Turn off MathJax
Article Contents
Si Zheng, Jianwei Zhang, Hongbing Deng, Yumin Du, Xiaowen Shi. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.02.002
Citation: Si Zheng, Jianwei Zhang, Hongbing Deng, Yumin Du, Xiaowen Shi. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.02.002

Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors

doi: 10.1016/j.jobab.2021.02.002
More Information
  • Corresponding author: E-mail address: shixw@whu.edu.cn (X. Shi)
  • Received Date: 2020-09-10
  • Accepted Date: 2020-11-14
  • Rev Recd Date: 2020-11-08
  • In this study, we report the fabrication of nitrogen rich activated nanosized carbon with hierarchical micro/mesoporous and ultrahigh specific surface area by template-free and one-step carbonization-activation method, which greatly simplified the process and avoided the waste of reagents. Chitin nanoparticles were prepared by a mechanical induced sol-gel transition process in NaOH/Urea solvent and a subsequent carbonization utilizing NaOH for activation and urea for N doping, resulting in activated carbon (ACNC-800) with extraordinary specific surface area (2631 m2/g) and high nitrogen content (7.1%). Further characterization and electrochemical tests demonstrate high electrochemical performance of the activated nanocarbon. Under the current density of 0.5 A/g, the specific capacitance of the three-electrode system is 245 F/g and that of the two-electrode system is 227 F/g. The assembled capacitors exhibit superior rate performance and good cycle stability (98% capacitance retention after 10000 charge-discharge cycles). This work introduces a simple and efficient strategy to prepare N-doped carbon with hierarchical porosity applied to high performance supercapacitors.

     

  • loading
  • [1]
    Chen, M.F., Yu, D., Zheng, X.Z., Dong, X, 2019a. Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors. J. Energy Storage 21, 105-112. doi: 10.1016/j.est.2018.11.017
    [2]
    Chen, W.M., Wang, X., Hashisho, Z., Feizbakhshan, M., Shariaty, P., Niknaddaf, S., Zhou, X. Y, 2019b. Template-free and fast one-step synthesis from enzymatic hydrolysis lignin to hierarchical porous carbon for CO2 capture. Microporous Mesoporous Mater 280, 57-65. doi: 10.1016/j.micromeso.2019.01.042
    [3]
    Chen, X., Chen, X., Xu, X., Yang, Z., Liu, Z., Zhang, L., Xu, X., Chen, Y., Huang, S., 2014. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials. Nanoscale 6, 13740-13747. doi: 10.1039/C4NR04783D
    [4]
    Chmiola, J., Largeot, C., Taberna, P.L., Simon, P., Gogotsi, Y., 2008. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. Engl. 47, 3392-3395. doi: 10.1002/anie.200704894
    [5]
    Contreras, M.S., Páez, C.A., Zubizarreta, L., Léonard, A., Blacher, S., Olivera-Fuentes, C.G., Arenillas, A., Pirard, J.P., Job, N., 2010. A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides. Carbon 48, 3157-3168. doi: 10.1016/j.carbon.2010.04.054
    [6]
    Dai, Z., Ren, P.G., Jin, Y.L., Zhang, H., Ren, F., Zhang, Q., 2019. Nitrogen-sulphur Co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor. J. Power Sources 437, 226937. doi: 10.1016/j.jpowsour.2019.226937
    [7]
    Deng, J., Xiong, T.Y., Xu, F., Li, M.M., Han, C.L., Gong, Y.T., Wang, H.Y., Wang, Y., 2015. Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem 17, 4053-4060. doi: 10.1039/C5GC00523J
    [8]
    Doustkhah, E., Lin, J., Rostamnia, S., Len, C., Luque, R., Luo, X., Bando, Y., Wu, K.C., Kim, J., Yamauchi, Y., Ide, Y., 2019. Development of sulfonic-acid-functionalized mesoporous materials: synthesis and catalytic applications. Chemistry 25, 1614-1635. doi: 10.1002/chem.201802183
    [9]
    Duan, B., Gao, X., Yao, X., Fang, Y., Huang, L., Zhou, J., Zhang, L.N., 2016. Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27, 482-491. doi: 10.1016/j.nanoen.2016.07.034
    [10]
    Ferrero, G.A., Fuertes, A.B., Sevilla, M., 2015. N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. J. Mater. Chem. A 3, 2914-2923. doi: 10.1039/C4TA06022A
    [11]
    Gao, Y., Zhang, W.L., Yue, Q.Y., Gao, B.Y., Sun, Y.Y., Kong, J.J., Zhao, P., 2014. Simple synthesis of hierarchical porous carbon from Enteromorpha prolifera by a self-template method for supercapacitor electrodes. J. Power Sources 270, 403-410. doi: 10.1016/j.jpowsour.2014.07.115
    [12]
    Ghosh, A., Lee, Y.H., 2012. Carbon-based electrochemical capacitors. ChemSusChem 5, 480-499. doi: 10.1002/cssc.201100645
    [13]
    Guo, J., Wu, D.L., Wang, T., Ma, Y., 2019. P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor. Appl. Surf. Sci. 475, 56-66. doi: 10.1016/j.apsusc.2018.12.095
    [14]
    Han, J.P., Xu, G.Y., Ding, B., Pan, J., Dou, H., MacFarlane, D.R., 2014. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J. Mater. Chem. A 2, 5352-5357. doi: 10.1039/C3TA15271E
    [15]
    Han, X.Y., Zhang, Y.F., Wan, J., Xu, W.N., Li, J.E., Hu, C.G., Liu, G.L., Cheng, X.L., 2020. An activated carbon cloth anode obtained with a fast molten salt method for high-performance supercapacitors. J. Alloy. Compd. 838, 155695. doi: 10.1016/j.jallcom.2020.155695
    [16]
    Hao, E.C., Liu, W., Liu, S., Zhang, Y., Wang, H.L., Chen, S.G., Cheng, F.L., Zhao, S.P., Yang, H.Z., 2017. Rich sulfur doped porous carbon materials derived from Ginkgo leaves for multiple electrochemical energy storage devices. J. Mater. Chem. A 5, 2204-2214. doi: 10.1039/C6TA08169J
    [17]
    Hong, X.T., Hui, K.S., Zeng, Z., Hui, K.N., Zhang, L.J., Mo, M.Y., Li, M., 2014. Hierarchical nitrogen-doped porous carbon with high surface area derived from endothelium corneum gigeriae galli for high-performance supercapacitor. Electrochimica Acta 130, 464-469. doi: 10.1016/j.electacta.2014.03.015
    [18]
    Hou, J., Cao, C., Idrees, F., Ma, X., 2015. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and superca-pacitors. ACS Nano 9, 2556-2564. doi: 10.1021/nn506394r
    [19]
    Hu, L.F., Zhu, Q.Z., Wu, Q., Li, D.S., An, Z.X., Xu, B., 2018. Natural biomass-derived hierarchical porous carbon synthesized by an in situ hard template coupled with NaOH activation for ultrahigh rate supercapacitors. ACS Sustain. Chem. Eng. 6, 13949-13959. doi: 10.1021/acssuschemeng.8b02299
    [20]
    Hu, W.Q., Huang, J.Y., Yu, P.F., Zheng, M.T., Xiao, Y., Dong, H.W., Liang, Y.R., Hu, H., Liu, Y.L., 2019. Hierarchically porous carbon derived from Neolamarckia cadamba for electrochemical capacitance and hydrogen storage. ACS Sustain. Chem. Eng. 7, 15385-15393. doi: 10.1021/acssuschemeng.9b02734
    [21]
    Kong, L., Chen, Q., Shen, X., Zhu, G., Zhu, J., 2018. Ionic liquid directed construction of foam-like mesoporous boron-doped graphitic carbon nitride electrode for high-performance supercapacitor. J. Colloid. Interface. Sci. 532, 261-271. doi: 10.1016/j.jcis.2018.07.135
    [22]
    Konnerth, H., Matsagar, B.M., Chen, S.S., Prechtl, M.H.G., Shieh, F.K., Wu, K.C.W., 2020. Metal-organic framework (MOF)-derived catalysts for fine chemical produc-tion. Coord. Chem. Rev. 416, 213319. doi: 10.1016/j.ccr.2020.213319
    [23]
    Leng, C.Y., Sun, K., Li, J.H., Jiang, J.C., 2017. From dead pine needles to O, N codoped activated carbons by a one-step carbonization for high rate performance supercapacitors. ACS Sustain. Chem. Eng. 5, 10474-10482. doi: 10.1021/acssuschemeng.7b02481
    [24]
    Li, Y., Henzie, J., Park, T., Wang, J., Young, C., Xie, H.Q., Yi, J.W., Li, J., Kim, M., Kim, J., Yamauchi, Y., Na, J., 2020. Fabrication of flexible microsupercapacitors with binder-free ZIF-8 derived carbon films via electrophoretic deposition. Bull. Chem. Soc. Jpn. 93, 176-181. doi: 10.1246/bcsj.20190298
    [25]
    Li, Z.Y., Gao, X.Y., Wu, L., Wang, K.W., Kobayashi, N., 2017. Preparation of activated carbons from poplar wood by chemical activation with KOH. J. Porous Mater. 24, 193-202. doi: 10.1007/s10934-016-0252-6
    [26]
    Liao, Y.T., Matsagar, B.M., Wu, K.C.W., 2018. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sus-tainable Chem. Eng. 6, 13628-13643. doi: 10.1021/acssuschemeng.8b03683
    [27]
    Liao, Y.T., Nguyen, V.C., Ishiguro, N., Young, A.P., Tsung, C.K., Wu, K.C.W., 2020. Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. Appl. Catal. B: Environ. 270, 118805. doi: 10.1016/j.apcatb.2020.118805
    [28]
    Liu, S.L., Xu, J.S., Zhu, J.X., Chang, Y.Q., Wang, H.G., Liu, Z.C., Xu, Y., Zhang, C., Liu, T.X., 2017. Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities. J. Mater. Chem. A 5, 19997-20004. doi: 10.1039/C7TA04952H
    [29]
    Lozano-Castelló, D., Calo, J.M., Cazorla-Amorós, D., Linares-Solano, A., 2007. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon 45, 2529-2536. doi: 10.1016/j.carbon.2007.08.021
    [30]
    Lu, B.H., Hu, L.Y., Yin, H.Y., Mao, X.H., Xiao, W., Wang, D.H., 2016a. Preparation and application of capacitive carbon from bamboo shells by one step molten carbonates carbonization. Int. J. Hydrog. Energy 41, 18713-18720. doi: 10.1016/j.ijhydene.2016.05.083
    [31]
    Lu, B.H., Hu, L.Y., Yin, H.Y., Xiao, W., Wang, D.H., 2016b. One-step molten salt carbonization (MSC) of firwood biomass for capacitive carbon. RSC Adv 6, 106485-106490. doi: 10.1039/C6RA22191B
    [32]
    Makino, S., Yamauchi, Y., Sugimoto, W., 2013. Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro- supercapacitors. J. Power Sources 227, 153-160. doi: 10.1016/j.jpowsour.2012.11.032
    [33]
    Miao, Y.E., Fan, W., Chen, D., Liu, T.X., 2013. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. ACS Appl. Mater. Interfaces 5, 4423-4428. doi: 10.1021/am4008352
    [34]
    Muzaffar, A., Ahamed, M.B., Deshmukh, K., Thirumalai, J., 2019. A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sustain. Energy Rev. 101, 123-145. doi: 10.1016/j.rser.2018.10.026
    [35]
    Myglovets, M., Poddubnaya, O.I., Sevastyanova, O., Lindström, M.E., Gawdzik, B., Sobiesiak, M., Tsyba, M.M., Sapsay, V.I., Klymchuk, D.O., Puziy, A.M., 2014. Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions. Carbon 80, 771-783. doi: 10.1016/j.carbon.2014.09.032
    [36]
    Pan, G.X., Cao, F., Zhang, Y.J., Xia, X.H., 2020. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors. J. Mater. Sci. Technol. 55, 144-151. doi: 10.1016/j.jmst.2019.10.004
    [37]
    Paraknowitsch, J.P., Thomas, A., 2013. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6, 2839. doi: 10.1039/c3ee41444b
    [38]
    Perez-Salcedo, K.Y., Ruan, S., Su, J., Shi, X., Kannan, A.M., Escobar, B., 2020. Seaweed-derived KOH activated biocarbon for electrocatalytic oxygen reduction and supercapacitor applications. J. Porous Mater. 27, 959-969. doi: 10.1007/s10934-020-00871-7
    [39]
    Qu, H.X., Zhang, X.J., Zhan, J.J., Sun, W.Q., Si, Z.C., Chen, H.K., 2018. Biomass-based nitrogen-doped hollow carbon nanospheres derived directly from glucose and glucosamine: structural evolution and supercapacitor properties. ACS Sustain. Chem. Eng. 6, 7380-7389. doi: 10.1021/acssuschemeng.7b04842
    [40]
    Romanos, J., Beckner, M., Rash, T., Firlej, L., Kuchta, B., Yu, P., Suppes, G., Wexler, C., Pfeifer, P., 2012. Nanospace engineering of KOH activated carbon. Nanotech-nology 23, 015401. doi: 10.1088/0957-4484/23/1/015401
    [41]
    Shan, B.H., Cui, Y.P., Liu, W., Zhang, Y., Liu, S., Wang, H.L., Sun, L.J., Wang, Z.P., Wu, R.T., 2018. Fibrous bio-carbon foams: a new material for lithium-ion hybrid supercapacitors with ultrahigh integrated energy/power density and ultralong cycle life. ACS Sustain. Chem. Eng. 6, 14989-15000. doi: 10.1021/acssuschemeng.8b03473
    [42]
    Shin, D.Y., Sung, K.W., Ahn, H.J., 2019. Synergistic effect of heteroatom-doped activated carbon for ultrafast charge storage kinetics. Appl. Surf. Sci. 478, 499-504. doi: 10.1016/j.apsusc.2019.01.186
    [43]
    Stepniak, I., Galinski, M., Nowacki, K., Wysokowski, M., Jakubowska, P., Bazhenov, V.V., Leisegang, T., Ehrlich, H., Jesionowski, T., 2016. A novel chitosan/sponge chitin origin material as a membrane for supercapacitors—Preparation and characterization. RSC Adv 6, 4007-4013. doi: 10.1039/C5RA22047E
    [44]
    Sun, F., Gao, J.H., Pi, X.X., Wang, L.J., Yang, Y.Q., Qu, Z.B., Wu, S.H., 2017. High performance aqueous supercapacitor based on highly nitrogen-doped carbon nanospheres with unimodal mesoporosity. J. Power Sources 337, 189-196. doi: 10.1016/j.jpowsour.2016.10.086
    [45]
    Sun, F., Liu, X.Y., Wu, H.B., Wang, L.J., Gao, J.H., Li, H.X., Lu, Y.F., 2018. In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5 V full-carbon lithium-ion capacitor. Nano Lett 18, 3368-3376. doi: 10.1021/acs.nanolett.8b00134
    [46]
    Sun, F., Wu, H.B., Liu, X., Liu, F., Zhou, H.H., Gao, J.H., Lu, Y.F., 2016. Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors. Nano Res 9, 3209-3221. doi: 10.1007/s12274-016-1199-2
    [47]
    Tang, J., Salunkhe, R.R., Zhang, H., Malgras, V., Ahamad, T., Alshehri, S.M., Kobayashi, N., Tominaka, S., Ide, Y., Kim, J.H., Yamauchi, Y., 2016. Bimetallic metal-or-ganic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci. Rep. 6, 30295. doi: 10.1038/srep30295
    [48]
    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051-1069. doi: 10.1515/pac-2014-1117
    [49]
    Usha Rani, M., Nanaji, K., Rao, T.N., Deshpande, A.S., 2020. Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors. J. Power Sources 471, 228387. doi: 10.1016/j.jpowsour.2020.228387
    [50]
    Wan, L., Wei, W., Xie, M.J., Zhang, Y., Li, X., Xiao, R., Chen, J., Du, C., 2019. Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-perfor-mance supercapacitor electrode. Electrochimica Acta 311, 72-82. doi: 10.1016/j.electacta.2019.04.106
    [51]
    Wang, J.C., Kaskel, S., 2012. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710-23725. doi: 10.1039/c2jm34066f
    [52]
    Wei, J., Zhou, D.D., Sun, Z.K., Deng, Y.H., Xia, Y.Y., Zhao, D.Y., 2013. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 23, 2322-2328. doi: 10.1002/adfm.201202764
    [53]
    Septiani, Wulan, N.L., Kaneti, Y.V., Fathoni, K.B., Wang, J., Ide, Y., Yuliarto, B., Nugraha, Dipojono, H.K., Nanjundan, A.K., Golberg, D., Bando, Y., Yamauchi, Y., 2020. Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors. Nano Energy 67, 104270. doi: 10.1016/j.nanoen.2019.104270
    [54]
    Yang, H., Ye, S., Zhou, J., Liang, T., 2019. Biomass-derived porous carbon materials for supercapacitor. Front. Chem. 7, 274. doi: 10.3389/fchem.2019.00274
    [55]
    Zhang, L.L., Zhao, X.S., 2009. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520-2531. doi: 10.1039/b813846j
    [56]
    Zhang, P., Song, X.D., Yu, C., Gui, J.Z., Qiu, J.S., 2017. Biomass-derived carbon nanospheres with turbostratic structure as metal-free catalysts for selective hydro-genation of o-chloronitrobenzene. ACS Sustain. Chem. Eng. 5, 7481-7485. doi: 10.1021/acssuschemeng.7b01280
    [57]
    Zhang, X., Zhang, H.T., Li, C., Wang, K., Sun, X.Z., Ma, Y.W., 2014. Recent advances in porous graphene materials for supercapacitor applications. RSC Adv 4, 45862-45884. doi: 10.1039/C4RA07869A
    [58]
    Zhang, Y.F., Zhao, C.Y., Ong, W.K., Lu, X.H., 2019. Ultrafast-freezing-assisted mild preparation of biomass-derived, hierarchically porous, activated carbon aerogels for high-performance supercapacitors. ACS Sustain. Chem. Eng. 7, 403-411. doi: 10.1021/acssuschemeng.8b03788
    [59]
    Zheng, S., Cui, Y., Zhang, J.W., Gu, Y.X., Shi, X.W., Peng, C., Wang, D.H., 2019. Nitrogen doped microporous carbon nanospheres derived from chitin nanogels as attractive materials for supercapacitors. RSC Adv 9, 10976-10982. doi: 10.1039/C9RA00683D
    [60]
    Zheng, X., Luo, J., Lv, W., Wang, D.W., Yang, Q.H., 2015. Two-dimensional porous carbon: synthesis and ion-transport properties. Adv Mater 27, 5388-5395. doi: 10.1002/adma.201501452
    [61]
    Zhou, J., Lian, J., Hou, L., Zhang, J., Gou, H., Xia, M., Zhao, Y., Strobel, T.A., Tao, L., Gao, F., 2015. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat. Commun. 6, 8503. doi: 10.1038/ncomms9503
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (71) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return