Turn off MathJax
Article Contents
Tjokorda I. Indira, Khairul Hadi Burhan, Robert Manurung, Ana Widiana. Enhancement of Essential Oil Yield from Melaleuca leucadendra L. leaves by Lignocellulose Degradation Pre-treatment Using Filamentous Fungi[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.02.010
Citation: Tjokorda I. Indira, Khairul Hadi Burhan, Robert Manurung, Ana Widiana. Enhancement of Essential Oil Yield from Melaleuca leucadendra L. leaves by Lignocellulose Degradation Pre-treatment Using Filamentous Fungi[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.02.010

Enhancement of Essential Oil Yield from Melaleuca leucadendra L. leaves by Lignocellulose Degradation Pre-treatment Using Filamentous Fungi

doi: 10.1016/j.jobab.2021.02.010
More Information
  • Corresponding author: Corresponding author. Department of Bioengineering, School of Life Science and Technology, Institute of Technology Bandung, Indonesia Agriculture and Bioproduct Technology Research Group Institute of Technology Bandung, Jl. Raya Jatinangor Km 20.75, Sumedang 45363, Indonesia
    Email address: manurung@sith.itb.ac.id (Robert Manurung).
  • Received Date: 2020-07-12
  • Accepted Date: 2020-09-24
  • Rev Recd Date: 2020-09-16
  • Available Online: 2021-03-19
  • The essential oil from Melaleuca leucadendra L. leaves has been widely used as a perfume and traditional remedy, cosmetics and pharmaceutical products ingredient since many years ago. The common technology to recover the oil is hydro-distillation and steam-distillation. However, all oil can not be fully extracted from the leaves by this method due to the recalcitrant structure of leaves that hindrance the access of the solvent. Adding a submerged fermentation as a pre-treatment step prior to the extraction process helped to loosen the lignocellulose structure and enhance oil release in the extraction process. In this study, the raw materials were collected from the natural forest in Buru Island, Maluku, Indonesia. The biological agents applied in these processes were Phanerochaete chrysosporium ITBCC136 and Trichoderma viride ITBCC143. The oil extraction process was conducted by method of steam-distillation, the oil was analysed using gas chromatography-mass spectroscopy (GC-MS), and the lignocellulose content in the biomass was measured by the fractionation method. The treatment using T.viride provided the highest increase in yield percentage up to 3.47% as compared with control of 1.45%, with the lowest percentages of the remained cellulose, while the fermentation with the presence of P.chrysosporium did not affect the oil yield even the lignin content was decrease as much as 21%. The percentages of 1, 8-cineole in the oil were almost unchanged, which was about 20% of the oil.


  • loading
  • [1]
    Abu Bakar, A., Sulaiman, S., Omar, B., Mat Ali, R., 2012. Evaluation of Melaleuca cajuputi (Family: Myrtaceae) essential oil in aerosol spray cans against dengue vectors in low cost housing Flats. J. Arthropod Borne Dis 6, 28-35.
    Agustina, Z.A., Suharmiati, S., 2017. Pemanfaatan minyak kayu putih (Melaleuca leucadendra linn) sebagai alternatif pencegahan kasus infeksi saluran pernafasan akut di pulau buru. J. Kefarmasian Indonesia 7, 120-126. http://www.researchgate.net/publication/319468548_Pemanfaatan_Minyak_Kayu_Putih_Melaleuca_leucadendra_Linn_sebagai_Alternatif_Pencegahan_Kasus_Infeksi_Saluran_Pernafasan_Akut_di_Pulau_Buru
    Ali, B., Al-Wabel, N.A., Shams, S., Ahamad, A., Khan, S.A., Anwar, F., 2015. Essential oils used in aromatherapy: a systemic review. Asian Pac. J. Trop. Biomed. 5, 601-611. doi: 10.1016/j.apjtb.2015.05.007
    Anwar, Z., Gulfraz, M., Irshad, M., 2014. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J. Radiat. Res. Appl. Sci. 7, 163-173. doi: 10.1016/j.jrras.2014.02.003
    Baruah, J., 2018. Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front. Energy Res. 6, 19. doi: 10.3389/fenrg.2018.00019
    Behnood, M., Nasernejad, B., Nikazar, M., 2014. Biodegradation of crude oil from saline waste water using white rot fungus Phanerochaete chrysosporium. J. Ind. Eng. Chem. 20, 1879-1885. doi: 10.1016/j.jiec.2013.09.007
    Benner, R., Hodson, R.E., 1985. Microbial degradation of the leachable and lignocellulosic components of leaves and wood from Rhizophora mangle in a tropical mangrove swamp. Mar. Ecol. Prog. Ser. 23, 221-230. doi: 10.3354/meps023221
    Blanchette, C., Lacayo, C.I., Fischer, N.O., Hwang, M., Thelen, M.P., 2012. Enhanced cellulose degradation using cellulase-nanosphere complexes. PLoS One 7, e42116. http://europepmc.org/articles/PMC3411664
    Budiadi Kanazawa, Y., Ishii, H.T., Sabarnurdin, M.S., Suryanto, P., 2005. Productivity of kayu putih (Melaleuca leucadendron LINN) tree plantation managed in non-timber forest production systems in Java, Indonesia. Agrofor. Syst. 64, 143-155. doi: 10.1007/s10457-004-0777-6
    Canam, T., Town, J., Iroba, K., Tabil, L., Dumonceaux, T., 2013. Pretreatment of lignocellulosic biomass using microorganisms: approaches, advantages, and limitations. Sustainable Degradation of Lignocellulosic Biomass-Techniques, Applications and Commercialization. U.K. : InTech.
    Chintagunta, A.D., 2013. Enzymatic saccharification of pretreated lemon peels for fermentable sugar production enzymatic saccharification of pretreated lemon peels for fermentable sugar. J. Clean. Prod. 47, 347-355. http://www.cabdirect.org/abstracts/20133281584.html
    Coelho-Moreira Jda, S., Bracht, A,, de Souza, A.C., Oliveira, R.F., de Sá-Nakanishi, A.B., de Souza, C.G., Peralta, R.M., 2013. Degradation of diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome P450. Biomed. Res. Int. 251354.
    Cuong, N.D., Xuyen, T.T., Motl, O., Stránský, K., Presslová, J., Jedlicková, Z., Serý, V., 1994. Antibacterial properties of Vietnamese cajuput oil. J. Essent. Oil Res. 6, 63-67. doi: 10.1080/10412905.1994.9698326
    Datta, A., Bettermann, A., Kirk, T.K., 1991. Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Appl. Environ. Microbiol. 57, 1453-1460. doi: 10.1128/AEM.57.5.1453-1460.1991
    Datta, R., 1981. Acidogenic fermentation of corn stover. Biotechnol. Bioeng. 23, 61-77. doi: 10.1002/bit.260230106
    El Baz, A.F., Shetaia, Y.M.H., Shams Eldin, H.A., El Mekawy, A., 2018. Optimization of cellulase production by Trichoderma viride using response surface methodology. Curr. Biotechnol. 7, 19-25. doi: 10.2174/2211550105666160115213402
    Fall, R., Ngom, S., Sall, D., Sembène, M., Samb, A., 2017. Chemical characterization of essential oil from the leaves of Callistemon viminalis (D.R. ) and Melaleuca leucadendron (Linn. ). Asian Pac. J. Trop. Biomed. 7, 347-351. doi: 10.1016/j.apjtb.2017.01.004
    Farag, R.S., Shalaby, A.S., El-Baroty, G.A., Ibrahim, N.A., Ali, M.A., Hassan, E.M., 2004. Chemical and biological evaluation of the essential oils of different Melaleuca species. Phytother. Res. 18, 30-35. doi: 10.1002/ptr.1348
    Fortkamp, D., Knob, A., 2014. High xylanase production by Trichoderma viride using pineapple peel as substrate and its apllication in pulp biobleaching. Afr. J. Biotechnol. 13, 2248-2259. doi: 10.5897/AJB2013.13479
    Galadima, A.I., Salleh, M.M., Hussin, H., Mohd Safri, N., Mohd Noor, R., Chong, C.S., Yahya, A., Mohamad, S.E., Abd-Aziz, S., Yusof, N.N.M., Abu Naser, M., Al-Junid, A.F.M., 2020. One-step conversion of lemongrass leaves hydrolysate to biovanillin by Phanerochaete chrysosporium ATCC 24725 in batch culture. Waste Biomass Valorization 11, 4067-4080. doi: 10.1007/s12649-019-00730-w
    Giovannoni, M., Gramegna, G., Benedetti, M., Mattei, B., 2020. Industrial use of cell wall degrading enzymes: the fine line between production strategy and economic feasibility. Front. Bioeng. Biotechnol. 8, 356. doi: 10.3389/fbioe.2020.00356
    Gupta, J.K., Gupta, Y.P., Das, N.B., 1973. Degradation of cellulosic materials by Trichoderma viride cellulase. Agric. Biol. Chem. 37, 2657-2662. doi: 10.1080/00021369.1973.10861040
    Heikal, A.A.E.M., 2017. Variation in the essential oil content and its composition in Eucalyptus cinerea leaves and its relation to some environmental factors. J. Essent. Oil Bear. Plants 20, 995-1005. doi: 10.1080/0972060X.2017.1351896
    Huynh, Q., Phan, T.D., Thieu, V.Q., Tran, S.T., Do, S.H., 2012. Extraction and refining of essential oil from Australian tea tree, Melaleuca alterfornia, and the antimicrobial activity in cosmetic products. J. Phys. : Conf. Ser. 352, 012053. doi: 10.1088/1742-6596/352/1/012053
    Ishii, H., Sunarto, H.T., S., Kanazawa, Y., 2005. Variation in kayu putih (Melaleuca leucadendron LINN) oil quality under different farming systems in Java, Indonesia. Eurasian J. For. Res. 8, 15-20. http://ci.nii.ac.jp/naid/120000965268
    Ismanto, A.W., Kusuma, H.S., Mahfud, M., 2017. Comparison of microwave hydrodistillation and solvent-free microwave extraction of essential oil from Melaleuca leucadendra Linn. IOP Conf. Ser. : Earth Environ. Sci. 101, 012014. doi: 10.1088/1755-1315/101/1/012014
    Jajaei, S.M., Daud, W.R.W., Markom, M., Zakaria, Z., Presti, M.L., Costa, R., Mondello, L., Santi, L.C., 2010. Extraction of Melaleuca cajuputi using supercritic fluid extraction and solvent extraction. J. Essent. Oil Res. 22, 205-210. doi: 10.1080/10412905.2010.9700304
    Janusz, G., Pawlik, A., Sulej, J., Swiderska-Burek, U., Jarosz-Wilkolazka, A., Paszczynski, A., 2017. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 41, 941-962. doi: 10.1093/femsre/fux049
    Kadarmoidheen, M., Saranraj, P., Stella, D., 2012. Effect of cellulolytic fungi on the degradation of cellulosic agricultural wastes. Int. J. Appl. Microbiol. Sci. 1, 11. http://www.researchgate.net/publication/259495562_Effect_of_cellulolytic_fungi_on_the_degradation_of_cellulosic_agricultural_wastes
    Khasanah, L.U.R., Ananditho, B.K., Nugraheni, A.E., 2014. The effect of pretreatment solid and submerged fermentation on yield and quality of cinnamon leaf oil. Agritech, 34, 36-42.
    Kim, J.H., Liu, K.H., Yoon, Y., Sornnuwat, Y., Kitirattrakarn, T., Anantachoke, C., 2005. Essential leaf oils from Melaleuca cajuputi. Acta Hortic. 680, 65-72.
    Li, X.H., Yang, H.J., Roy, B., Park, E.Y., Jiang, L.J., Wang, D., Miao, Y.G., 2010. Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiol. Res. 165, 190-198. doi: 10.1016/j.micres.2009.04.001
    Mandey, J.S., Leke, J.R., Kaunang, W.B., Kowel, Y.H.S., 2015. Carcass yield of broiler chickens fed banana (Musa paradisiaca) leaves fermented with Trichoderma viride. J. Indonesian Trop. Anim. Agric. 40, 229-233. http://www.researchgate.net/publication/297600834_Carcass_yield_of_broiler_chickens_fed_banana_musa_paradisiaca_leaves_fermented_with_trichoderma_viride
    Moredo, N., Lorenzo, M., Domínguez, A., Moldes, D., Cameselle, C., Sanroman, A., 2003. Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World J. Microbiol. Biotechnol. 19, 665-669. doi: 10.1023/A:1025198917474
    Mutschlechner, M., Illmer, P., Wagner, A.O., 2015. Biological pre-treatment: Enhancing biogas production using the highly cellulolytic fungus Trichoderma viride. Waste Manag. 43, 98-107. doi: 10.1016/j.wasman.2015.05.011
    Nurhadianty, V., Sarosa, A.H., Wahyuningsih, I., Cahyani, C., 2020. Improving yield and quality characteristics of Kaffir lime oil (Citrus hystrix DC) by solid fermentation pretreatment using tempeh yeast. Mal. J. Fund. Appl. Sci. 16, 493-496. doi: 10.11113/mjfas.v16n4.1525
    Pellinen, J., Abuhasan, J., Joyce, T.W., Chang, H.M., 1989. Biological delignification of pulp by Phanerochaete chrysosporium. J. Biotechnol. 10, 161-170. doi: 10.1016/0168-1656(89)90038-2
    Pino, J., Bello, A., Urquiola, A., Aguero, J., Marbot, R., 2002. Chemical composition of cajuput oil (Melaleuca leucadendra L. ) from Cuba. J. Essent. Oil Res. 14, 10-11. doi: 10.1080/10412905.2002.9699744
    Pujiarti, R., Ohtani, Y., Ichiura, H., 2011. Physicochemical properties and chemical compositions of Melaleuca leucadendron leaf oils taken from the plantations in Java, Indonesia. J. Wood Sci. 57, 446-451. doi: 10.1007/s10086-011-1183-0
    Pujiarti, R., Ohtani, Y., Widowati, T.B., 2012. Kasmudjo Utilization of Melaleuca leucadendron essential oil. 2, 94-99.
    Rencoret, J., Gutiérrez, A., Nieto, L., Jiménez-Barbero, J., Faulds, C.B., Kim, H., Ralph, J., Martínez, A.T., del Río, J.C., 2011. Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiol. 155, 667-682. doi: 10.1104/pp.110.167254
    Schoemaker, H.E., Leisola, M.S.A., 1990. Degradation of lignin by Phanerochaete chrysosporium. J. Biotechnol. 13, 101-109. doi: 10.1016/0168-1656(90)90096-T
    Shaw, J.J., Berbasova, T., Sasaki, T., Jefferson-George, K., Spakowicz, D.J., Dunican, B.F., Portero, C.E., Narváez-Trujillo, A., Strobel, S.A., 2015. Identification of a fungal 1, 8-cineole synthase from Hypoxylon sp. with specificity determinants in common with the plant synthases. J. Biol. Chem. 290, 8511-8526. doi: 10.1074/jbc.M114.636159
    Siddique, S., Parveen, Z., Firdaus-E-bareen, Mazhar, S., 2020. Chemical composition, antibacterial and antioxidant activities of essential oils from leaves of three Melaleuca species of Pakistani flora. Arab. J. Chem. 13, 67-74. doi: 10.1016/j.arabjc.2017.01.018
    Singh, D., Chen, S.L., 2008. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl. Microbiol. Biotechnol. 81, 399-417. doi: 10.1007/s00253-008-1706-9
    Slamet, S., Ulyarti, U., Rahmi, S.L., 2019. Pengaruh Lama fermentasi terhadap rendemen Dan mutu fisik minyak nilam Pogostemon cablin Benth. J. Tek. Ind. Pert. Ind. 11, 19-25. doi: 10.17969/jtipi.v11i1.11671
    Sreedharan, S., 2016. An overview on fungal cellulases with an industrial perspective. J. Nutr. Food Sci. 6, 1-13.
    Su, Y., Xian, H., Shi, S., Zhang, C., Manik, S.M., Mao, J., Zhang, G., Liao, W., Wang, Q., Liu, H., 2016. Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk. BMC Biotechnol 16, 81. doi: 10.1186/s12896-016-0311-8
    Ulmer, D.C., Leisola, M.S.A., Schmidt, B.H., Fiechter, A., 1983. Rapid degradation of isolated lignins by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 45, 1795-1801. doi: 10.1128/AEM.45.6.1795-1801.1983
    Zhao, L., Cao, G.L., Wang, A.J., Ren, H.Y., Dong, D., Liu, Z.N., Guan, X.Y., Xu, C.J., Ren, N.Q., 2012. Fungal pretreatment of cornstalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production. Bioresour. Technol. 114, 365-369. doi: 10.1016/j.biortech.2012.03.076
    Zhi, Z.L., Wang, H., 2014. White-rot fungal pretreatment of wheat straw with Phanerochaete chrysosporium for biohydrogen production: simultaneous saccharification and fermentation. Bioprocess Biosyst. Eng. 37, 1447-1458. doi: 10.1007/s00449-013-1117-x
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (62) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint