Volume 4 Issue 2
May  2019
Turn off MathJax
Article Contents
Qiyuan GUAN, Kang GUO, Weihong TAN, Yonghong ZHOU. Rapid Decomposition of Epoxy Resins via Raman Spectrometry in Combination with Machine Learning Algorithms[J]. Journal of Bioresources and Bioproducts, 2019, 4(2): 130-134. doi: 10.21967/jbb.v4i2.217
Citation: Qiyuan GUAN, Kang GUO, Weihong TAN, Yonghong ZHOU. Rapid Decomposition of Epoxy Resins via Raman Spectrometry in Combination with Machine Learning Algorithms[J]. Journal of Bioresources and Bioproducts, 2019, 4(2): 130-134. doi: 10.21967/jbb.v4i2.217

Rapid Decomposition of Epoxy Resins via Raman Spectrometry in Combination with Machine Learning Algorithms

doi: 10.21967/jbb.v4i2.217
More Information
  • Corresponding author: Weihong TAN, tanweihong71@163.com
  • Received Date: 2019-01-21
  • Accepted Date: 2019-03-01
  • Publish Date: 2019-04-01
  • Epoxy resins are a group of important materials that have been used everywhere, and development of new materials of this kind with optimal mechanical properties from either bio-resources or industrial precursors has drawn great focus from scientists and engineers. By reacting different kinds of epoxy adhesives and curatives, massive kinds of epoxy resins with different characteristics are produced. Determination of original mixing ratio of epoxy adhesives and corresponding curatives of their curing products is useful in controlling and examining these materials. Here in this work, we described an efficient method based on Raman spectrometry and machine learning algorithms for rapid molar composition determination of epoxy resins. Original mixing ratio of epoxy adhesives and curatives could be calculated simply via Raman spectra of the products. Raman spectral data scanned during curing procedure was fed to random forest (RF) classification to calculate weights of Raman shift features and reduce data dimensionality, then spectral data of selected features were processed by partial least squares regression (PLSR) for model training and composition ratio determination. It turned out that ratio predictions of our model fit well to their actual values, with a coefficient of determination (R2) of 0.9926, and a root mean squared error (RMSE) of 0.0305.

     

  • loading
  • Anghelone M, Jembrih-Simbürger D, Schreiner M, 2015. Identification of copper phthalocyanine blue polymorphs in unaged and aged paint systems by means of micro-Raman spectroscopy and random forest. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 149:419-425. DOI: 10.1016/j.saa.2015.04.094.
    Asada C, Basnet S, Otsuka M, et al., 2015. Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials. International Journal of Biological Macromolecules, 74:413-419. DOI:10.1016/j. ijbio-mac.2014.12.039.
    Biau G, Scornet E, 2016. A random forest guided tour. TEST, 25(2):197-227. DOI: 10.1007/s11749-016-0481-7.
    Brewster V L, Ashton L, Goodacre R, 2011. Monitoring the glycosylation status of proteins using Raman spectroscopy. Analytical Chemistry, 83(15):6074-6081. DOI: 10.1021/ac2012009.
    Chen J, Nie X A, Liu Z S, et al., 2015. Synthesis and application of polyepoxide cardanol glycidyl ether as biobased poly-epoxide reactive diluent for epoxy resin. ACS Sustainable Chemistry & Engineering, 3(6):1164-1171. DOI: 10.1021/acssuschemeng.5b00095.
    de Oliveira Penido C A F, Pacheco M T T, Novotny E H, et al., 2017. Quantification of cocaine in ternary mixtures using partial least squares regression applied to Raman and Fourier transform infrared spectroscopy. Journal of Raman Spectroscopy, 48(12):1732-1743. DOI: 10.1002/jrs.5231.
    Deng J, Liu X Q, Li C, et al., 2015. Synthesis and properties of a bio-based epoxy resin from 2, 5-furandicarboxylic acid (FDCA). RSC Advances, 5(21):15930-15939. DOI:10. 1039/c5ra00242g.
    Draga R O P, Grimbergen M C M, Vijverberg P L M, et al., 2010. In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Analytical Chemistry, 82(14):5993- 5999. DOI: 10.1021/ac100448p.
    Hardis R, Jessop J L P, Peters F E, et al., 2013. Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA. Composites Part A:Applied Science and Manufacturing, 49:100-108. DOI: 10.1016/j.compositesa.2013.01.021.
    Hunter R, Anis H, 2018. Genetic support vector machines as powerful tools for the analysis of biomedical Raman spectra. Journal of Raman Spectroscopy, 49(9):1435-1444. DOI: 10.1002/jrs.5410.
    Jin F L, Li X, Park S J, 2015. Synthesis and application of epoxy resins:a review. Journal of Industrial and Engineering Chemistry, 29:1-11. DOI: 10.1016/j.jiec.2015.03.026.
    Keating M E, Nawaz H, Bonnier F, et al., 2015. Multivariate statistical methodologies applied in biomedical Raman spectroscopy:assessing the validity of partial least squares regression using simulated model datasets. The Analyst, 140(7):2482-2492. DOI: 10.1039/c4an02167c.
    Lavine B K, Davidson C E, Moores A J, et al., 2001. Raman spectroscopy and genetic algorithms for the classification of wood types. Applied Spectroscopy, 55(8):960-966. DOI: 10.1366/0003702011953108.
    Michels J, Sena Cruz J, Christen R, et al., 2016. Mechanical performance of cold-curing epoxy adhesives after different mixing and curing procedures. Composites Part B:Engi-neering, 98:434-443. DOI:10.1016/j.compositesb.2016.05. 054.
    Okabe T, Oya Y, Tanabe K, et al., 2016. Molecular dynamics simulation of crosslinked epoxy resins:curing and mechanical properties. European Polymer Journal, 80:78-88. DOI: 10.1016/j.eurpolymj.2016.04.019.
    Pethrick R A, 2015. Design and ageing of adhesives for structural adhesive bonding-A review. Proceedings of the Institution of Mechanical Engineers, Part L:Journal of Materials:Design and Applications, 229(5):349-379. DOI: 10.1177/1464420714522981.
    Rösch P, Harz M, Peschke K D, et al., 2006. Identification of single eukaryotic cells with micro-Raman spectroscopy. Biopolymers, 82(4):312-316. DOI: 10.1002/bip.20449.
    Shi L L, Lin Q Y, Duan Y X, 2015. A novel specimen-preparing method using epoxy resin as binding material for LIBS analysis of powder samples. Talanta, 144:1370-1376. DOI: 10.1016/j.talanta.2015.07.085.
    Shin P S, Wang Z J, Kwon D J, et al., 2015. Optimum mixing ratio of epoxy for glass fiber reinforced composites with high thermal stability. Composites Part B:Engineering, 79:132-137. DOI: 10.1016/j.compositesb.2015.04.032.
    Sikirzhytski V, Sikirzhytskaya A, Lednev I K, 2011. Mul-tidimensional raman spectroscopic signatures as a tool for forensic identification of body fluid traces:a review. Applied Spectroscopy, 65(11):1223-1232. DOI: 10.1366/11-06455.
    Teh S K, Zheng W, Lau D P, et al., 2009. Spectroscopic diagnosis of laryngeal carcinoma using near-infrared Raman spectroscopy and random recursive partitioning ensemble techniques. The Analyst, 134(6):1232. DOI: 10.1039/b811008e.
    Wan J T, Gan B, Li C, et al., 2015. A novel biobased epoxy resin with high mechanical stiffness and low flammability:synthesis, characterization and properties. Journal of Materials Chemistry A, 3(43):21907-21921. DOI: 10.1039/c5ta02939b.
    Wan J T, Zhao J Q, Gan B, et al., 2016. Ultrastiff biobased epoxy resin with high Tg and low permittivity:from synthesis to properties. ACS Sustainable Chemistry & Engineering, 4(5):2869-2880. DOI:10.1021/acssuschemeng. 6b00479.
    Wang L, Liu L F, Wang J Y, et al., 2017. A strategy to identify and quantify closely related adulterant herbal materials by mass spectrometry-based partial least squares regression. Analytica Chimica Acta, 977:28-35. DOI:10.1016/j.aca. 2017.04.023.
    Ware T, Simon D, Hearon K, et al., 2013. Thiol-click chemistries for responsive neural interfaces. Macromolecular Bioscience, 13(12):1640-1647. DOI: 10.1002/mabi.201300272.
    Xin J N, Li M, Li R, et al., 2016. Green epoxy resin system based on lignin and tung oil and its application in epoxy asphalt. ACS Sustainable Chemistry & Engineering, 4(5):2754-2761. DOI: 10.1021/acssuschemeng.6b00256.
    Youssef A M, Pourghasemi H R, Pourtaghi Z S, et al., 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13(5):839-856. DOI:10.1007/s10346-015- 0614-1.
    Zhang X, Ji Z, Zhou X, et al., 2015. Method for automatically identifying spectra of different wood cell wall layers in raman imaging data set. Analytical Chemistry, 87(2):1344-1350. DOI: 10.1021/ac504144s.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (619) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return