Turn off MathJax
Article Contents
Eman M. Saad, Reda F. Elshaarawy, Safaa A. Mahmoud, Khalid M. El-Moselhy. New Ulva lactuca Algae Based Chitosan Bio-composites for Bioremediation of Cd(II) Ions[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.04.002
Citation: Eman M. Saad, Reda F. Elshaarawy, Safaa A. Mahmoud, Khalid M. El-Moselhy. New Ulva lactuca Algae Based Chitosan Bio-composites for Bioremediation of Cd(II) Ions[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.04.002

New Ulva lactuca Algae Based Chitosan Bio-composites for Bioremediation of Cd(II) Ions

doi: 10.1016/j.jobab.2021.04.002
More Information
  • Corresponding author: Eman M. Saad, Corresponding authors. Department of Chemistry, Faculty of Science, Suez University, Suez, Egypt; National Institute of Oceanography and Fisheries, NIOF, Egypt. khalidelmoselhy@yahoo.com; Eman M. Saad, Corresponding authors. Department of Chemistry, Faculty of Science, Suez University, Suez, Egypt; National Institute of Oceanography and Fisheries, NIOF, Egypt. khalidelmoselhy@yahoo.com
  • Received Date: 2020-09-05
  • Accepted Date: 2020-12-20
  • Rev Recd Date: 2020-12-11
  • The current article covers the production of chitosan (CS) from shells of shrimp waste and its utilization in the preparation of eco-friendly imprinting and non-imprinting composites with Ulva lactuca algae (Alg). These bio-composites namely (Imp-Alg-25wt% CS) and (NImp-Alg-25wt% CS) were used for removal of Cd(II) ions. Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM) equipped with electron dispersive X-ray (EDX), X-ray diffraction (XRD), and elemental analysis measurements were performed to characterize these bio-composites sorbents. The highest adsorption of these sorbents towards Cd(II) ions was determined as a function of solutions pH, contact time, Cd(II) ion concentration, beads dose, and temperature. The equilibrium experimental data were treated using various mathematical isotherm and kinetic models to approve the maximum bio-sorption capacities of NImp-Alg-25wt% CS and Imp-Alg-25wt% CS (in mg/g). The results exhibited that Imp-Alg-25wt% CS gave higher removal capacity than NImp-Alg-25wt% CS at the same optimum parameters. Pseudo-2nd order dynamic and Langmuir isotherm models were well described in these biosorption processes. Thermodynamically, the removal behavior of Cd(II) using both bio-composites was spontaneous at room temperature. The reusability of the sorbents, NImp-Alg-25wt% CS and Imp-Alg-25wt% CS, showed three cycles. In addition, comparative study was also conducted for Cd(II) removal onto some reported sorbents.


  • loading
  • [1]
    Abd El-Azim, H., El-Sayed Seleman, M.M., Saad, E.M., 2019. Applicability of water-spray electric arc furnace steel slag for removal of Cd and Mn ions from aqueous solutions and industrial wastewaters. J. Environ. Chem. Eng. 7, 102915. doi: 10.1016/j.jece.2019.102915
    Abdel-Ghani, N.T., El-Chaghaby, G.A., 2014. Biosorption for metal ions removal from aqueous solutions: a review of recent studies. Int. J. Lat. Res. Sci. Technol. 3, 24–42.
    Ajjabi, L.C., Chouba, L., 2009. Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J. Environ. Manag. 90, 3485–3489. doi: 10.1016/j.jenvman.2009.06.001
    Al Prol, A.E.M., 2014. Biosorption of Some Toxic Heavy Metal Ions from Industrial Wastewater By Some Marine Macro Algae. Egypt: Faculty of Science, Tanta University.
    Anan, N.A., Hassan, S.M., Saad, E.M., Butler, I.S., Mostafa, S.I., 2011. Preparation, characterization and pH-metric measurements of 4-hydroxysalicylidene chitosan Schiff-base complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ru(III), Rh(III), Pd(II) and Au(III). Carbohyd. Res. 346, 775–793. doi: 10.1016/j.carres.2011.01.014
    Apiratikul, R., Pavasant, P., 2008. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour. Technol. 99, 2766–2777. doi: 10.1016/j.biortech.2007.06.036
    Awwad, A.M., Farhan, A.M., 2012. Equilibrium, kinetic and thermodynamics of biosorption of lead(II) copper(II) and cadmium(II) ions from aqueous solutions onto olive leaves powder. Am. J. Chem. 2, 238–244. doi: 10.5923/j.chemistry.20120204.09
    Benavente, M., 2008. Adsorption of Metallic Ions Onto chitosan: Equilibrium and Kinetic Studies. Royal Institute of Technology, Department of Chemical Engineering and Technology, Division of Transport Phenomena, Stockholm, Sweden, 55.
    Biswas, Sh., Rashid, T. Ur., Debnath, T., Haque, P., Rahman, M.M., 2020. Application of chitosan-clay biocomposite beads for removal of heavy metal and dye from industrial effluent. J. Compos. Sci., 4, 1–14.
    Chong, H.L.H., Chia, P.S., Ahmad, M.N., 2013. The adsorption of heavy metal by Bornean oil palm shell and its potential application as constructed wetland media. Bioresour. Technol. 130, 181–186. doi: 10.1016/j.biortech.2012.11.136
    Dalida, M.L.P., Mariano, A.F.V., Futalan, C.M., Kan, C.C., Tsai, W.C., Wan, M.W., 2011. Adsorptive removal of Cu(II) from aqueous solutions using non-crosslinked and crosslinked chitosan-coated bentonite beads. Desalination 275, 154–159. doi: 10.1016/j.desal.2011.02.051
    Davis, T.A., Volesky, B., Vieira, R.H.S.F., 2000. Sargassum seaweed as biosorbent for heavy metals. Water Res. 34, 4270–4278. doi: 10.1016/S0043-1354(00)00177-9
    Domszy, J.G., Roberts, G.A.F., 1985. Evaluation of infrared spectroscopic techniques for analysing chitosan. Makromol. Chem. 186, 1671–1677. doi: 10.1002/macp.1985.021860815
    Dubinin, M.M., Zaverina, E.D., Radushkevich, L.V., 1947. Sorption and structure of active carbons. I. Adsorption of organic vapors. Zh. Fiz. Khim. 21, 1351–1362.
    Elkhatib, E., Mahdy, A., Sherif, F., Elshemy, W., 2016. Competitive adsorption of cadmium(II) from aqueous solutions onto nanoparticles of water treatment residual. J. Nanomater. 2016, 1–10.
    Elsayed, S.A., Saad, E.M., Butler, I.S., Mostafa, S.I., 2018. 2-Hydroxynaphthaldehyde chitosan schiff-base; new complexes, biosorbent to remove cadmium(II) ions from aqueous media and aquatic ecotoxicity against green alga Pseudokirchneriella subcapitata. J. Environ. Chem. Eng. 6, 3451–3468. doi: 10.1016/j.jece.2017.12.051
    El-Sikaily, A., Nemr, A.E., Khaled, A., Abdelwehab, O., 2007. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J. Hazard. Mater. 148, 216–228. doi: 10.1016/j.jhazmat.2007.01.146
    Esteves, A.J.P., Valdman, E., Leite, S.G.F., 2000. Repeated removal of cadmium and zinc from an industrial effluent by waste biomass Sargassum sp. Biotechnol. Lett. 22, 499–502. doi: 10.1023/A:1005608701510
    Fan, W., Xu, Z., 2011. Biosorption of nickel ion by chitosan-immobilized brown algae Laminaria japonica. Chem. Biochem. Eng. 25, 247–254.
    Farhan, A.M., Al-Dujaili, A.H., Awwad, A.M., 2013. Equilibrium and kinetic studies of cadmium(II) and lead(II) ions biosorption onto Ficus carcia leaves. Int. J. Ind. Chem. 4, 1–8. doi: 10.1186/2228-5547-4-1
    Farooq, U., Khan, M.A., Athar, M., Kozinski, J.A., 2011. Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium(II) ions from aqueous solution. Chem. Eng. J. 171, 400–410. doi: 10.1016/j.cej.2011.03.094
    Feng, N.C., Guo, X.Y., Liang, S., 2009. Adsorption study of copper (II) by chemically modified orange peel. J. Hazard. Mater. 164, 1286–1292. doi: 10.1016/j.jhazmat.2008.09.096
    Florido, A., Valderrama, C., Arévalo, J.A., Casas, I., Martínez, M., Miralles, N., 2010. Application of two sites non-equilibrium sorption model for the removal of Cu(II) onto grape stalk wastes in a fixed-bed column. Chem. Eng. J. 156, 298–304. doi: 10.1016/j.cej.2009.10.020
    Fourest, E., Volesky, B., 1996. Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ. Sci. Technol. 30, 277–282. doi: 10.1021/es950315s
    Ghoneim, M.M., El-Desoky, H.S., El-Moselhy, K.M., Amer, A., Abou El-Naga, E.H., Mohamedein, L.I., Al-Prol, A.E., 2014. Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca. Egypt. J. Aquat. Res. 40, 235–242. doi: 10.1016/j.ejar.2014.08.005
    Goldberg, S., 2018. Equations and models describing adsorption processes in soils. SSSA Book Series. Madison, WI, USA: Soil Science Society of America, 2018: 489–517.
    Gupta, K.C., Jabrail, F.H., 2006. Effects of degree of deacetylation and cross-linking on physical characteristics, swelling and release behavior of chitosan microspheres. Carbohydr. Polym. 66, 43–54. doi: 10.1016/j.carbpol.2006.02.019
    Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process. Biochem. 34, 451–465. doi: 10.1016/S0032-9592(98)00112-5
    Horsfall, M., Spiff, A.I., Abia, A.A., 2004. Studies on the influence of mercaptoacetic acid (MAA) modification of cassava (Manihot sculenta cranz) waste biomass on the adsorption of Cu2+ and Cd2+ from aqueous solution. Bull. Korean Chem. Soc. 25, 969–976. doi: 10.5012/bkcs.2004.25.7.969
    Hussain, M.R., Iman, M., Maji, T.K., 2013. Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and chitosan-gelatin complex microcapsules. Inter. J. Adv. Eng. Appl. 2, 4–12.
    Karaca, M., 2008. Biosorption of Aqueous Pb2+, Cd2+ and Ni2+ Ions By Dunaliella salina, Oocystis sp. Porphyridium cruentum, and Scenedesmus protuberans Prior to Atomic Spectrometric. İZMİR, Turky: Graduate School of Engineering and Sciences of İZMİR Institute of Technology.
    Krika, F., Azzouz, N., Ncibi, M.C., 2016. Adsorptive removal of cadmium from aqueous solution by cork biomass: equilibrium, dynamic and thermodynamic studies. Arab. J. Chem. 9, S1077–S1083. doi: 10.1016/j.arabjc.2011.12.013
    Kumar, A.V.A., Hashimi, S.A., Hilal, N., 2008. Investigation of kinetics and mechanism involved in the biosorption of heavy metals on activated sludge. Int. J. Green Energy 5, 313–321. doi: 10.1080/15435070802229068
    Kumar, D., Gaur, J.P., 2011. Metal biosorption by two cyanobacterial mats in relation to pH, biomass concentration, pretreatment and reuse. Bioresour. Technol. 102, 2529–2535. doi: 10.1016/j.biortech.2010.11.061
    Kuyucak, N., Volesky, B., 1989. The mechanism of cobalt biosorption. Biotechnol. Bioeng. 33, 823–831. doi: 10.1002/bit.260330705
    Lagergren, S., 1907. Zur Theorie der sogenannten Adsorption gelöster Stoffe. Zeitschrift Für Chemie Und Ind. Der Kolloide 2, 15.
    Lee, Y.C., Chang, S.P., 2011. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour. Technol. 102, 5297–5304. doi: 10.1016/j.biortech.2010.12.103
    Li, Z.C., Fan, H.T., Zhang, Y., Chen, M.X., Yu, Z.Y., Cao, X.Q., Sun, T., 2011. Cd(II)-imprinted polymer sorbents prepared by combination of surface imprinting technique with hydrothermal assisted Sol-gel process for selective removal of cadmium(II) from aqueous solution. Chem. Eng. J. 171, 703–710. doi: 10.1016/j.cej.2011.05.023
    Liang, S., Guo, X.Y., Feng, N.C., Tian, Q.H., 2009. Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions. J. Hazard. Mater. 170, 425–429. doi: 10.1016/j.jhazmat.2009.04.078
    Liu, H.J., Yang, F., Zheng, Y.M., Kang, J., Qu, J.H., Chen, J.P., 2011. Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. Water Res. 45, 145–154. doi: 10.1016/j.watres.2010.08.017
    Liu, L., Li, C., Bao, C.L., Jia, Q., Xiao, P.F., Liu, X.T., Zhang, Q.P., 2012. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93, 350–357. doi: 10.1016/j.talanta.2012.02.051
    Madala, S., Nadavala, S.K., Vudagandla, S., Boddu, V.M., Abburi, K., 2017. Equilibrium, kinetics and thermodynamics of cadmium (II) biosorption on to composite chitosan biosorbent. Arab. J. Chem. 10, S1883–S1893. doi: 10.1016/j.arabjc.2013.07.017
    Monier, M., Ayad, D.M., Abdel-Latif, D.A., 2012. Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base. Colloids Surfaces B: Biointerfaces 94, 250–258. doi: 10.1016/j.colsurfb.2012.01.051
    Nessim, R.B., Bassiouny, A.R., Zaki, H.R., Moawad, M.N., Kandeel, K.M., 2011. Biosorption of lead and cadmium using marine algae. Chem. Ecol. 27, 579–594. doi: 10.1080/02757540.2011.607439
    Ngah, W.S.W., Fatinathan, S., 2010. Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J. Environ. Manag. 91, 958–969. doi: 10.1016/j.jenvman.2009.12.003
    Parlayıcı, S., Pehlivan, E., 2018, Chitosan based a new bio-composite adsorbent for the removal of Cr(VI) from aqueous solution. Ann. Ecol. Environ. Sci., 2, 30–35.
    Percot, A., Viton, C., Domard, A., 2003. Optimization of chitin extraction from shrimp shells. Biomacromolecules 4, 12–18. doi: 10.1021/bm025602k
    Pujari, N., Pandharipande, S.I., 2016. Review on synthesis, characterization and bioactivity of chitosan. Int. J. Eng. Sci. Res. Tech. 5, 334.
    Puvvada, Y.S., Vankayalapati, S., Sukhavasi, S., 2012. Extraction of chitin from chitosan from exoskeleton of shrimp for application in the pharmaceutical industry. Int. Curr. Pharm. J. 1, 258–263. doi: 10.3329/icpj.v1i9.11616
    Rathinam, A., Maharshi, B., Janardhanan, S.K., Jonnalagadda, R.R., Nair, B.U., 2010. Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: a kinetic and thermodynamic study. Bioresour. Technol. 101, 1466–1470. doi: 10.1016/j.biortech.2009.08.008
    Saad, E.M., Hassan, H.M., Soltan, M.S., Butler, I.S., Mostafa, S.I., 2018. Removal of copper(II) ions from aqueous media by chemically modified MCM-41 with N-(3- (trimethoxysilyl)propyl)ethylenediamine and its 4-hydroxysalicylidene schiff-base, Environ. Prog. Sus. Ener. 37, 746–760. doi: 10.1002/ep.12771
    Saravanan, A., Brindha, V., Krishnan, S., 2011. Studies on the structural changes of the biomass Sargassum sp. on metal adsorption. J. Adv. Bioinf. 2, 193–196.
    Shehab, A.M., Abdelbary, E.S.M., Elsherbiny, I.M., Butler, I.S., Mostafa, S.I., 2019. Efficient adsorption of Cd(ІІ) ions from aqueous media onto a semi-interpenetrating bio-composite. Environ. Prog. Sustainable Energy38: e13253.
    Sheng, P.X., Ting, Y.P., Chen, J.P., Hong, L., 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interface Sci. 275, 131–141. doi: 10.1016/j.jcis.2004.01.036
    Sofiane, B., Sofia, K.S., 2015. Biosorption of heavy metals by chitin and the chitosan. Der Pharma Chem. 7, 54–63.
    Temkin, M.I., Pyzhev, V.M., 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim. 12, 327–352.
    Velasco-Garduño, O., Martínez, M.E., Gimeno, M., Tecante, A., Beristain-Cardoso, R., Shirai, K., 2020. Copper removal from wastewater by a chitosan-based biodegradable composite. Environ. Sci. Pollut. Res. 27, 28527–28535. doi: 10.1007/s11356-019-07560-2
    Wang, J.L., Chen, C., 2014. Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 160, 129–141. doi: 10.1016/j.biortech.2013.12.110
    WHO, 2008. Guidelines For Drinking Water Quality: Recommendations. World Health Organization, 3rd ed., Geneva.
    Yang, L., 2007. Biosorption of Copper and Chromium By Sargassum sp. Determination of Biosorption Properties and Investigation of Metal-Sorbent Interactions. Singapore: National University of Singapore.
    Zeraatkar, A.K., Ahmadzadeh, H., Talebi, A.F., Moheimani, N.R., McHenry, M.P., 2016. Potential use of algae for heavy metal bioremediation, a critical review. J. Environ. Manag. 181, 817–831. doi: 10.1016/j.jenvman.2016.06.059
    Zheng, H., Liu, D.H., Zheng, Y., Liang, S.P., Liu, Z., 2009. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J. Hazard. Mater. 167, 141–147. doi: 10.1016/j.jhazmat.2008.12.093
    Zheng, H., Wang, Y., Zheng, Y., Zhang, H.M., Liang, S.P., Long, M., 2008. Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite. Chem. Eng. J. 143, 117–123. doi: 10.1016/j.cej.2007.12.022
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(4)

    Article Metrics

    Article views (65) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint