Latest Articles

Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes/issues, but are citable by Digital Object Identifier (DOI).
Display Method:
Liquefied Dimethyl Ether as Alternative Extraction Solvent for High γ-Oryzanol Rice Bran Oil: Systematic HSP Theory and Experimental Evaluation
Phannipha Daisuk, Seiichi Takami, Masaki Honda, Motonobu Goto, Chonlatep Usaku, Artiwan Shotipruk
, Available online  , doi: 10.1016/j.jobab.2024.06.002
Abstract:
This study aimed to systematically find an alternative solvent to replace hexane for the extraction of bio-oil with high γ-oryzanol content from rice bran (RB). The selection involved predicting solubility through Hansen solubility theory, experimental validation, determination of suitable extraction conditions, and comparison of oil quality with that of conventional hexane. A wide variety of solvents: subcritical water (SCW), supercritical carbon dioxide (SCCO2), bio-based solvents (alcohols and terpenes), and liquefied dimethyl ether (LDME), were initially assessed for rice bran oil (RBO) and γ-oryzanol solubility using Hansen solubility spheres. Solvents demonstrating high solubility for both RBO and γ-oryzanol, including LDME, ethyl acetate, acetone, and others (alcohols and SCCO2) known for effective vegetable oil extraction, were selected/identified for experimental extraction comparison. Among these, LDME performed better overall, affording greater solubility and requiring less solvent, shorter duration, lower pressure, and no additional cosolvents for equivalent extractions. Optimal conditions for LDME extraction were identified as 30 ℃ with a solvent-to-sample ratio of 10 mL/g and an extraction time of 10 min. Oils extracted with LDME and hexane displayed similar fatty acid compositions and no adverse effects on RB protein and carbohydrate structures after LDME extraction were observed. This study demonstrates LDME as a promising alternative to replace hexane for RBO extraction to further valorize this abundant low-cost RB residue into bio-oil and its γ-oryzanol and de-oil RB co-products.
Bacterial cellulose cookbook: A systematic review on sustainable and cost-effective substrates
Luis Quijano, Raquel Rodrigues, Dagmar Fischer, Jorge David Tovar-Castro, Alice Payne, Laura Navone, Yating Hu, Hao Yan, Phitsanu Pinmanee, Edgar Poon, Jing-He Yang, Eve Barro
, Available online  , doi: 10.1016/j.jobab.2024.05.003
Abstract:
Bacterial cellulose is a versatile material with applications in many industries. However, the widespread uptake of bacterial cellulose faces challenges including high production costs and lack of scalability. One approach to address these obstacles is the use of alternative substrates and media, compared to the Hestrin-Schramm (HS) media. By evaluating and selecting appropriate media and substrates, the production of bacterial cellulose can be more efficient: enabling sustainable systems and supply chains where less energy and materials are lost, and the output production is increased. The purpose of this paper is to analyze the current landscape of bacterial cellulose alternative media and substrates (ingredients). Through a systematic review of 198 papers, this review identifies 299 alternative substrates from 12 industries and 101 bacterial cellulose-producing strains, which were systematically compared. This review also finds that there are methodological gaps in this field such as data variability, papers mislabelling the HS media or not using a comparison media, and a lack of strain names. This alternative substrate analysis for bacterial cellulose production demonstrates that overall, for some applications alternative substrates can be taken into consideration that are not only cheaper, but also produce higher yields than HS media.
Valorization of palm oil refining by-product for organotin mercaptide as a polyvinyl chloride thermal stabilizer: Synthesis, efficacy and comparison to mixed metal stearate
I Dewa Gede Arsa Putrawan, Adli Azharuddin
, Available online  , doi: 10.1016/j.jobab.2024.06.001
Abstract:
Organotin mercaptide-based thermal stabilizer is recognized for its effectiveness in enhancing thermal stability of polyvinyl chloride (PVC). In this study, we synthesized an organotin mercaptide-based thermal stabilizer from palm fatty acid distillate, which is a by-product of palm oil refining process, and then evaluated its thermal stabilizing effects on PVC and compared its efficacy and economics to those of mixed metal stearate. The synthesized thermal stabilizer manifests as methyltin mercaptoethyl carboxylate sulfides. Both dehydrochlorination and two-roll mill discoloration tests have demonstrated the high efficacy of the resulting thermal stabilizer in stabilizing PVC, surpassing the performance of mixed metal stearate, as evidenced by the lower dosage required. The synthesized PVC thermal stabilizer not only provides effective stabilization but also presents a competitive viable alternative.
Selective activation of C-C bonds in lignin model compounds and lignin for production of value-added chemicals
Long Cheng, Shanyong Wang, Hailong Lu, Jun Ye, Junming Xu, Kui Wang, Jianchun Jiang
, Available online  , doi: 10.1016/j.jobab.2024.02.001
Abstract:
Lignin is a rich renewable aromatic resource that can produce high-value-added chemicals. Lignin is regarded as one of the three major components of lignocellulosic biomass, which is composed of phenylpropane units connected by C–O bond and C–C bond. The cleavage of two chemical bonds is the main catalytic pathway in the production of chemicals and fuels from lignin. Although the cleavage of C–O converts lignin into valuable aromatic compounds and renewable carbon sources, selective depolymerization for C–C bonds is an important method to increase the yield of aromatic monomers. Therefore, in this review, we summarized the latest research trends on C–C bond selective cleavage in lignin and lignin model compounds, focusing on various catalytic systems, including hydrogenolysis, oxidate, photocatalysis, and electrocatalysis. By analyzing the current status of C–C bond breakage, the core issues and challenges related to this process and the expectations for future research were emphasized.