| Citation: | Shuang Qi, Hui Yang, Tian Fang, Tingwei Zhang, Bo Jiang, Sehrish Manan, Chaofeng Zhang, Peng Wang, Caoxing Huang, Wenjuan Wu, Yongcan Jin. Antioxidative lignin materials attenuate type 2 diabetes mellitus (T2DM) progression by preserving glutathione via insulin receptor substrate 1/phosphoinositide 3-kinase/protein kinase B (IRS1/PI3K/AKT) axis[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 631-647. doi: 10.1016/j.jobab.2025.10.001 |
|
Banihani, S., Swedan, S., Alguraan, Z., 2013. Pomegranate and type 2 diabetes. Nutr. Res. 33, 341–348. doi: 10.1016/j.nutres.2013.03.003
|
|
Barapatre, A., Meena, A.S., Mekala, S., Das, A., Jha, H., 2016. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica. Int. J. Biol. Macromol. 86, 443–453. doi: 10.1016/j.ijbiomac.2016.01.109
|
|
Bhatti, J.S., Sehrawat, A., Mishra, J., Sidhu, I.S., Navik, U., Khullar, N., Kumar, S., Bhatti, G.K., Reddy, P.H., 2022. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 184, 114–134. doi: 10.1016/j.freeradbiomed.2022.03.019
|
|
Bogurcu, N., Sevimli-Gur, C., Ozmen, B., Bedir, E., Korkmaz, K.S., 2011. ALCAPs induce mitochondrial apoptosis and activate DNA damage response by generating ROS and inhibiting topoisomerase I enzyme activity in K562 leukemia cell line. Biochem. Biophys. Res. Commun. 409, 738–744. doi: 10.1016/j.bbrc.2011.05.078
|
|
Cao, R., Tian, H.M., Zhang, Y., Liu, G., Xu, H.X., Rao, G.C., Tian, Y., Fu, X.H., 2023. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm 4, e283. doi: 10.1002/mco2.283
|
|
Chandramohan, R., Pari, L., Rathinam, A., Ahmad Sheikh, B., 2015. Tyrosol, a phenolic compound, ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Chem. Biol. Interact. 229, 44–54. doi: 10.1016/j.cbi.2015.01.026
|
|
Chen, X.Y., Zhao, H.Y., Meng, F.Q., Zhou, L.B., Lu, Z.X., Lu, Y.J., 2023. Surfactin alleviated hyperglycaemia in mice with type 2 diabetes induced by a high-fat diet and streptozotocin. Food Sci. Hum. Wellness 12, 2095–2110. doi: 10.1016/j.fshw.2023.03.012
|
|
Consortium, M., Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Krogh Pedersen, H., Arumugam, M., Kristiansen, K., Yvonne Voigt, A., Vestergaard, H., Hercog, R., Igor Costea, P., Roat Kultima, J., Li, J.H., Jørgensen, T., Levenez, F., Dore, J., Bjørn Nielsen, H., Brunak, S., Raes, J., Hansen, T., Wang, J., Dusko Ehrlich, S., Bork, P., Pedersen, O., 2015. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266. doi: 10.1038/nature15766
|
|
Fioretto, P., Zambon, A., Rossato, M., Busetto, L., Vettor, R., 2016. SGLT2 inhibitors and the diabetic kidney. Diab. Care 39, S165–S171. doi: 10.2337/dcS15-3006
|
|
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K.B., Ostolaza, H., Martín, C., 2020. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 21, 6275. doi: 10.3390/ijms21176275
|
|
Gallagher, D., Kelley, D.E., Thornton, J., Boxt, L., Pi-Sunyer, X., Lipkin, E., Nyenwe, E., Janumala, I., Heshka, S., 2017. Changes in skeletal muscle and organ size after a weight-loss intervention in overweight and obese type 2 diabetic patients. Am. J. Clin. Nutr. 105, 78–84. doi: 10.3945/ajcn.116.139188
|
|
Gao, Y., Zhang, M.W., Zhang, R.F., You, L.J., Li, T., Liu, R.H., 2019. Whole grain brown rice extrudate ameliorates the symptoms of diabetes by activating the IRS1/PI3K/AKT insulin pathway in db/db mice. J. Agric. Food Chem. 67, 11657–11664. doi: 10.1021/acs.jafc.9b04684
|
|
Ge, X.D., He, X.Y., Liu, J.W., Zeng, F., Chen, L.G., Xu, W., Shao, R., Huang, Y., Farag, M.A., Capanoglu, E., El-Seedi, H.R., Zhao, C., Liu, B., 2023. Amelioration of type 2 diabetes by the novel 6, 8-guanidyl luteolin quinone-chromium coordination via biochemical mechanisms and gut microbiota interaction. J. Adv. Res. 46, 173–188. doi: 10.1016/j.jare.2022.06.003
|
|
Jääskeläinen, A.S., Liitiä, T., Mikkelson, A., Tamminen, T., 2017. Aqueous organic solvent fractionation as means to improve lignin homogeneity and purity. Ind. Crops Prod. 103, 51–58. doi: 10.1016/j.indcrop.2017.03.039
|
|
Jang, E., Shin, M.H., Kim, K.S., Kim, Y., Na, Y.C., Woo, H.J., Kim, Y., Lee, J.H., Jang, H.J., 2014. Anti-lipoapoptotic effect of Artemisia capillaris extract on free fatty acids-induced HepG2 cells. BMC Complement. Altern. Med. 14, 253. doi: 10.1186/1472-6882-14-253
|
|
Jiang, B., Chen, H., Zhao, H.F., Wu, W.J., Jin, Y.C., 2020. Structural features and antioxidant behavior of lignins successively extracted from Ginkgo shells (Ginkgo biloba L). Int. J. Biol. Macromol. 163, 694–701. doi: 10.1016/j.ijbiomac.2020.07.027
|
|
Jin, D., Zhao, T., Feng, W.W., Mao, G.H., Zou, Y., Wang, W., Li, Q., Chen, Y., Wang, X.T., Yang, L.Q., Wu, X.Y., 2016. Schisandra polysaccharide increased glucose consumption by up-regulating the expression of GLUT-4. Int. J. Biol. Macromol. 87, 555–562. doi: 10.1016/j.ijbiomac.2016.03.028
|
|
Li, Y.L., Chen, D., Xu, C.M., Zhao, Q., Ma, Y.G., Zhao, S.L., Chen, C.Y., 2020. Glycolipid metabolism and liver transcriptomic analysis of the therapeutic effects of pressed degreased walnut meal extracts on type 2 diabetes mellitus rats. Food Funct. 11, 5538–5552. doi: 10.1039/d0fo00670j
|
|
Liu, S.W., Yu, J.C., Fu, M.F., Wang, X.F., Chang, X.D., 2021. Regulatory effects of hawthorn polyphenols on hyperglycemic, inflammatory, insulin resistance responses, and alleviation of aortic injury in type 2 diabetic rats. Food Res. Int. 142, 110239. doi: 10.1016/j.foodres.2021.110239
|
|
Maqsoudlou, A., Assadpour, E., Mohebodini, H., Jafari, S.M., 2020. Improving the efficiency of natural antioxidant compounds via different nanocarriers. Adv. Colloid Interface Sci. 278, 102122. doi: 10.1016/j.cis.2020.102122
|
|
Meex, R.C.R., Schrauwen, P., Hesselink, M.K.C., 2009. Modulation of myocellular fat stores: lipid droplet dynamics in health and disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R913–R924. doi: 10.1152/ajpregu.91053.2008
|
|
Mondal, S., Jatrana, A., Maan, S., Sharma, P., 2023. Lignin modification and valorization in medicine, cosmetics, environmental remediation and agriculture: a review. Environ. Chem. Lett. 21, 2171–2197. doi: 10.1007/s10311-023-01585-3
|
|
Naeini, F., Namkhah, Z., Ostadrahimi, A., Tutunchi, H., Hosseinzadeh-Attar, M.J., 2021. A comprehensive systematic review of the effects of naringenin, a Citrus-derived flavonoid, on risk factors for nonalcoholic fatty liver disease. Adv. Nutr. 12, 413–428. doi: 10.1093/advances/nmaa106
|
|
Ohnishi, M., Matuo, T., Tsuno, T., Hosoda, A., Nomura, E., Taniguchi, H., Sasaki, H., Morishita, H., 2004. Antioxidant activity and hypoglycemic effect of ferulic acid in STZ-induced diabetic mice and KK-Ay mice. Biofactors 21, 315–319. doi: 10.1002/biof.552210161
|
|
Pang, T.R., Wang, G.H., Sun, H., Wang, L.L., Liu, Q.M., Sui, W.J., Parvez, A.M., Si, C.L., 2020. Lignin fractionation for reduced heterogeneity in self-assembly nanosizing: Toward targeted preparation of uniform lignin nanoparticles with small size. ACS Sustainable Chem. Eng. 8, 9174–9183. doi: 10.1021/acssuschemeng.0c02967
|
|
Pang, T.R., Wang, G.H., Sun, H., Sui, W.J., Si, C.L., 2021. Lignin fractionation: effective strategy to reduce molecule weight dependent heterogeneity for upgraded lignin valorization. Ind. Crops Prod. 165, 113442. doi: 10.1016/j.indcrop.2021.113442
|
|
Pu, Y.Q., Cao, S.L., Ragauskas, A.J., 2011. Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ. Sci. 4, 3154–3166. doi: 10.1039/c1ee01201k
|
|
Qi, B.R., Ren, D.Y., Li, T., Niu, P.F., Zhang, X.N., Yang, X.B., Xiao, J.B., 2022. Fu brick tea manages HFD/STZ-induced type 2 diabetes by regulating the gut microbiota and activating the IRS1/PI3K/AKT signaling pathway. J. Agric. Food Chem. 70, 8274–8287. doi: 10.1021/acs.jafc.2c02400
|
|
Qi, S., Jiang, B., Huang, C.X., Jin, Y.C., 2023. Dual regulation of sulfonated lignin to prevent and treat type 2 diabetes mellitus. Biomacromolecules 24, 841–848. doi: 10.1021/acs.biomac.2c01267
|
|
Qi, S., Zhang, T.W., Zhang, C.F., Jiang, B., Huang, C.X., Yong, Q., Jin, Y.C., 2024. Sucrose-derived porous carbon catalyzed lignin depolymerization to obtain a product with application in type 2 diabetes mellitus. Int. J. Biol. Macromol. 279, 135170. doi: 10.1016/j.ijbiomac.2024.135170
|
|
Rodriguez-Gutierrez, R., Gonzalez-Gonzalez, J.G., Zuñiga-Hernandez, J.A., McCoy, R.G., 2019. Benefits and harms of intensive glycemic control in patients with type 2 diabetes. BMJ 367, l5887. doi: 10.1136/bmj.l5887
|
|
Saratale, R.G., Cho, S.K., Saratale, G.D., Kadam, A.A., Ghodake, G.S., Magotra, V.K., Kumar, M., Bharagava, R.N., Varjani, S., Palem, R.R., Mulla, S.I., Kim, D.S., Shin, H.S., 2022. Lignin-mediated silver nanoparticle synthesis for photocatalytic degradation of reactive yellow 4G and in vitro assessment of antioxidant, antidiabetic, and antibacterial activities. Polymers (Basel) 14, 648. doi: 10.3390/polym14030648
|
|
Sun, Y.X., Shi, H., Yin, S.Q., Ji, C., Zhang, X., Zhang, B., Wu, P.P., Shi, Y.H., Mao, F., Yan, Y.M., Xu, W.R., Qian, H., 2018. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano 12, 7613–7628. doi: 10.1021/acsnano.7b07643
|
|
Sun, X., Chi, X., Zhao, Y.Y., Liu, S.N., Xing, H.C., 2022. Characteristics and clinical significance of intestinal microbiota in patients with chronic hepatitis B cirrhosis and type 2 diabetes mellitus. J. Diabetes Res. 2022, 1826181.
|
|
Tang, S., Li, J.S., Huang, G.X., Yan, L.J., 2021. Predicting protein surface property with its surface hydrophobicity. Protein Pept. Lett. 28, 938–944.
|
|
Tavella, T., Rampelli, S., Guidarelli, G., Bazzocchi, A., Gasperini, C., Pujos-Guillot, E., Comte, B., Barone, M., Biagi, E., Candela, M., Nicoletti, C., Kadi, F., Battista, G., Salvioli, S., O'Toole, P.W., Franceschi, C., Brigidi, P., Turroni, S., Santoro, A., 2021. Elevated gut microbiome abundance of christensenellaceae, porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes 13, 1–19.
|
|
Taylor, R., Al-Mrabeh, A., Sattar, N., 2019. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diab. Endocrinol. 7, 726–736. doi: 10.1016/S2213-8587(19)30076-2
|
|
Ullah, I., Chen, Z.B., Xie, Y.X., Khan, S.S., Singh, S., Yu, C.Y., Cheng, G., 2022. Recent advances in biological activities of lignin and emerging biomedical applications: a short review. Int. J. Biol. Macromol. 208, 819–832. doi: 10.1016/j.ijbiomac.2022.03.182
|
|
Wang, J., Wang, C., Li, S.Q., Li, W.W., Yuan, G.Q., Pan, Y.X., Chen, H.X., 2017a. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-AKT signal pathway. Biomed. Pharmacother. 95, 1669–1677. doi: 10.1016/j.biopha.2017.09.104
|
|
Wang, S.R., Goodspeed, L., Turk, K.E., Houston, B., den Hartigh, L.J., 2017b Rosiglitazone improves insulin resistance mediated by 10, 12 conjugated linoleic acid in a male mouse model of metabolic syndrome. Endocrinology 158, 2848–2859. doi: 10.1210/en.2017-00213
|
|
Wang, B.X., Yu, H.S., He, Y., Wen, L.K., Gu, J.D., Wang, X.Y., Miao, X.W., Qiu, G.S., Wang, H.R., 2021a. Effect of soybean insoluble dietary fiber on prevention of obesity in high-fat diet fed mice via regulation of the gut microbiota. Food Funct. 12, 7923–7937. doi: 10.1039/d1fo00078k
|
|
Wang, M.G., Xiong, Y.C., Zhu, W., Ruze, R., Xu, Q., Yan, Z.B., Zhu, J.K., Zhong, M.W., Cheng, Y.G., Hu, S.Y., Zhang, G.Y., 2021b Sleeve gastrectomy ameliorates diabetes-related spleen damage by improving oxidative stress status in diabetic obese rats. Obes. Surg. 31, 1183–1195. doi: 10.1007/s11695-020-05073-3
|
|
Wang, R.M., Zhang, L., Zhang, Q.Y., Zhang, J.C., Liu, S.X., Li, C.F., Wang, L., 2022. Glycolipid metabolism and metagenomic analysis of the therapeutic effect of a phenolics-rich extract from noni fruit on type 2 diabetic mice. J. Agric. Food Chem. 70, 2876–2888. doi: 10.1021/acs.jafc.1c07441
|
|
Wang, B.B., Huang, Y., Cai, Q., Du, Z.P., Li, X.M., 2024a. Biomaterials for diabetic bone repair: influencing mechanisms, multi-aspect progress and future prospects. Compos. Part B Eng. 274, 111282. doi: 10.1016/j.compositesb.2024.111282
|
|
Wang, P., Wang, Q.J., Wu, D.X., Zhang, Y.Y., Kang, S.X., Wang, X.C., Gu, J.Y., Wu, H., Xu, Z.H., Jiang, Q., 2024b Enhancing osteogenic bioactivities of coaxial electrospinning nano-scaffolds through incorporating iron oxide nanoparticles and icaritin for bone regeneration. Nano Res. 17, 6430–6442. doi: 10.1007/s12274-024-6656-8
|
|
Wang, Y.L., Lu, Z.Q., Liu, B., Seidi, F., Zhang, C.F., Jiang, B., Huang, C.X., Xiao, H.N., Wang, P., Jin, Y.C., 2024c. Antitumor effects of carrier-free functionalized lignin materials on human hepatocellular carcinoma (HepG2) cells. ACS Nano 18, 4329–4342. doi: 10.1021/acsnano.3c09924
|
|
Xiang, Y.J., Qi, X.L., Cai, E.Y., Zhang, C.F., Wang, J.J., Lan, Y.L., Deng, H., Shen, J.L., Hu, R.D., 2023. Highly efficient bacteria-infected diabetic wound healing employing a melanin-reinforced biopolymer hydrogel. Chem. Eng. J. 460, 141852. doi: 10.1016/j.cej.2023.141852
|
|
Xiao, H.F., Wang, J., Yuan, L., Xiao, C.X., Wang, Y.T., Liu, X.B., 2013. Chicoric acid induces apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/AKT and MAPK signaling pathways. J. Agric. Food Chem. 61, 1509–1520. doi: 10.1021/jf3050268
|
|
Xu, X.Y., Pang, Y., Fan, X.Q., 2025. Mitochondria in oxidative stress, inflammation and aging: from mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 10, 190. doi: 10.1038/s41392-025-02253-4
|
|
Yao, M., Xu, F.R., Yao, Y.J., Wang, H.O., Ju, X.R., Wang, L.F., 2022. Assessment of novel oligopeptides from rapeseed napin (Brassica napus) in protecting HepG2 cells from insulin resistance and oxidative stress. J. Agric. Food Chem. 70, 12418–12429. doi: 10.1021/acs.jafc.2c03718
|
|
Yoon, S.A., Kang, S.I., Shin, H.S., Kang, S.W., Kim, J.H., Ko, H.C., Kim, S.J., 2013. Coumaric acid modulates glucose and lipid metabolism via AMP-activated protein kinase in L6 skeletal muscle cells. Biochem. Biophys. Res. Commun. 432, 553–557. doi: 10.1016/j.bbrc.2013.02.067
|
|
Yu, Y.J., Tian, J.L., Zheng, T., Kuang, H.X., Li, Z.R., Hao, C.J., Xiang, M.D., Li, Z.C., 2024. Perturbation of lipid metabolism in 3T3-L1 at different stages of preadipocyte differentiation and new insights into the association between changed metabolites and adipogenesis promoted by TBBPA or TBBPS. J. Hazard. Mater. 465, 133183. doi: 10.1016/j.jhazmat.2023.133183
|
|
Zhang, X.W., Dong, L.H., Jia, X.C., Liu, L., Chi, J.W., Huang, F., Ma, Q., Zhang, M.W., Zhang, R.F., 2020. Bound phenolics ensure the antihyperglycemic effect of rice bran dietary fiber in db/db mice via activating the insulin signaling pathway in skeletal muscle and altering gut microbiota. J. Agric. Food Chem. 68, 4387–4398. doi: 10.1021/acs.jafc.0c00584
|
|
Zhou, M., Fakayode, O.A., Ren, M.N., Li, H.X., Liang, J.K., Zhou, C.S., 2024. Green and sustainable extraction of lignin by deep eutectic solvent, its antioxidant activity, and applications in the food industry. Crit. Rev. Food Sci. Nutr. 64, 7201–7219. doi: 10.1080/10408398.2023.2181762
|