Volume 4 Issue 2
May  2019
Turn off MathJax
Article Contents
Yanxia FENG, Mengyuan WANG, Shaochen HU, Lili JIA, Jihe CHEN, Tianshi FENG, Yingcheng HU. Compressive Behavior of Wood-based 2-D Lattice Structure under Multivariable Analysis[J]. Journal of Bioresources and Bioproducts, 2019, 4(2): 119-129. doi: 10.21967/jbb.v4i2.216
Citation: Yanxia FENG, Mengyuan WANG, Shaochen HU, Lili JIA, Jihe CHEN, Tianshi FENG, Yingcheng HU. Compressive Behavior of Wood-based 2-D Lattice Structure under Multivariable Analysis[J]. Journal of Bioresources and Bioproducts, 2019, 4(2): 119-129. doi: 10.21967/jbb.v4i2.216

Compressive Behavior of Wood-based 2-D Lattice Structure under Multivariable Analysis

doi: 10.21967/jbb.v4i2.216
  • Received Date: 2019-10-23
  • Accepted Date: 2018-12-10
  • Publish Date: 2019-04-01
  • In order to optimize the out-of-plane compression performance of the wood structure, wood-based 2-D lattice structures were designed and manufactured with oriented strand board as the panel and birch round stick as the core by using a simple insert-glue method. In this experiment, the different thicknesses of the upper and lower panels, the different shavings arrangement directions of the upper and lower panels and the different configurations of the specimens were used to analyze the compression performance of the specimens under multivariable conditions. Through the combination of experimental test and theoretical analysis, we analyzed and compared different failure types of the structure and multiple compression parameters. The results showed that the shavings arrangement direction of the panel has a more important influence on the whole specimen than the thickness of the panel, especially the transverse shavings of the panel can withstand greater shear stress than the longitudinal shavings for a specimen.

     

  • loading
  • Abrate S, 1997. Localized impact on sandwich structures with laminated facings. Applied Mechanics Reviews, 50(2):69. DOI: 10.1115/1.3101689.
    Chen H L, Zheng Q, Zhao L, et al., 2012. Mechanical property of lattice truss material in sandwich panel including strut flexural deformation. Composite Structures, 94(12):3448- 3456. DOI: 10.1016/j.compstruct.2012.06.004.
    Côté F, Deshpande V S, Fleck N A, et al., 2004. The out-of- plane compressive behavior of metallic honeycombs. Materials Science and Engineering:A, 380(1/2):272-280. DOI: 10.1016/j.msea.2004.03.051.
    Côté F, Deshpande V, Fleck N, 2006. The shear response of metallic square honeycombs. Journal of Mechanics of Mate-rials and Structures, 1(7):1281-1299. DOI:10.2140/jomms. 2006.1.1281.
    Côté F, Russell B P, Deshpande V S, et al., 2009. The through- thickness compressive strength of a composite sandwich panel with a hierarchical square honeycomb sandwich core. Journal of Applied Mechanics, 76(6):061004. DOI: 10.1115/1.3086436.
    Deshpande V S, Fleck N A, Ashby M F, 2001. Effective proper-ties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids, 49(8):1747-1769. DOI: 10.1016/s0022-5096(01)00010-2.
    Edgars L, Kaspars Z, Kaspars K, 2017. Structural performance of wood based sandwich panels in four point bending. Procedia Engineering, 172:628-633. DOI:10.1016/j.proeng. 2017.02.073.
    Evans A G, Hutchinson J W, Fleck N A, et al., 2001. The topo-logical design of multifunctional cellular metals. Progress in Materials Science, 46(3/4):309-327. DOI:10.1016/s0079- 6425(00)00016-5.
    Fan H L, Meng F H, Yang W, 2006. Mechanical behaviors and bending effects of carbon fiber reinforced lattice materials. Archive of Applied Mechanics, 75(10/11/12):635-647. DOI: 10.1007/s00419-006-0032-x.
    Fan H L, Yang L, Sun F F, et al., 2013. Compression and bend-ing performances of carbon fiber reinforced lattice-core sandwich composites. Composites Part A:Applied Science and Manufacturing, 52:118-125. DOI: 10.1016/j.composi-tesa.2013.04.013.
    Finnegan K, Kooistra G, Wadley H N G, et al., 2007. The com-pressive response of carbon fiber composite pyramidal truss sandwich cores. International Journal of Materials Research, 98(12):1264-1272. DOI: 10.3139/146.101594.
    Jin M M, Hu Y C, Wang B, 2015. Compressive and bending behaviours of wood-based two-dimensional lattice truss core sandwich structures. Composite Structures, 124:337-344. DOI: 10.1016/j.compstruct.2015.01.033.
    Kooistra G W, Queheillalt D T, Wadley H N G, 2008. Shear behavior of aluminum lattice truss sandwich panel structures. Materials Science and Engineering:A, 472(1/2):242-250. DOI: 10.1016/j.msea.2007.03.034.
    Kooistra G, 2004. Compressive behavior of age hardenable tet-rahedral lattice truss structures made from aluminium. Acta Materialia, 52(14):4229-4237. DOI:10.1016/j.actamat.2004. 05.039.
    Lee B K, Kang K J, 2010. A parametric study on compressive characteristics of Wire-woven bulk Kagome truss cores. Composite Structures, 92(2):445-453. DOI:10.1016/j. compstruct.2009.08.029.
    Qin Q H, Wang T J, 2013. Low-velocity impact response of fully clamped metal foam core sandwich beam incorporating local denting effect. Composite Structures, 96:346-356. DOI: 10.1016/j.compstruct.2012.09.024.
    Vasiliev V V, Barynin V A, Rasin A F, 2001. Anisogrid lattice structures——survey of development and application. Com-posite Structures, 54(2/3):361-370. DOI:10.1016/s0263- 8223(01)00111-8.
    Vasiliev V V, Barynin V A, Razin A F, 2012. Anisogrid compo-site lattice structures——Development and aerospace appli-cations. Composite Structures, 94(3):1117-1127. DOI:10. 1016/j.compstruct.2011.10.023.
    Vasiliev V V, Razin A F, 2006. Anisogrid composite lattice structures for spacecraft and aircraft applications. Composite Structures, 76(1/2):182-189. DOI:10.1016/j.compstruct. 2006.06.025.
    Wang B, Wu L Z, Ma L, et al., 2009. Fabrication and testing of carbon fiber reinforced truss core sandwich panels. Journal of Materials Science & Technology, 25(4):547-550. DOI: 10.3321/j.issn:1005-0302.2009.04.025.
    Wang B, Zhang G Q, He Q L, et al., 2014. Mechanical behavior of carbon fiber reinforced polymer composite sandwich panels with 2-D lattice truss cores. Materials & Design, 55:591-596. DOI: 10.1016/j.matdes.2013.10.025.
    Xiong J, Ma L, Wu L Z, et al., 2010. Fabrication and crushing behavior of low density carbon fiber composite pyramidal truss structures. Composite Structures, 92(11):2695-2702. DOI: 10.1016/j.compstruct.2010.03.010.
    Xiong J, Vaziri A, Ma L, et al., 2012. Compression and impact testing of two-layer composite pyramidal-core sandwich panels. Composite Structures, 94(2):793-801. DOI: 10.1016/j.compstruct.2011.09.018.
    Yan C Z, Hao L, Hussein A, et al., 2014. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Materials & Design, 55:533-541. DOI: 10.1016/j.matdes.2013.10.027.
    Zheng J J, Zhao L, Fan H L, 2012. Energy absorption mecha-nisms of hierarchical woven lattice composites. Composites Part B:Engineering, 43(3):1516-1522. DOI:10.1016/j. compositesb.2011.08.034.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (632) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return