Volume 4 Issue 4
Nov.  2019
Turn off MathJax
Article Contents
Kang GUO, Qiyuan GUAN, Junming XU, Weihong TAN. Mechanism of Preparation of Platform Compounds from Lignocellulosic Biomass Liquefaction Catalyzed by Bronsted Acid:A Review[J]. Journal of Bioresources and Bioproducts, 2019, 4(4): 202-213. doi: 10.12162/jbb.v4i4.009
Citation: Kang GUO, Qiyuan GUAN, Junming XU, Weihong TAN. Mechanism of Preparation of Platform Compounds from Lignocellulosic Biomass Liquefaction Catalyzed by Bronsted Acid:A Review[J]. Journal of Bioresources and Bioproducts, 2019, 4(4): 202-213. doi: 10.12162/jbb.v4i4.009

Mechanism of Preparation of Platform Compounds from Lignocellulosic Biomass Liquefaction Catalyzed by Bronsted Acid:A Review

doi: 10.12162/jbb.v4i4.009
More Information
  • Corresponding author: Weihong TAN, E-mail:tanweihong71@163.com
  • Received Date: 2019-05-10
  • Accepted Date: 2019-06-30
  • Publish Date: 2019-10-01
  • Over the past two decades, research on transforming lignocellulosic biomass into small molecule chemicals by using catalytic liquefaction has made great progress. Notably, in recent years it has been found the production of small molecule chemicals through directional liquefaction of lignocellulosic biomass. Understanding the liquefaction mechanism of lignocellulosic biomass is highly important. In this review, the liquefaction mechanism of lignocellulosic biomass and model compounds of cellulose are described, and some problems and suggestions to address them are described.

     

  • loading
  • Akien G R, Qi L, Horváth I T, 2012. Molecular mapping of the acid catalysed dehydration of fructose. Chemical Communications, 48(47):5850. DOI: 10.1039/c2cc31689g.
    Amarasekara A S, Wiredu B, 2015. Acidic ionic liquid catalyzed liquefaction of cellulose in ethylene glycol; identification of a new cellulose derived cyclopentenone derivative. Industrial & Engineering Chemistry Research, 54(3):824-831. DOI: 10.1021/ie504544s.
    Antal M J Jr, Mok W S L, Richards G N, 1990. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydrate Research, 199(1):91-109. DOI: 10.1016/0008-6215(90)84096-d.
    Arni S A, 2018. Extraction and isolation methods for lignin separation from sugarcane bagasse:a review. Industrial Crops and Products, 115:330-339. DOI:10.1016/j.indcrop. 2018.02.012.
    Capunitan J A, Capareda S C, 2013. Characterization and separation of corn stover bio-oil by fractional distillation. Fuel, 112:60-73. DOI: 10.1016/j.fuel.2013.04.079.
    Caratzoulas S, Vlachos D G, 2011. Converting fructose to 5-hydroxymethylfurfural:a quantum mechanics/molecular mechanics study of the mechanism and energetics. Carbohydrate Research, 346(5):664-672. DOI: 10.1016/j.carres.2011.01.029.
    Chang C, Ma X J, Cen P L, 2006. Kinetics of levulinic acid formation from glucose decomposition at high temperature. Chinese Journal of Chemical Engineering, 14(5):708-712. DOI: 10.1016/s1004-9541(06)60139-0.
    Choudhary V, Mushrif S H, Ho C et al., 2013. Insights into the interplay of lewis and brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. Journal of the American Chemical Society, 135(10):3997-4006. DOI: 10.1021/ja3122763.
    Collard F, Blin J, 2014. A review on pyrolysis of biomass constituents:Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38:594-608. DOI: 10.1016/j.rser.2014.06.013.
    Deng L, Li J, Lai D M, et al., 2009. Catalytic conversion of biomass-derived carbohydrates into γ-valerolactone without using an external H2 Supply. Angewandte Chemie, 121(35):6651-6654. DOI: 10.1002/ange.200902281.
    Deng L, Zhao Y, Li J, et al., 2010. Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts. ChemSusChem, 3(10):1172-1175. DOI: 10.1002/cssc.201000163.
    Deng W P, Liu M, Zhang Q H, et al., 2010. Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures. Chemical Communications, 46(15):2668. DOI: 10.1039/b925723c.
    Deng W P, Zhang Q H, Wang Y, 2015. Catalytic transformation of cellulose and its derived carbohydrates into chemicals involving C C bond cleavage. Journal of Energy Chemistry, 24(5):595-607. DOI: 10.1016/j.jechem.2015.08.016.
    Dora S, Bhaskar T, Singh R, et al., 2012. Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst. Bioresource Technology, 120:318-321. DOI: 10.1016/j.biortech.2012.06.036.
    Feng H, Zheng Z F, Huang Y B, et al., 2011. Liquefaction of cellulose in the presence of phenol and main reaction pathway of its liquefied products. Advanced Materials Research, 236/237/238:334-340. DOI:10.4028/www.scientific. net/amr.236-238.334.
    Feng J F, Jiang J C, Xu J M, et al., 2015. One-step method to produce methyl-d-glucoside from lignocellulosic biomass. RSC Advances, 5(48):38783-38791. DOI: 10.1039/c5ra04514b.
    Garcés D, Díaz E, Ordóñez S, 2017. Aqueous phase conversion of hexoses into 5-hydroxymethylfurfural and levulinic acid in the presence of hydrochloric acid:mechanism and kinetics. Industrial & Engineering Chemistry Research, 56(18):5221-5230. DOI: 10.1021/acs.iecr.7b00952.
    Grisel R J H, van der Waal J C, de Jong E, et al., 2014. Acid catalysed alcoholysis of wheat straw:towards second generation furan-derivatives. Catalysis Today, 223:3-10. DOI: 10.1016/j.cattod.2013.07.008.
    Horvat J, Klaić B, Metelko B, et al., 1985. Mechanism of levulinic acid formation. Tetrahedron Letters, 26(17):2111-2114. DOI: 10.1016/s0040-4039(00)94793-2.
    Hu J B, Du Z X, Min E Z, 2012. Progress in research of reaction mechanism concerning hydrothermal liquefaction of biomass. Petroleum Processing and Petrochemicals, 43(4):87-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylzyhg201204019
    Huber G W, Iborra S, Corma A, 2006. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering. Chemical Reviews, 106(9):4044-4098. DOI: 10.1021/cr068360d.
    Isa K M, Abdullah T A T, Ali U F M, 2018. Hydrogen donor solvents in liquefaction of biomass:a review. Renewable and Sustainable Energy Reviews, 81:1259-1268. DOI: 10.1016/j.rser.2017.04.006.
    Jiang Z C, Zhao P P, Hu C W, 2018. Controlling the cleavage of the inter- and intra-molecular linkages in lignocellulosic biomass for further biorefining:a review. Bioresource Technology, 256:466-477. DOI: 10.1016/j.biortech.2018.02.061.
    Kang S M, Li X L, Fan J, et al., 2013. Hydrothermal conversion of lignin:A review. Renewable and Sustainable Energy Reviews, 27:546-558. DOI: 10.1016/j.rser.2013.07.013.
    Kumar S, Lange J, van Rossum G, et al., 2015. Liquefaction of lignocellulose:Do basic and acidic additives help out? Chemical Engineering Journal, 278:99-104. DOI: 10.1016/j.cej.2014.12.026.
    Li H, Fang Z, Luo J, et al., 2017. Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Applied Catalysis B:Environmental, 200:182-191. DOI: 10.1016/j.apcatb.2016.07.007.
    Li J M, Jiang Z C, Hu L B, et al., 2014. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system. ChemSusChem, 7(9):2482-2488. DOI: 10.1002/cssc.201402384.
    Li W, XIE X N, TANG C Z, et al., 2016. Effects of hydroxyl and hydrogen free radicals on the liquefaction of cellulose in sub/supercritical ethanol. Journal of Fuel Chemistry and Technology, 44(4):415-421. DOI:10.1016/S1872-5813(16) 30021-4.
    Li Z H, Su K M, Ren J, et al., 2018. Direct catalytic conversion of glucose and cellulose. Green Chemistry, 20(4):863-872. DOI: 10.1039/c7gc03318d.
    Lin L, 2004. Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohydrate Polymers, 57(2):123-129. DOI: 10.1016/j.carbpol.2004.01.014.
    Lindstrom J K, Proano-Aviles J, Johnston P A, et al., 2019. Competing reactions limit levoglucosan yield during fast pyrolysis of cellulose. Green Chemistry, 21(1):178-186. DOI: 10.1039/c8gc03461c.
    Liu Y X, Sun B, Zheng X F, et al., 2018. Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresource Technology, 247:859-863. DOI:10.1016/j. biortech.2017.08.059.
    Lu Q, Hu B, Zhang Z X, et al., 2018. Mechanism of cellulose fast pyrolysis:the role of characteristic chain ends and dehydrated units. Combustion and Flame, 198:267-277. DOI: 10.1016/j.combustflame.2018.09.025.
    Luo Z, Wang S, Wang Q, et al., 2013. Biomass utilization for liquid fuel production. In: Biomass Utilization for Liquid Fuel Production. Beijing: Chemical Industry Press, 16-18.
    Ma X J, Yang X F, Zheng X, et al., 2014. Degradation and dissolution of hemicelluloses during bamboo hydrothermal pretreatment. Bioresource Technology, 161:215-220. DOI: 10.1016/j.biortech.2014.03.044.
    Ma Y, Tan W H, Wang K, et al., 2017. An insight into the selective conversion of bamboo biomass to ethyl glycosides. ACS Sustainable Chemistry & Engineering, 5(7):5880-5886. DOI: 10.1021/acssuschemeng.7b00618.
    Mellmer M A, Sanpitakseree C, Demir B, et al., 2018. Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds. Nature Catalysis, 1(3):199-207. DOI: 10.1038/s41929-018-0027-3.
    Mika L T, Cséfalvay E, Németh Á, 2018. Catalytic conversion of carbohydrates to initial platform chemicals:chemistry and sustainability. Chemical Reviews, 118(2):505-613. DOI: 10.1021/acs.chemrev.7b00395.
    Patil S K R, Lund C R F, 2011. Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy & Fuels, 25(10):4745-4755. DOI: 10.1021/ef2010157.
    Pileidis F D, Titirici M, 2016. Levulinic acid biorefineries:new challenges for efficient utilization of biomass. ChemSusChem, 9(6):562-582. DOI: 10.1002/cssc.201501405.
    Pritchard J, Filonenko G A, van Putten R, et al., 2015. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives:history, advances and future directions. Chemical Society Reviews, 44(11):3808-3833. DOI: 10.1039/c5cs00038f.
    Qi L, Horváth I T, 2012. Catalytic conversion of fructose to γ-valerolactone in γ-valerolactone. ACS Catalysis, 2(11):2247-2249. DOI: 10.1021/cs300428f.
    Rahimi A, Ulbrich A, Coon J J, et al., 2014. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature, 515(7526):249-252. DOI: 10.1038/nature13867.
    Rasmussen H, Sørensen H R, Meyer A S, 2014. Formation of degradation compounds from lignocellulosic biomass in the biorefinery:sugar reaction mechanisms. Carbohydrate Research, 385:45-57. DOI: 10.1016/j.carres.2013.08.029.
    Shen F, Smith R L, Li L Y, et al., 2017. Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustainable Chemistry & Engineering, 5(3):2421-2427. DOI: 10.1021/acssuschemeng.6b02765.
    Shi Y, Li J D, Wang J, et al., 2016a. Kinetic and product composition study on the cellulose liquefaction in polyhydric alcohols. Bioresource Technology, 214:419-425. DOI: 10.1016/j.biortech.2016.04.127.
    Shi Y, Xia X Y, Li J D, et al., 2016b. Solvolysis kinetics of three components of biomass using polyhydric alcohols as solvents. Bioresource Technology, 221:102-110. DOI:10.1016/j. biortech.2016.09.008.
    Shuai L, Amiri M T, Questell-Santiago Y M, et al., 2016. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 354(6310):329-333. DOI: 10.1126/science.aaf7810.
    Staš M, Kubička D, Chudoba J, et al., 2014. Overview of analytical methods used for chemical characterization of pyrolysis bio-oil. Energy & Fuels, 28(1):385-402. DOI: 10.1021/ef402047y.
    Sweygers N, Somers M H, Appels L, 2018. Optimization of hydrothermal conversion of bamboo (Phyllostachys aureosulcata) to levulinic acid via response surface methodology. Journal of Environmental Management, 219:95-102. DOI: 10.1016/j.jenvman.2018.04.105.
    Tang Z C, Deng W P, Wang Y L, et al., 2014. Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations. ChemSusChem, 7(6):1557-1567. DOI: 10.1002/cssc.201400150.
    Timell T E, 1964. The acid hydrolysis of glycosides:Ⅰ. general conditions and the effect of the nature of the aglycone. Canadian Journal of Chemistry, 42(6):1456-1472. DOI: 10.1139/v64-221.
    Walker T W, Chew A K, Li H X, et al., 2018. Correction:universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy & Environmental Science, 11(6):1639. DOI: 10.1039/c7ee03432f.
    Wang P, Zhan S H, Yu H B, 2010. Production of levulinic acid from cellulose catalyzed by environmental-friendly catalyst. Advanced Materials Research, 96:183-187. DOI: 10.4028/www.scientific.net/amr.96.183.
    Wang S R, Guo X J, Liang T, et al., 2012. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies. Bioresource Technology, 104:722-728. DOI: 10.1016/j.biortech.2011.10.078.
    Xu J M, Jiang J C, Hse C, et al., 2012. Renewable chemical feedstocks from integrated liquefaction processing of lignocellulosic materials using microwave energy. Green Chemistry, 14(10):2821. DOI: 10.1039/c2gc35805k.
    Xu J M, Jiang J C, Lv W, et al., 2010. Rice husk bio-oil upgrading by means of phase separation and the production of esters from the water phase, and novolac resins from the insoluble phase. Biomass and Bioenergy, 34(7):1059-1063. DOI: 10.1016/j.biombioe.2010.01.040.
    Xu W R, Zhang J, Zheng F Y, et al., 2018. Research progress on mechanisms of acid-catalyzed cellulose and chitin liquefaction to small molecular chemicals under atmospheric pressure. CIESC Journal, 69(4):1288-1298. http://d.old.wanfangdata.com.cn/Periodical/hgxb201804004
    Yamada T, Ono H, 1999. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technology, 70(1):61-67. DOI: 10.1016/s0960-8524(99)00008-5.
    Yang G, Pidko E A, Hensen E J M, 2012. Mechanism of Brønsted acid-catalyzed conversion of carbohydrates. Journal of Catalysis, 295:122-132. DOI:10.1016/j.jcat. 2012.08.002.
    Yang L, Tsilomelekis G, Caratzoulas S, et al., 2015. Mechanism of brønsted acid-catalyzed glucose dehydration. ChemSusChem, 8(8):1334-1341. DOI: 10.1002/cssc.201403264.
    Yang S Q, Lu X M, Zhang Y Q, et al., 2018. Separation and characterization of cellulose Ⅰ material from corn straw by low-cost polyhydric protic ionic liquids. Cellulose, 25(6):3241-3254. DOI: 10.1007/s10570-018-1785-4.
    Yu I K M, Tsang D C W, 2017. Conversion of biomass to hydroxymethylfurfural:a review of catalytic systems and underlying mechanisms. Bioresource Technology, 238:716-732. DOI: 10.1016/j.biortech.2017.04.026.
    Zhang J J, Liao H T, Lu Q, et al., 2013. Mechanistic study on low-temperature fast pyrolysis of fructose to produce furfural. Journal of Fuel Chemistry and Technology, 41(11):1303-1309. DOI: 10.1016/s1872-5813(14)60001-3.
    Zhang J, Das A, Assary R S, et al., 2016. A combined experimental and computational study of the mechanism of fructose dehydration to 5-hydroxymethylfurfural in dimethylsulfoxide using Amberlyst 70, PO43-/niobic acid, or sulfuric acid catalysts. Applied Catalysis B:Environmental, 181:874-887. DOI: 10.1016/j.apcatb.2014.10.056.
    Zhang J, Weitz E, 2012. An in situ NMR study of the mechanism for the catalytic conversion of fructose to 5-hydroxymethylfurfural and then to levulinic acid using 13C labeled d-fructose. ACS Catalysis, 2(6):1211-1218. DOI: 10.1021/cs300045r.
    Zhang Y Y, Liu C, Chen X, 2015. Unveiling the initial pyrolytic mechanisms of cellulose by DFT study. Journal of Analytical and Applied Pyrolysis, 113:621-629. DOI:10.1016/j.jaap. 2015.04.010.
    Zhang Y, Hu B, Lu Q, et al., 2014. A review on the formation mechanism of levoglucosan during fast pyrolysis of cellulose. Biomass Chemical Engineering, 48(3):53-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lchgtx201403011
    Zheng W Z, Cui Y J, Xu Z M et al., 2018. Cellulose transformation into methyl glucosides catalyzed by H3PW12O40:Enhancement of ionic liquid pretreatment. The Canadian Journal of Chemical Engineering, 96(6):1250-1255. DOI: 10.1002/cjce.23057.
    Zuo Y, Zhang Y, Fu Y, 2014. Catalytic conversion of cellulose into levulinic acid by a sulfonated chloromethyl polystyrene solid acid catalyst. ChemCatChem, 6(3):753-757. DOI: 10.1002/cctc.201300956.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (2927) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return