac.2016.01.109
    Bhatti, J.S., Sehrawat, A., Mishra, J., Sidhu, I.S., Navik, U., Khullar, N., Kumar, S., Bhatti, G.K., Reddy, P.H., 2022. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 184, 114–134. doi: 10.1016/j.freeradbiomed.2022.03.019
    Bogurcu, N., Sevimli-Gur, C., Ozmen, B., Bedir, E., Korkmaz, K.S., 2011. ALCAPs induce mitochondrial apoptosis and activate DNA damage response by generating ROS and inhibiting topoisomerase I enzyme activity in K562 leukemia cell line. Biochem. Biophys. Res. Commun. 409, 738–744. doi: 10.1016/j.bbrc.2011.05.078
    Cao, R., Tian, H.M., Zhang, Y., Liu, G., Xu, H.X., Rao, G.C., Tian, Y., Fu, X.H., 2023. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm 4, e283. doi: 10.1002/mco2.283
    Chandramohan, R., Pari, L., Rathinam, A., Ahmad Sheikh, B., 2015. Tyrosol, a phenolic compound, ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Chem. Biol. Interact. 229, 44–54. doi: 10.1016/j.cbi.2015.01.026
    Chen, X.Y., Zhao, H.Y., Meng, F.Q., Zhou, L.B., Lu, Z.X., Lu, Y.J., 2023. Surfactin alleviated hyperglycaemia in mice with type 2 diabetes induced by a high-fat diet and streptozotocin. Food Sci. Hum. Wellness 12, 2095–2110. doi: 10.1016/j.fshw.2023.03.012
    Consortium, M., Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Krogh Pedersen, H., Arumugam, M., Kristiansen, K., Yvonne Voigt, A., Vestergaard, H., Hercog, R., Igor Costea, P., Roat Kultima, J., Li, J.H., Jørgensen, T., Levenez, F., Dore, J., Bjørn Nielsen, H., Brunak, S., Raes, J., Hansen, T., Wang, J., Dusko Ehrlich, S., Bork, P., Pedersen, O., 2015. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266. doi: 10.1038/nature15766
    Fioretto, P., Zambon, A., Rossato, M., Busetto, L., Vettor, R., 2016. SGLT2 inhibitors and the diabetic kidney. Diab. Care 39, S165–S171. doi: 10.2337/dcS15-3006
    Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K.B., Ostolaza, H., Martín, C., 2020. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 21, 6275. doi: 10.3390/ijms21176275
    Gallagher, D., Kelley, D.E., Thornton, J., Boxt, L., Pi-Sunyer, X., Lipkin, E., Nyenwe, E., Janumala, I., Heshka, S., 2017. Changes in skeletal muscle and organ size after a weight-loss intervention in overweight and obese type 2 diabetic patients. Am. J. Clin. Nutr. 105, 78–84. doi: 10.3945/ajcn.116.139188
    Gao, Y., Zhang, M.W., Zhang, R.F., You, L.J., Li, T., Liu, R.H., 2019. Whole grain brown rice extrudate ameliorates the symptoms of diabetes by activating the IRS1/PI3K/AKT insulin pathway in db/db mice. J. Agric. Food Chem. 67, 11657–11664. doi: 10.1021/acs.jafc.9b04684
    Ge, X.D., He, X.Y., Liu, J.W., Zeng, F., Chen, L.G., Xu, W., Shao, R., Huang, Y., Farag, M.A., Capanoglu, E., El-Seedi, H.R., Zhao, C., Liu, B., 2023. Amelioration of type 2 diabetes by the novel 6, 8-guanidyl luteolin quinone-chromium coordination via biochemical mechanisms and gut microbiota interaction. J. Adv. Res. 46, 173–188. doi: 10.1016/j.jare.2022.06.003
    Jääskeläinen, A.S., Liitiä, T., Mikkelson, A., Tamminen, T., 2017. Aqueous organic solvent fractionation as means to improve lignin homogeneity and purity. Ind. Crops Prod. 103, 51–58. doi: 10.1016/j.indcrop.2017.03.039
    Jang, E., Shin, M.H., Kim, K.S., Kim, Y., Na, Y.C., Woo, H.J., Kim, Y., Lee, J.H., Jang, H.J., 2014. Anti-lipoapoptotic effect of Artemisia capillaris extract on free fatty acids-induced HepG2 cells. BMC Complement. Altern. Med. 14, 253. doi: 10.1186/1472-6882-14-253
    Jiang, B., Chen, H., Zhao, H.F., Wu, W.J., Jin, Y.C., 2020. Structural features and antioxidant behavior of lignins successively extracted from Ginkgo shells (Ginkgo biloba L). Int. J. Biol. Macromol. 163, 694–701. doi: 10.1016/j.ijbiomac.2020.07.027
    Jin, D., Zhao, T., Feng, W.W., Mao, G.H., Zou, Y., Wang, W., Li, Q., Chen, Y., Wang, X.T., Yang, L.Q., Wu, X.Y., 2016. Schisandra polysaccharide increased glucose consumption by up-regulating the expression of GLUT-4. Int. J. Biol. Macromol. 87, 555–562. doi: 10.1016/j.ijbiomac.2016.03.028
    Li, Y.L., Chen, D., Xu, C.M., Zhao, Q., Ma, Y.G., Zhao, S.L., Chen, C.Y., 2020. Glycolipid metabolism and liver transcriptomic analysis of the therapeutic effects of pressed degreased walnut meal extracts on type 2 diabetes mellitus rats. Food Funct. 11, 5538–5552. doi: 10.1039/d0fo00670j
    Liu, S.W., Yu, J.C., Fu, M.F., Wang, X.F., Chang, X.D., 2021. Regulatory effects of hawthorn polyphenols on hyperglycemic, inflammatory, insulin resistance responses, and alleviation of aortic injury in type 2 diabetic rats. Food Res. Int. 142, 110239. doi: 10.1016/j.foodres.2021.110239
    Maqsoudlou, A., Assadpour, E., Mohebodini, H., Jafari, S.M., 2020. Improving the efficiency of natural antioxidant compounds via different nanocarriers. Adv. Colloid Interface Sci. 278, 102122. doi: 10.1016/j.cis.2020.102122
    Meex, R.C.R., Schrauwen, P., Hesselink, M.K.C., 2009. Modulation of myocellular fat stores: lipid droplet dynamics in health and disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R913–R924. doi: 10.1152/ajpregu.91053.2008
    Mondal, S., Jatrana, A., Maan, S., Sharma, P., 2023. Lignin modification and valorization in medicine, cosmetics, environmental remediation and agriculture: a review. Environ. Chem. Lett. 21, 2171–2197. doi: 10.1007/s10311-023-01585-3
    Naeini, F., Namkhah, Z., Ostadrahimi, A., Tutunchi, H., Hosseinzadeh-Attar, M.J., 2021. A comprehensive systematic review of the effects of naringenin, a Citrus-derived flavonoid, on risk factors for nonalcoholic fatty liver disease. Adv. Nutr. 12, 413–428. doi: 10.1093/advances/nmaa106
    Ohnishi, M., Matuo, T., Tsuno, T., Hosoda, A., Nomura, E., Taniguchi, H., Sasaki, H., Morishita, H., 2004. Antioxidant activity and hypoglycemic effect of ferulic acid in STZ-induced diabetic mice and KK-Ay mice. Biofactors 21, 315–319. doi: 10.1002/biof.552210161
    Pang, T.R., Wang, G.H., Sun, H., Wang, L.L., Liu, Q.M., Sui, W.J., Parvez, A.M., Si, C.L., 2020. Lignin fractionation for reduced heterogeneity in self-assembly nanosizing: Toward targeted preparation of uniform lignin nanoparticles with small size. ACS Sustainable Chem. Eng. 8, 9174–9183. doi: 10.1021/acssuschemeng.0c02967
    Pang, T.R., Wang, G.H., Sun, H., Sui, W.J., Si, C.L., 2021. Lignin fractionation: effective strategy to reduce molecule weight dependent heterogeneity for upgraded lignin valorization. Ind. Crops Prod. 165, 113442. doi: 10.1016/j.indcrop.2021.113442
    Pu, Y.Q., Cao, S.L., Ragauskas, A.J., 2011. Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ. Sci. 4, 3154–3166. doi: 10.1039/c1ee01201k
    Qi, B.R., Ren, D.Y., Li, T., Niu, P.F., Zhang, X.N., Yang, X.B., Xiao, J.B., 2022. Fu brick tea manages HFD/STZ-induced type 2 diabetes by regulating the gut microbiota and activating the IRS1/PI3K/AKT signaling pathway. J. Agric. Food Chem. 70, 8274–8287. doi: 10.1021/acs.jafc.2c02400
    Qi, S., Jiang, B., Huang, C.X., Jin, Y.C., 2023. Dual regulation of sulfonated lignin to prevent and treat type 2 diabetes mellitus. Biomacromolecules 24, 841–848. doi: 10.1021/acs.biomac.2c01267
    Qi, S., Zhang, T.W., Zhang, C.F., Jiang, B., Huang, C.X., Yong, Q., Jin, Y.C., 2024. Sucrose-derived porous carbon catalyzed lignin depolymerization to obtain a product with application in type 2 diabetes mellitus. Int. J. Biol. Macromol. 279, 135170. doi: 10.1016/j.ijbiomac.2024.135170
    Rodriguez-Gutierrez, R., Gonzalez-Gonzalez, J.G., Zuñiga-Hernandez, J.A., McCoy, R.G., 2019. Benefits and harms of intensive glycemic control in patients with type 2 diabetes. BMJ 367, l5887. doi: 10.1136/bmj.l5887
    Saratale, R.G., Cho, S.K., Saratale, G.D., Kadam, A.A., Ghodake, G.S., Magotra, V.K., Kumar, M., Bharagava, R.N., Varjani, S., Palem, R.R., Mulla, S.I., Kim, D.S., Shin, H.S., 2022. Lignin-mediated silver nanoparticle synthesis for photocatalytic degradation of reactive yellow 4G and in vitro assessment of antioxidant, antidiabetic, and antibacterial activities. Polymers (Basel) 14, 648. doi: 10.3390/polym14030648
    Sun, Y.X., Shi, H., Yin, S.Q., Ji, C., Zhang, X., Zhang, B., Wu, P.P., Shi, Y.H., Mao, F., Yan, Y.M., Xu, W.R., Qian, H., 2018. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano 12, 7613–7628. doi: 10.1021/acsnano.7b07643
    Sun, X., Chi, X., Zhao, Y.Y., Liu, S.N., Xing, H.C., 2022. Characteristics and clinical significance of intestinal microbiota in patients with chronic hepatitis B cirrhosis and type 2 diabetes mellitus. J. Diabetes Res. 2022, 1826181.
    Tang, S., Li, J.S., Huang, G.X., Yan, L.J., 2021. Predicting protein surface property with its surface hydrophobicity. Protein Pept. Lett. 28, 938–944.
    Tavella, T., Rampelli, S., Guidarelli, G., Bazzocchi, A., Gasperini, C., Pujos-Guillot, E., Comte, B., Barone, M., Biagi, E., Candela, M., Nicoletti, C., Kadi, F., Battista, G., Salvioli, S., O'Toole, P.W., Franceschi, C., Brigidi, P., Turroni, S., Santoro, A., 2021. Elevated gut microbiome abundance of christensenellaceae, porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes 13, 1–19.
    Taylor, R., Al-Mrabeh, A., Sattar, N., 2019. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diab. Endocrinol. 7, 726–736. doi: 10.1016/S2213-8587(19)30076-2
    Ullah, I., Chen, Z.B., Xie, Y.X., Khan, S.S., Singh, S., Yu, C.Y., Cheng, G., 2022. Recent advances in biological activities of lignin and emerging biomedical applications: a short review. Int. J. Biol. Macromol. 208, 819–832. doi: 10.1016/j.ijbiomac.2022.03.182
    Wang, J., Wang, C., Li, S.Q., Li, W.W., Yuan, G.Q., Pan, Y.X., Chen, H.X., 2017a. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-AKT signal pathway. Biomed. Pharmacother. 95, 1669–1677. doi: 10.1016/j.biopha.2017.09.104
    Wang, S.R., Goodspeed, L., Turk, K.E., Houston, B., den Hartigh, L.J., 2017b Rosiglitazone improves insulin resistance mediated by 10, 12 conjugated linoleic acid in a male mouse model of metabolic syndrome. Endocrinology 158, 2848–2859. doi: 10.1210/en.2017-00213
    Wang, B.X., Yu, H.S., He, Y., Wen, L.K., Gu, J.D., Wang, X.Y., Miao, X.W., Qiu, G.S., Wang, H.R., 2021a. Effect of soybean insoluble dietary fiber on prevention of obesity in high-fat diet fed mice via regulation of the gut microbiota. Food Funct. 12, 7923–7937. doi: 10.1039/d1fo00078k
    Wang, M.G., Xiong, Y.C., Zhu, W., Ruze, R., Xu, Q., Yan, Z.B., Zhu, J.K., Zhong, M.W., Cheng, Y.G., Hu, S.Y., Zhang, G.Y., 2021b Sleeve gastrectomy ameliorates diabetes-related spleen damage by improving oxidative stress status in diabetic obese rats. Obes. Surg. 31, 1183–1195. doi: 10.1007/s11695-020-05073-3
    Wang, R.M., Zhang, L., Zhang, Q.Y., Zhang, J.C., Liu, S.X., Li, C.F., Wang, L., 2022. Glycolipid metabolism and metagenomic analysis of the therapeutic effect of a phenolics-rich extract from noni fruit on type 2 diabetic mice. J. Agric. Food Chem. 70, 2876–2888. doi: 10.1021/acs.jafc.1c07441
    Wang, B.B., Huang, Y., Cai, Q., Du, Z.P., Li, X.M., 2024a. Biomaterials for diabetic bone repair: influencing mechanisms, multi-aspect progress and future prospects. Compos. Part B Eng. 274, 111282. doi: 10.1016/j.compositesb.2024.111282
    Wang, P., Wang, Q.J., Wu, D.X., Zhang, Y.Y., Kang, S.X., Wang, X.C., Gu, J.Y., Wu, H., Xu, Z.H., Jiang, Q., 2024b Enhancing osteogenic bioactivities of coaxial electrospinning nano-scaffolds through incorporating iron oxide nanoparticles and icaritin for bone regeneration. Nano Res. 17, 6430–6442. doi: 10.1007/s12274-024-6656-8
    Wang, Y.L., Lu, Z.Q., Liu, B., Seidi, F., Zhang, C.F., Jiang, B., Huang, C.X., Xiao, H.N., Wang, P., Jin, Y.C., 2024c. Antitumor effects of carrier-free functionalized lignin materials on human hepatocellular carcinoma (HepG2) cells. ACS Nano 18, 4329–4342. doi: 10.1021/acsnano.3c09924
    Xiang, Y.J., Qi, X.L., Cai, E.Y., Zhang, C.F., Wang, J.J., Lan, Y.L., Deng, H., Shen, J.L., Hu, R.D., 2023. Highly efficient bacteria-infected diabetic wound healing employing a melanin-reinforced biopolymer hydrogel. Chem. Eng. J. 460, 141852. doi: 10.1016/j.cej.2023.141852
    Xiao, H.F., Wang, J., Yuan, L., Xiao, C.X., Wang, Y.T., Liu, X.B., 2013. Chicoric acid induces apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/AKT and MAPK signaling pathways. J. Agric. Food Chem. 61, 1509–1520. doi: 10.1021/jf3050268
    Xu, X.Y., Pang, Y., Fan, X.Q., 2025. Mitochondria in oxidative stress, inflammation and aging: from mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 10, 190. doi: 10.1038/s41392-025-02253-4
    Yao, M., Xu, F.R., Yao, Y.J., Wang, H.O., Ju, X.R., Wang, L.F., 2022. Assessment of novel oligopeptides from rapeseed napin (Brassica napus) in protecting HepG2 cells from insulin resistance and oxidative stress. J. Agric. Food Chem. 70, 12418–12429. doi: 10.1021/acs.jafc.2c03718
    Yoon, S.A., Kang, S.I., Shin, H.S., Kang, S.W., Kim, J.H., Ko, H.C., Kim, S.J., 2013. Coumaric acid modulates glucose and lipid metabolism via AMP-activated protein kinase in L6 skeletal muscle cells. Biochem. Biophys. Res. Commun. 432, 553–557. doi: 10.1016/j.bbrc.2013.02.067
    Yu, Y.J., Tian, J.L., Zheng, T., Kuang, H.X., Li, Z.R., Hao, C.J., Xiang, M.D., Li, Z.C., 2024. Perturbation of lipid metabolism in 3T3-L1 at different stages of preadipocyte differentiation and new insights into the association between changed metabolites and adipogenesis promoted by TBBPA or TBBPS. J. Hazard. Mater. 465, 133183. doi: 10.1016/j.jhazmat.2023.133183
    Zhang, X.W., Dong, L.H., Jia, X.C., Liu, L., Chi, J.W., Huang, F., Ma, Q., Zhang, M.W., Zhang, R.F., 2020. Bound phenolics ensure the antihyperglycemic effect of rice bran dietary fiber in db/db mice via activating the insulin signaling pathway in skeletal muscle and altering gut microbiota. J. Agric. Food Chem. 68, 4387–4398. doi: 10.1021/acs.jafc.0c00584
    Zhou, M., Fakayode, O.A., Ren, M.N., Li, H.X., Liang, J.K., Zhou, C.S., 2024. Green and sustainable extraction of lignin by deep eutectic solvent, its antioxidant activity, and applications in the food industry. Crit. Rev. Food Sci. Nutr. 64, 7201–7219. doi: 10.1080/10408398.2023.2181762
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (23) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return