Volume 5 Issue 4
Oct.  2020
Article Contents
Turn off MathJax


Cellulose Nanocomposites: Fabrication and Biomedical Applications

  • Received Date: 2020-04-20
    Accepted Date: 2020-06-15
  • Cellulose is a linear biopolymer which is composed of nanofibrils, thus having a large surface area. This low-cost, low-density, high-specific-surface-area, easily processable polymer is found in nature in the form of plants, bacteria and tunicates. Cellulose has outstanding characteristics including low cytotoxicity, biocompatibility, good mechanical properties, high chemical stability, and cost effectiveness which make them suitable candidates for biomedical applications. The manipulation of cellulose at nanoscale resulted in nanocellulose having exceptional physicochemical properties. Therefore, cellulose nanocomposite is a fascinating area of research which has applications in biomedical fields like wound healing, bone tissue engineering, three dimensional printing, drug carriers, medical implants etc. This review is mainly focused on the developments in the generation of cellulose nanocomposites and their potential applications in the biomedical field.
  • 加载中
  • [1]

    Abbasi, R., Baheti, V., 2018. Preparation of nanocellulose from jute fiber waste. J. Text. Eng. Fash. Technol. 4:101-104.

    Abraham, E., Deepa, B., Pothan, L.A., John, M., Narine, S.S., Thomas, S., Anandjiwala, R., 2013. Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex. Cellulose 20, 417-427.

    Abraham, R., Wong, C., Puri, M., 2016. Enrichment of cellulosic waste hemp (Cannabis sativa) hurd into non-toxic microfibres. Materials 9, 562.

    Anglès, M.N., Dufresne, A., 2001. Plasticized starch/tunicin whiskers nanocomposite materials. 2. mechanical behavior. Macromolecules 34, 2921-2931.

    Atiqah, M.S.N., Gopakumar, D.A., Owolabi, F.A.T., Pottathara, Y.B., Rizal, S., Aprilia, N.A.S., Hermawan, D., Paridah, M.T., Thomas, S., Abdul, K.H.P.S., 2019. Extraction of cellulose nanofibers via eco-friendly supercritical carbon dioxide treatment followed by mild acid hydrolysis and the fabrication of cellulose nanopapers. Polymers 11, 1813.

    Azeredo, H.M.C., Rosa, M.F., Mattoso, L.H.C., 2017. Nanocellulose in bio-based food packaging applications. Ind. Crop. Prod. 97, 664-671.

    Azizi Samir, M.A.S., Alloin, F., Dufresne, A., 2006. High performance nanocomposite polymer electrolytes. Compos. Interfaces 13, 545-559.

    Azizi Samir, M.A.S., Alloin, F., Sanchez, J.Y., Dufresne, A., 2004. Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45, 4149-4157.

    Azzam, F., Heux, L., Putaux, J.L., Jean, B., 2010. Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11, 3652-3659.

    Barud, H.S., Barrios, C., Regiani, T., Marques, R.F.C., Verelst, M., Dexpert-Ghys, J., Messaddeq, Y., Ribeiro, S.J.L., 2008. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater. Sci. Eng.:C 28, 515-518.

    Bezerra, R.D.S., Teixeira, P.R.S., Teixeira, A.S.N.M., Eiras, C., Osajima, J.A., Filho, E.C.S., 2015. Chemical functionalization of cellulosic materials-Main reactions and applications in the contaminants removal of aqueous medium. In:Cellulose-Fundamental Aspects and Current Trends. London:InTech.

    Bhattacharya, D., Germinario, L.T., Winter, W.T., 2008. Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr. Polym. 73, 371-377.

    Bitinis, N., Fortunati, E., Verdejo, R., Bras, J., Kenny, J.M., Torre, L., López-Manchado, M.A., 2013. Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part Ⅱ:properties evaluation. Carbohydr. Polym. 96, 621-627.

    Blessy, J., Hanna, J.M., Sabu, T.N.K., 2018. Nanocellulose:health care applications. In Mishra, M. (ed.) Encyclopedia of Polymer Applications. Boca Raton:CRC Press, 1829-1852.

    Cai, J., Liu, Y.T., Zhang, L.N., 2006. Dilute solution properties of cellulose in LiOH/urea aqueous system. J. Polym. Sci. Part B:Polym. Phys. 44, 3093-3101.

    Cai, J., Zhang, L.N., 2005. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol. Biosci. 5, 539-548.

    Cai, J., Zhang, L.N., 2006. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7, 183-189.

    Campbell, T.A., Ivanova, O.S., 2013. 3D printing of multifunctional nanocomposites. Nano Today 8, 119-120.

    Chai, H.B., Chang, Y., Zhang, Y.C., Chen, Z.Z., Zhong, Y., Zhang, L.P., Sui, X.F., Xu, H., Mao, Z.P., 2020. The fabrication of polylactide/cellulose nanocomposites with enhanced crystallization and mechanical properties. Int. J. Biol. Macromol. 155, 1578-1588.

    Chakrabarty, A., Teramoto, Y., 2018. Recent advances in nanocellulose composites with polymers:a guide for choosing partners and how to incorporate them. Polymers 10, 517.

    Chang, P.R., Jian, R.J., Zheng, P.W., Yu, J.G., Ma, X.F., 2010. Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr. Polym. 79, 301-305.

    Chazeau, L., Cavaillé, J.Y., Perez, J., 2000. Plasticized PVC reinforced with cellulose whiskers. Ⅱ. Plastic behavior. J. Polym. Sci. B Polym. Phys. 38, 383-392.

    Chen, X.Y., Low, H.R., Loi, X.Y., Merel, L., Mohd Cairul Iqbal, M.A., 2019. Fabrication and evaluation of bacterial nanocellulose/poly(acrylic acid)/graphene oxide composite hydrogel:characterizations and biocompatibility studies for wound dressing. J. Biomed. Mater. Res. Part B:Appl. Biomater. 107, 2140-2151.

    Chen, Y.M., Xi, T.F., Zheng, Y.D., Guo, T.T., Hou, J.Q., Wan, Y.Z., Gao, C., 2009. In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone. J. Bioact. Compatible Polym. 24, 137-145.

    Chirayil, C.J., Joy, J., Mathew, L., Mozetic, M., Koetz, J., Thomas, S., 2014. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind. Crop. Prod. 59, 27-34.

    Clift, M.J.D., Foster, E.J., Vanhecke, D., Studer, D., Wick, P., Gehr, P., Rothen-Rutishauser, B., Weder, C., 2011. Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules 12, 3666-3673.

    Czaja, W., Krystynowicz, A., Bielecki, S., Brownjr, R., 2006. Microbial cellulose:the natural power to heal wounds. Biomaterials 27, 145-151.

    Díez, I., Eronen, P., Österberg, M., Linder, M.B., Ikkala, O., Ras, R.H.A., 2011. Functionalization of nanofibrillated cellulose with silver nanoclusters:fluorescence and antibacterial activity. Macromol. Biosci. 11, 1185-1191.

    Dugan, J.M., Gough, J.E., Eichhorn, S.J., 2013. Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8, 287-298.

    Edgar, K.J., 2004. Cellulose esters, organic. Encyclopedia of Polymer Science and Technology 9, 129-158.

    Egal, M., Budtova, T., Navard, P., 2008. The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15, 361-370.

    Erdmenger, T., Haensch, C., Hoogenboom, R., Schubert, U.S., 2007. Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol. Biosci. 7, 440-445.

    Fang, B., Wan, Y.Z., Tang, T.T., Gao, C., Dai, K.R., 2009. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng. Part A 15, 1091-1098.

    Fathi, M., Karim, M., Ahmadi, N., 2019. Nanostructures of cellulose for encapsulation of food ingredients. Biopolymer Nanostructures for Food Encapsulation Purposes. Amsterdam:Elsevier, 493-519.

    Fernandes, S.C.M., Sadocco, P., Alonso-Varona, A., Palomares, T., Eceiza, A., Silvestre, A.J.D., Mondragon, I., Freire, C.S.R., 2013. Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl. Mater. Interfaces 5, 3290-3297.

    Gericke, M., Liebert, T., Heinze, T., 2009. Polyelectrolyte synthesis and in situ complex formation in ionic liquids. J. Am. Chem. Soc. 131, 13220-13221.

    Gericke, M., Liebert, T., Seoud, O.A.E., Heinze, T., 2011. Tailored media for homogeneous cellulose chemistry:ionic liquid/Co-solvent mixtures. Macromol. Mater. Eng. 296, 483-493.

    Hangasky, J.A., Detomasi, T.C., Lemon, C.M., Marletta, M.A., 2020. Glycosidic bond oxidation:the structure, function, and mechanism of polysaccharide monooxygenases. Comprehensive Natural Products Ⅲ. Amsterdam:Elsevier, 298-331.

    Hasan, M., Gopakumar, D., Arumughan, V., Pottathara, Y., Sisanth, K.S., Pasquini, D., Bračič, M., Seantier, B., Nzihou, A., Thomas, S., Rizal, S., Abdul, H.P.S., 2019. Robust superhydrophobic cellulose nanofiber aerogel for multifunctional environmental applications. Polymers 11, 495.

    Heinze, T., 2015. Cellulose:structure and properties. Advances in Polymer Science. Cham:Springer International Publishing, 1-52.

    Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, B., 2006. In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. 76A, 431-438.

    Jiji, S., Udhayakumar, S., Maharajan, K., Rose, C., Muralidharan, C., Kadirvelu, K., 2020. Bacterial cellulose matrix with in situ impregnation of silver nanoparticles via catecholic redox chemistry for third degree burn wound healing. Carbohydr. Polym. 245, 116573.

    Jorfi, M., Foster, E.J., 2015. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132, 41719.

    Joseph, B., James, J., Grohens, Y., Kalarikkal, N., Thomas, S., 2020. Material aspects during additive manufacturing of nano-cellulose composites. Structure and Properties of Additive Manufactured Polymer Components. Amsterdam:Elsevier, 409-428.

    Jung, A., Berlin, P., 2005. New water-soluble and film-forming aminocellulose tosylates as enzyme support matrices with Cu2+-chelating properties. Cellulose 12, 67-84.

    Kajsa, M., Athanasios, M., Ivan, T., Héctor, M.Á., Daniel, H., Paul, G., 2015. 3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16, 1489-1496.

    Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Avérous, L., Njuguna, J., Nassiopoulos, E., 2011. Cellulose-based bio- and nanocomposites:a review. Int. J. Polym. Sci. 2011, 1-35.

    Kassab, Z., Abdellaoui, Y., Salim, M.H., Bouhfid, R., Qaiss, A.E.K., El Achaby, M., 2020. Micro- and nano-celluloses derived from hemp stalks and their effect as polymer reinforcing materials. Carbohydr. Polym. 245, 116506.

    Khattab, M.M., Abdel-Hady, N.A., Dahman, Y., 2017. Cellulose nanocomposites. Cellulose-reinforced nanofibre composites. Amsterdam:Elsevier, 483-516.

    Kian, L.K., Jawaid, M., Ariffin, H., Karim, Z., 2018. Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int. J. Biol. Macromol. 114, 54-63.

    Kian, L.K., Saba, N., Jawaid, M., Sultan, M.T.H., 2019. A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. Int. J. Biol. Macromol. 121, 1314-1328.

    Kiran Pulidindi, H. P., 2020. Nanocellulose market size by product (nano fibrillated cellulose, nanocrystalline cellulose), by application (composites, paper processing, food & beverages, paints & coatings, oil & gas, personal care). Industry Analysis Report, Regional Outlook, Growth Potential, Price Trend, Competitive Market Share & Forecast, 2020-2026.

    Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A., 2011. Nanocelluloses:a new family of nature-based materials. Angew. Chem. Int. Ed. 50, 5438-5466.

    Klemm, D., Schumann, D., Udhardt, U., Marsch, S., 2001. Bacterial synthesized cellulose:artificial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561-1603.

    Kumar Gupta, P., Raghunath, S.S., Prasanna, D.V., Venkat, P., Shree, V., Chithananthan, C., Choudhary, S., Surender, K., Geetha, K., 2019. An update on overview of cellulose, its structure and applications. London:InTech.

    Lenz, R., 1994. Cellulose, structure, accessibility and reactivity. J. Polym. Sci. A Polym. Chem. 32, 2401.

    Li, J., Wan, Y.Z., Li, L.F., Liang, H., Wang, J.H., 2009. Preparation and characterization of 2, 3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng.:C 29, 1635-1642.

    Li, T., Song, J.W., Zhao, X.P., Yang, Z., Pastel, G., Xu, S.M., Jia, C., Dai, J.Q., Chen, C.J., Gong, A., Jiang, F., Yao, Y.G., Fan, T.Z., Yang, B., Wågberg, L., Yang, R.G., Hu, L.B., 2018. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 4, eaar3724.

    Li, Y.Y., Zhu, H.L., Wang, Y.B., Ray, U., Zhu, S.Z., Dai, J.Q., Chen, C.J., Fu, K., Jang, S.H., Henderson, D., Li, T., Hu, L.B., 2017. Cellulose-nanofiber-enabled 3D printing of a carbon-nanotube microfiber network. Small Methods 1, 1700222.

    Lin, N., Dufresne, A., 2014. Nanocellulose in biomedicine:current status and future prospect. Eur. Polym. J. 59, 302-325.

    Lin, W.C., Lien, C.C., Yeh, H.J., Yu, C.M., Hsu, S.H., 2013. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 94, 603-611.

    Liu, D.G., Zhong, T.H., Chang, P.R., Li, K.F., Wu, Q.L., 2010. Starch composites reinforced by bamboo cellulosic crystals. Bioresour. Technol. 101, 2529-2536.

    Luo, H.L., Xiong, G.Y., Hu, D., Ren, K.J., Yao, F.L., Zhu, Y., Gao, C., Wan, Y.Z., 2013. Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Mater. Chem. Phys. 143, 373-379.

    Majewicz, T.G., Erazo-Majewicz, P.E., Podlas, T.J., 2002. Cellulose ethers. Encyclopedia of Polymer Science and Technology 5, 507-532.

    Mao, R., Goutianos, S., Tu, W., Meng, N., Yang, G., Berglund, L.A., Peijs, T., 2017. Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper. J. Mater. Sci. 52, 9508-9519.

    Miyashiro, D., Hamano, R., Umemura, K., 2020. A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes. Nanomaterials 10, 186.

    Mondal, S., 2017. Preparation, properties and applications of nanocellulosic materials. Carbohydr. Polym. 163, 301-316.

    Morán, J.I., Alvarez, V.A., Cyras, V.P., Vázquez, A., 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15, 149-159.

    Nechyporchuk, O., Belgacem, M.N., Bras, J., 2016. Production of cellulose nanofibrils:a review of recent advances. Ind. Crop. Prod. 93, 2-25.

    Noishiki, Y., Nishiyama, Y., Wada, M., Kuga, S., Magoshi, J., 2002. Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J. Appl. Polym. Sci. 86, 3425-3429.

    Nunes, R.C.R., 2017. Rubber nanocomposites with nanocellulose. In:Thomas, S., Maria, H.J. Progress in Rubber Nanocomposites. Online:Woodhead Publishing, 463-494.

    Oksman, K., Aitomäki, Y., Mathew, A.P., Siqueira, G., Zhou, Q., Butylina, S., Tanpichai, S., Zhou, X.J., Hooshmand, S., 2016. Review of the recent developments in cellulose nanocomposite processing. Compos. Part A:Appl. Sci. Manuf. 83, 2-18.

    Osorio, M., Ortiz, I., Gañán, P., Naranjo, T., Zuluaga, R., van Kooten, T.G., Castro, C., 2019. Novel surface modification of three-dimensional bacterial nanocellulose with cell-derived adhesion proteins for soft tissue engineering. Mater. Sci. Eng.:C 100, 697-705.

    Pai, A.R., Binumol, T., Gopakumar, D.A., Pasquini, D., Seantier, B., Kalarikkal, N., Thomas, S., 2020. Ultra-fast heat dissipating aerogels derived from polyaniline anchored cellulose nanofibers as sustainable microwave absorbers. Carbohydr. Polym. 246, 116663.

    Pal, S., Nisi, R., Stoppa, M., Licciulli, A., 2017. Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega 2, 3632-3639.

    Palaganas, N.B., Mangadlao, J.D., de Leon, A.C.C., Palaganas, J.O., Pangilinan, K.D., Lee, Y.J., Advincula, R.C., 2017. 3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography. ACS Appl. Mater. Interfaces 9, 34314-34324.

    Pandey, J.K., Nakagaito, A.N., Takagi, H., 2013. Fabrication and applications of cellulose nanoparticle-based polymer composites. Polym. Eng. Sci. 53, 1-8.

    Paralikar, S.A., Simonsen, J., Lombardi, J., 2008. Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J. Membr. Sci. 320, 248-258.

    Pereira, M.M., Raposo, N.B., Brayner, R., Teixeira, E.M., Oliveira, V., Quintão, C.R., Camargo, L.A., Mattoso, L.C., Brandão, H.M., 2013. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnology 24, 075103.

    Phomrak, S., Phisalaphong, M., 2017. Reinforcement of natural rubber with bacterial cellulose via a latex aqueous microdispersion process. J. Nanomater. 2017, 1-9.

    Phomrak, S., Phisalaphong, M., 2020. Lactic acid modified natural rubber-bacterial cellulose composites. Appl. Sci. 10, 3583.

    Qian, S.P., Zhang, H.H., Yao, W.C., Sheng, K.C., 2018. Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites. Compos. Part B:Eng. 133, 203-209.

    Qiu, K.Y., Netravali, A.N., 2014. A review of fabrication and applications of bacterial cellulose based nanocomposites. Polym. Rev. 54, 598-626.

    Radotić, K., Mićić, M., 2016. Methods for extraction and purification of lignin and cellulose from plant tissues. Springer Protocols Handbooks. New York, NY:Springer, 365-376.

    Ranganagowda, R.P.G., Kamath, S.S., Bennehalli, B., 2019. Extraction and characterization of cellulose from natural Areca fiber. Mat. Sci. Res. India 16, 86-93.

    Rashad, A., Mohamed-Ahmed, S., Ojansivu, M., Berstad, K., Yassin, M.A., Kivijärvi, T., Heggset, E.B., Syverud, K., Mustafa, K., 2018. Coating 3D printed polycaprolactone scaffolds with nanocellulose promotes growth and differentiation of mesenchymal stem cells. Biomacromolecules 19, 4307-4319.

    Rojas, J., Bedoya, M., Ciro, Y., 2015. Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. Cellulose-Fundamental Aspects and Current Trends. London:InTech.

    Saba, N., Safwan, A., Sanyang, M.L., Mohammad, F., Pervaiz, M., Jawaid, M., Alothman, O.Y., Sain, M., 2017. Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int. J. Biol. Macromol. 102, 822-828.

    Saska, S., Teixeira, L.N., Tambasco de Oliveira, P., Minarelli Gaspar, A.M., Lima Ribeiro, S.J., Messaddeq, Y., Marchetto, R., 2012. Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J. Mater. Chem. 22, 22102.

    Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T., Goswami, S., 2019. Commercial application of cellulose nano-composites-A review. Biotechnology Reports 21, e00316.

    Shimotoyodome, A., Suzuki, J., Kumamoto, Y., Hase, T., Isogai, A., 2011. Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers. Biomacromolecules 12, 3812-3818.

    Siqueira, G., Bras, J., Follain, N., Belbekhouche, S., Marais, S., Dufresne, A., 2013. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr. Polym. 91, 711-717.

    Somord, K., Somord, K., Suwantong, O., Thanomsilp, C., Peijs, T., Soykeabkaew, N., 2018. Self-reinforced poly(lactic acid) nanocomposites with integrated bacterial cellulose and its surface modification. Nanocomposites 4, 102-111.

    Sultan, S., Mathew, A.P., 2019. 3D printed porous cellulose nanocomposite hydrogel scaffolds. J. Vis. Exp. DOI:10.3791/59401

    Swatloski, R.P., Spear, S.K., Holbrey J.D., Rogers R.D., 2002. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974-4975.

    Teixeira, M.A., Paiva, M.C., Amorim, M.T.P., Felgueiras, H.P., 2020. Electrospun nanocomposites containing cellulose and its derivatives modified with specialized biomolecules for an enhanced wound healing. Nanomaterials 10, 557.

    Tenhunen, T.M., Moslemian, O., Kammiovirta, K., Harlin, A., Kääriäinen, P., Österberg, M., Tammelin, T., Orelma, H., 2018. Surface tailoring and design-driven prototyping of fabrics with 3D-printing:an all-cellulose approach. Mater. Des. 140, 409-419.

    Torgbo, S., Sukyai, P., 2019. Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering. Mater. Chem. Phys. 237, 121868.

    Tummala, G.K., Lopes, V.R., Mihranyan, A. M., Ferraz, N., 2019. Biocompatibility of nanocellulose-reinforced PVA hydrogel with human corneal epithelial cells for ophthalmic applications. J. Funct. Biomater. 10, 35.

    Vilela, C., Engström, J., Valente, B.F.A., Jawerth, M., Carlmark, A., Freire, C.S.R., 2019. Exploiting poly(ε-caprolactone) and cellulose nanofibrils modified with latex nanoparticles for the development of biodegradable nanocomposites. Polym. Compos. 40, 1342-1353.

    Wan, Y., Hong, L., Jia, S., Huang, Y., Zhu, Y., Wang, Y., Jiang, H., 2006. Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos. Sci. Technol. 66, 1825-1832.

    Wang, N., Ding, E.Y., Cheng, R.S., 2007. Surface modification of cellulose nanocrystals. Front. Chem. Eng. China 1, 228-232.

    Wang, Q.Q., Sun, J.Z., Yao, Q., Ji, C.C., Liu, J., Zhu Q.Q., 2018. 3D printing with cellulose materials. Cellulose 25, 4275-4301.

    Wang, Y.X., Cao, X.D., Zhang, L.N., 2006. Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromolecular Bioscience 6, 524-531.

    Wondraczek, H., Heinze, T., 2014. Cellulosic biomaterials. Polysaccharides. Cham:Springer International Publishing, 1-34.

    Xu, X.Z., Liu, F., Jiang, L., Zhu, J.Y., Haagenson, D., Wiesenborn, D.P., 2013. Cellulose nanocrystals vs. cellulose nanofibrils:a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces 5, 2999-3009.

    Yang, X., Reid, M.S., Olsen, P., Berglund, L.A., 2019. Eco-friendly cellulose nanofibrils designed by nature-Effects from preserving native state. ACS Nano 14, 724-735.

    Yoshinaga, F., Tonouchi, N., Watanabe, K., 1997. Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci. Biotechnol. Biochem. 61, 219-224.

    Yu, H.Y., Yan, C.F., 2017. Mechanical properties of cellulose nanofibril (CNF)- and cellulose nanocrystal (CNC)-based nanocomposites. Handbook of Nanocellulose and Cellulose Nanocomposites. Weinheim, Germany:Wiley-VCH Verlag GmbH & Co. KGaA, 393-443.

    Yuan, H.B., Chen, L., Hong, F.F., 2020. A biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing. ACS Appl. Mater. Interfaces 12, 3382-3392.

    Zhou, J.P., Zhang, L.N., 2000. Solubility of cellulose in NaOH/urea aqueous solution. Polym. J. 32, 866.

    Zhu, R., Yadama, V., Liu, H., Lin, R.J.T., Harper, D.P., 2017. Fabrication and characterization of Nylon 6/cellulose nanofibrils melt-spun nanocomposite filaments. Compos. Part A:Appl. Sci. Manuf. 97, 111-119.

    Zimmermann, T., Pöhler, E., Schwaller, P., 2005. Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Adv. Eng. Mater. 7, 1156-1161.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(61) PDF downloads(3) Cited by()

Proportional views

Cellulose Nanocomposites: Fabrication and Biomedical Applications

  • a International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam-686560, Kerala, India;
  • b Indian Institute of Science Education and Research, Tirupati, Mangalam, Tirupati-517507, Andhra Pradesh, India;
  • c College of Pharmaceutical Sciences, Government Medical College, Kozhikode-673008, Kerala, India;
  • d School of Energy Materials, Mahatma Gandhi University, Kottayam-686560, Kerala, India

Abstract: Cellulose is a linear biopolymer which is composed of nanofibrils, thus having a large surface area. This low-cost, low-density, high-specific-surface-area, easily processable polymer is found in nature in the form of plants, bacteria and tunicates. Cellulose has outstanding characteristics including low cytotoxicity, biocompatibility, good mechanical properties, high chemical stability, and cost effectiveness which make them suitable candidates for biomedical applications. The manipulation of cellulose at nanoscale resulted in nanocellulose having exceptional physicochemical properties. Therefore, cellulose nanocomposite is a fascinating area of research which has applications in biomedical fields like wound healing, bone tissue engineering, three dimensional printing, drug carriers, medical implants etc. This review is mainly focused on the developments in the generation of cellulose nanocomposites and their potential applications in the biomedical field.

Reference (113)



    DownLoad:  Full-Size Img  PowerPoint