Volume 6 Issue 2
Jun.  2021
Turn off MathJax
Article Contents
Si Zheng, Jianwei Zhang, Hongbing Deng, Yumin Du, Xiaowen Shi. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 142-151. doi: 10.1016/j.jobab.2021.02.002
Citation: Si Zheng, Jianwei Zhang, Hongbing Deng, Yumin Du, Xiaowen Shi. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 142-151. doi: 10.1016/j.jobab.2021.02.002

Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors

doi: 10.1016/j.jobab.2021.02.002
More Information
  • Corresponding author: E-mail address: shixw@whu.edu.cn (X. Shi)
  • Received Date: 2020-09-10
  • Accepted Date: 2020-11-14
  • Rev Recd Date: 2020-11-08
  • Available Online: 2021-02-04
  • Publish Date: 2021-05-01
  • In this study, we report the fabrication of nitrogen rich activated nanosized carbon with hierarchical micro/mesoporous and ultrahigh specific surface area by template-free and one-step carbonization-activation method, which greatly simplified the process and avoided the waste of reagents. Chitin nanoparticles were prepared by a mechanical induced sol-gel transition process in NaOH/Urea solvent and a subsequent carbonization utilizing NaOH for activation and urea for N doping, resulting in activated carbon (ACNC-800) with extraordinary specific surface area (2631 m2/g) and high nitrogen content (7.1%). Further characterization and electrochemical tests demonstrate high electrochemical performance of the activated nanocarbon. Under the current density of 0.5 A/g, the specific capacitance of the three-electrode system is 245 F/g and that of the two-electrode system is 227 F/g. The assembled capacitors exhibit superior rate performance and good cycle stability (98% capacitance retention after 10000 charge-discharge cycles). This work introduces a simple and efficient strategy to prepare N-doped carbon with hierarchical porosity applied to high performance supercapacitors.

     

  • loading
  • Chen, M.F., Yu, D., Zheng, X.Z., Dong, X. P, 2019a. Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors. J. Energy Storage 21, 105–112. doi: 10.1016/j.est.2018.11.017
    Chen, W.M., Wang, X., Hashisho, Z., Feizbakhshan, M., Shariaty, P., Niknaddaf, S., Zhou, X. Y, 2019b. Template-free and fast one-step synthesis from enzymatic hydrolysis lignin to hierarchical porous carbon for CO2 capture. Microporous Mesoporous Mater. 280, 57–65. doi: 10.3390/jmse7030057
    Chen, X., Chen, X., Xu, X., Yang, Z., Liu, Z., Zhang, L., Xu, X., Chen, Y., Huang, S., 2014. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials. Nanoscale 6, 13740–13747. doi: 10.1039/C4NR04783D
    Chmiola, J., Largeot, C., Taberna, P.L., Simon, P., Gogotsi, Y., 2008. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. Engl. 47, 3392–3395. doi: 10.1002/anie.200704894
    Contreras, M.S., Páez, C.A., Zubizarreta, L., Léonard, A., Blacher, S., Olivera-Fuentes, C.G., Arenillas, A., Pirard, J.P., Job, N., 2010. A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides. Carbon 48, 3157–3168. doi: 10.1016/j.carbon.2010.04.054
    Dai, Z., Ren, P.G., Jin, Y.L., Zhang, H., Ren, F., Zhang, Q., 2019. Nitrogen-sulphur Co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor. J. Power Sources 437, 226937. doi: 10.1016/j.jpowsour.2019.226937
    Deng, J., Xiong, T.Y., Xu, F., Li, M.M., Han, C.L., Gong, Y.T., Wang, H.Y., Wang, Y., 2015. Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem. 17, 4053–4060. doi: 10.1039/C5GC00523J
    Doustkhah, E., Lin, J., Rostamnia, S., Len, C., Luque, R., Luo, X., Bando, Y., Wu, K.C., Kim, J., Yamauchi, Y., Ide, Y., 2019. Development of sulfonic-acid-functionalized mesoporous materials: synthesis and catalytic applications. Chemistry 25, 1614–1635. doi: 10.1002/chem.201802183
    Duan, B., Gao, X., Yao, X., Fang, Y., Huang, L., Zhou, J., Zhang, L.N., 2016. Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27, 482–491. doi: 10.1016/j.nanoen.2016.07.034
    Ferrero, G.A., Fuertes, A.B., Sevilla, M., 2015. N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. J. Mater. Chem. A3, 2914–2923. doi: 10.1039/C4TA06022A
    Gao, Y., Zhang, W.L., Yue, Q.Y., Gao, B.Y., Sun, Y.Y., Kong, J.J., Zhao, P., 2014. Simple synthesis of hierarchical porous carbon from Enteromorpha prolifera by a self-template method for supercapacitor electrodes. J. Power Sources 270, 403–410. doi: 10.1016/j.jpowsour.2014.07.115
    Ghosh, A., Lee, Y.H., 2012. Carbon-based electrochemical capacitors. ChemSusChem 5, 480–499. doi: 10.1002/cssc.201100645
    Guo, J., Wu, D.L., Wang, T., Ma, Y., 2019. P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor. Appl. Surf. Sci. 475, 56–66. doi: 10.3390/polym12010056
    Han, J.P., Xu, G.Y., Ding, B., Pan, J., Dou, H., MacFarlane, D.R., 2014. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J. Mater. Chem. A2, 5352–5357. doi: 10.1039/C3TA15271E
    Han, X.Y., Zhang, Y.F., Wan, J., Xu, W.N., Li, J.E., Hu, C.G., Liu, G.L., Cheng, X.L., 2020. An activated carbon cloth anode obtained with a fast molten salt method for high-performance supercapacitors. J. Alloy. Compd. 838, 155695. doi: 10.1016/j.jallcom.2020.155695
    Hao, E.C., Liu, W., Liu, S., Zhang, Y., Wang, H.L., Chen, S.G., Cheng, F.L., Zhao, S.P., Yang, H.Z., 2017. Rich sulfur doped porous carbon materials derived from Ginkgo leaves for multiple electrochemical energy storage devices. J. Mater. Chem. A5, 2204–2214. doi: 10.1039/C6TA08169J
    Hong, X.T., Hui, K.S., Zeng, Z., Hui, K.N., Zhang, L.J., Mo, M.Y., Li, M., 2014. Hierarchical nitrogen-doped porous carbon with high surface area derived from endothelium corneum gigeriae galli for high-performance supercapacitor. Electrochimica Acta 130, 464–469. doi: 10.1016/j.electacta.2014.03.015
    Hou, J., Cao, C., Idrees, F., Ma, X., 2015. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556–2564. doi: 10.1021/nn506394r
    Hu, L.F., Zhu, Q.Z., Wu, Q., Li, D.S., An, Z.X., Xu, B., 2018. Natural biomass-derived hierarchical porous carbon synthesized by an in situ hard template coupled with NaOH activation for ultrahigh rate supercapacitors. ACS Sustain. Chem. Eng. 6, 13949–13959. doi: 10.1021/acssuschemeng.8b02299
    Hu, W.Q., Huang, J.Y., Yu, P.F., Zheng, M.T., Xiao, Y., Dong, H.W., Liang, Y.R., Hu, H., Liu, Y.L., 2019. Hierarchically porous carbon derived from Neolamarckia cadamba for electrochemical capacitance and hydrogen storage. ACS Sustain. Chem. Eng. 7, 15385–15393. doi: 10.1021/acssuschemeng.9b02734
    Kong, L., Chen, Q., Shen, X., Zhu, G., Zhu, J., 2018. Ionic liquid directed construction of foam-like mesoporous boron-doped graphitic carbon nitride electrode for high-performance supercapacitor. J. Colloid. Interface. Sci. 532, 261–271. doi: 10.1016/j.jcis.2018.07.135
    Konnerth, H., Matsagar, B.M., Chen, S.S., Prechtl, M.H.G., Shieh, F.K., Wu, K.C.W., 2020. Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord. Chem. Rev. 416, 213319. doi: 10.1016/j.ccr.2020.213319
    Leng, C.Y., Sun, K., Li, J.H., Jiang, J.C., 2017. From dead pine needles to O, N codoped activated carbons by a one-step carbonization for high rate performance supercapacitors. ACS Sustain. Chem. Eng. 5, 10474–10482. doi: 10.1021/acssuschemeng.7b02481
    Li, Y., Henzie, J., Park, T., Wang, J., Young, C., Xie, H.Q., Yi, J.W., Li, J., Kim, M., Kim, J., Yamauchi, Y., Na, J., 2020. Fabrication of flexible microsupercapacitors with binder-free ZIF-8 derived carbon films via electrophoretic deposition. Bull. Chem. Soc. Jpn. 93, 176–181. doi: 10.1246/bcsj.20190298
    Li, Z.Y., Gao, X.Y., Wu, L., Wang, K.W., Kobayashi, N., 2017. Preparation of activated carbons from poplar wood by chemical activation with KOH. J. Porous Mater. 24, 193–202. doi: 10.1007/s10934-016-0252-6
    Liao, Y.T., Matsagar, B.M., Wu, K.C.W., 2018. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustainable Chem. Eng. 6, 13628–13643. doi: 10.1021/acssuschemeng.8b03683
    Liao, Y.T., Nguyen, V.C., Ishiguro, N., Young, A.P., Tsung, C.K., Wu, K.C.W., 2020. Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. Appl. Catal. B: Environ. 270, 118805. doi: 10.1016/j.apcatb.2020.118805
    Liu, S.L., Xu, J.S., Zhu, J.X., Chang, Y.Q., Wang, H.G., Liu, Z.C., Xu, Y., Zhang, C., Liu, T.X., 2017. Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities. J. Mater. Chem. A5, 19997–20004. doi: 10.1039/C7TA04952H
    Lozano-Castelló, D., Calo, J.M., Cazorla-Amorós, D., Linares-Solano, A., 2007. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon45, 2529–2536. doi: 10.1016/j.carbon.2007.08.021
    Lu, B.H., Hu, L.Y., Yin, H.Y., Mao, X.H., Xiao, W., Wang, D.H., 2016a. Preparation and application of capacitive carbon from bamboo shells by one step molten carbonates carbonization. Int. J. Hydrog. Energy 41, 18713–18720. doi: 10.1016/j.ijhydene.2016.05.083
    Lu, B.H., Hu, L.Y., Yin, H.Y., Xiao, W., Wang, D.H., 2016b. One-step molten salt carbonization (MSC) of firwood biomass for capacitive carbon. RSC Adv. 6, 106485–106490. doi: 10.1039/C6RA22191B
    Makino, S., Yamauchi, Y., Sugimoto, W., 2013. Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors. J. Power Sources 227, 153–160. doi: 10.1016/j.jpowsour.2012.11.032
    Miao, Y.E., Fan, W., Chen, D., Liu, T.X., 2013. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. ACS Appl. Mater. Interfaces 5, 4423–4428. doi: 10.1021/am4008352
    Muzaffar, A., Ahamed, M.B., Deshmukh, K., Thirumalai, J., 2019. A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sustain. Energy Rev. 101, 123–145. doi: 10.1016/j.rser.2018.10.026
    Myglovets, M., Poddubnaya, O.I., Sevastyanova, O., Lindström, M.E., Gawdzik, B., Sobiesiak, M., Tsyba, M.M., Sapsay, V.I., Klymchuk, D.O., Puziy, A.M., 2014. Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions. Carbon 80, 771–783. doi: 10.1016/j.carbon.2014.09.032
    Pan, G.X., Cao, F., Zhang, Y.J., Xia, X.H., 2020. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors. J. Mater. Sci. Technol. 55, 144–151. doi: 10.1016/j.jmst.2019.10.004
    Paraknowitsch, J.P., Thomas, A., 2013. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6, 2839. doi: 10.1039/c3ee41444b
    Perez-Salcedo, K.Y., Ruan, S., Su, J., Shi, X., Kannan, A.M., Escobar, B., 2020. Seaweed-derived KOH activated biocarbon for electrocatalytic oxygen reduction and supercapacitor applications. J. Porous Mater. 27, 959–969. doi: 10.1007/s10934-020-00871-7
    Qu, H.X., Zhang, X.J., Zhan, J.J., Sun, W.Q., Si, Z.C., Chen, H.K., 2018. Biomass-based nitrogen-doped hollow carbon nanospheres derived directly from glucose and glucosamine: structural evolution and supercapacitor properties. ACS Sustain. Chem. Eng. 6, 7380–7389. doi: 10.1021/acssuschemeng.7b04842
    Romanos, J., Beckner, M., Rash, T., Firlej, L., Kuchta, B., Yu, P., Suppes, G., Wexler, C., Pfeifer, P., 2012. Nanospace engineering of KOH activated carbon. Nanotechnology 23, 015401. doi: 10.1088/0957-4484/23/1/015401
    Shan, B.H., Cui, Y.P., Liu, W., Zhang, Y., Liu, S., Wang, H.L., Sun, L.J., Wang, Z.P., Wu, R.T., 2018. Fibrous bio-carbon foams: a new material for lithium-ion hybrid supercapacitors with ultrahigh integrated energy/power density and ultralong cycle life. ACS Sustain. Chem. Eng. 6, 14989–15000. doi: 10.1021/acssuschemeng.8b03473
    Shin, D.Y., Sung, K.W., Ahn, H.J., 2019. Synergistic effect of heteroatom-doped activated carbon for ultrafast charge storage kinetics. Appl. Surf. Sci. 478, 499–504. doi: 10.1016/j.apsusc.2019.01.186
    Stepniak, I., Galinski, M., Nowacki, K., Wysokowski, M., Jakubowska, P., Bazhenov, V.V., Leisegang, T., Ehrlich, H., Jesionowski, T., 2016. A novel chitosan/sponge chitin origin material as a membrane for supercapacitors—Preparation and characterization. RSC Adv. 6, 4007–4013. doi: 10.1039/C5RA22047E
    Sun, F., Gao, J.H., Pi, X.X., Wang, L.J., Yang, Y.Q., Qu, Z.B., Wu, S.H., 2017. High performance aqueous supercapacitor based on highly nitrogen-doped carbon nanospheres with unimodal mesoporosity. J. Power Sources 337, 189–196. doi: 10.1016/j.jpowsour.2016.10.086
    Sun, F., Liu, X.Y., Wu, H.B., Wang, L.J., Gao, J.H., Li, H.X., Lu, Y.F., 2018. In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5 V full-carbon lithium-ion capacitor. Nano Lett. 18, 3368–3376. doi: 10.1021/acs.nanolett.8b00134
    Sun, F., Wu, H.B., Liu, X., Liu, F., Zhou, H.H., Gao, J.H., Lu, Y.F., 2016. Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors. Nano Res. 9, 3209–3221. doi: 10.1007/s12274-016-1199-2
    Tang, J., Salunkhe, R.R., Zhang, H., Malgras, V., Ahamad, T., Alshehri, S.M., Kobayashi, N., Tominaka, S., Ide, Y., Kim, J.H., Yamauchi, Y., 2016. Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci. Rep. 6, 30295. doi: 10.1038/srep30295
    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069. doi: 10.1515/pac-2014-1117
    Usha Rani, M., Nanaji, K., Rao, T.N., Deshpande, A.S., 2020. Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors. J. Power Sources 471, 228387. doi: 10.1016/j.jpowsour.2020.228387
    Wan, L., Wei, W., Xie, M.J., Zhang, Y., Li, X., Xiao, R., Chen, J., Du, C., 2019. Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode. Electrochimica Acta 311, 72–82. doi: 10.1016/j.electacta.2019.04.106
    Wang, J.C., Kaskel, S., 2012. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23725. doi: 10.1039/c2jm34066f
    Wei, J., Zhou, D.D., Sun, Z.K., Deng, Y.H., Xia, Y.Y., Zhao, D.Y., 2013. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 23, 2322–2328. doi: 10.1002/adfm.201202764
    Wulan Septiani, N.L., Kaneti, Y.V., Fathoni, K.B., Wang, J., Ide, Y., Yuliarto, B., Nugraha, Dipojono, H.K., Nanjundan, A.K., Golberg, D., Bando, Y., Yamauchi, Y., 2020. Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors. Nano Energy 67, 104270. doi: 10.1016/j.nanoen.2019.104270
    Yang, H., Ye, S., Zhou, J., Liang, T., 2019. Biomass-derived porous carbon materials for supercapacitor. Front. Chem. 7, 274. doi: 10.3746/pnf.2019.24.3.274
    Zhang, L.L., Zhao, X.S., 2009. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531. doi: 10.1039/b813846j
    Zhang, P., Song, X.D., Yu, C., Gui, J.Z., Qiu, J.S., 2017. Biomass-derived carbon nanospheres with turbostratic structure as metal-free catalysts for selective hydrogenation of o-chloronitrobenzene. ACS Sustain. Chem. Eng. 5, 7481–7485. doi: 10.1021/acssuschemeng.7b01280
    Zhang, X., Zhang, H.T., Li, C., Wang, K., Sun, X.Z., Ma, Y.W., 2014. Recent advances in porous graphene materials for supercapacitor applications. RSC Adv. 4, 45862–45884. doi: 10.1039/C4RA07869A
    Zhang, Y.F., Zhao, C.Y., Ong, W.K., Lu, X.H., 2019. Ultrafast-freezing-assisted mild preparation of biomass-derived, hierarchically porous, activated carbon aerogels for high-performance supercapacitors. ACS Sustain. Chem. Eng. 7, 403–411. doi: 10.1007/s11430-018-9293-8
    Zheng, S., Cui, Y., Zhang, J.W., Gu, Y.X., Shi, X.W., Peng, C., Wang, D.H., 2019. Nitrogen doped microporous carbon nanospheres derived from chitin nanogels as attractive materials for supercapacitors. RSC Adv. 9, 10976–10982. doi: 10.1039/c9ra00683d
    Zheng, X., Luo, J., Lv, W., Wang, D.W., Yang, Q.H., 2015. Two-dimensional porous carbon: synthesis and ion-transport properties. Adv Mater. 27, 5388–5395. doi: 10.1002/adma.201501452
    Zhou, J., Lian, J., Hou, L., Zhang, J., Gou, H., Xia, M., Zhao, Y., Strobel, T.A., Tao, L., Gao, F., 2015. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat. Commun. 6, 8503. doi: 10.1038/ncomms9503
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (864) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return