Turn off MathJax
Article Contents
Linhu Ding, Xiaoshuai Han, Lian Chen, Shaohua Jiang. Preparation and Properties of Hydrophobic and Transparent Wood[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2022.02.001
Citation: Linhu Ding, Xiaoshuai Han, Lian Chen, Shaohua Jiang. Preparation and Properties of Hydrophobic and Transparent Wood[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2022.02.001

Preparation and Properties of Hydrophobic and Transparent Wood

doi: 10.1016/j.jobab.2022.02.001
Funds:

We acknowledge the support by National Natural Science Foundation of China (No. 51803093) and Natural Science Foundation of Jiangsu Province (No. BK20180770).

  • Received Date: 2021-11-15
  • Accepted Date: 2022-02-26
  • Rev Recd Date: 2022-02-19
  • Available Online: 2022-08-03
  • Natural wood (NW) was treated with sodium chlorite to obtain delignified wood (DW) in this study, then epoxy was impregnated to get transparent wood (TW), and finally the TW was coated with perfluorodecyltriethoxysilane (FAS) to acquire hydrophobic and transparent wood (HTW). The hydroxyl group generated by the hydrolysis of the FAS and the hydroxyl group of the epoxy underwent a dehydration condensation reaction to generate a Si-O-C bond, while the FAS molecules were also dehydrated and condensed to form a Si-O-Si bond according to Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Therefore, the mechanical property and thermal stability of the HTW were better than the TW based on their tensile tests and thermogravimetric analysis (TGA). Due to the large reduction of hydroxyl in epoxy, the hydrophobicity of the HTW was greatly improved compared with the TW, and their contact angles were 113° and 77°, respectively. The results of scanning electron microscopy (SEM) showed that epoxy was filled in the voids of wood. In addition, the coating of the FAS did not obviously reduce the transmittance, and the transmittance of the TW and HTW was 69% and 67% at 750 nm. All in all, the HTW has potential for application in transparent decoration.

     

  • loading
  • Asada, C., Sasaki, C., Suzuki, A., Nakamura, Y., 2018. Total biorefinery process of lignocellulosic waste using steam explosion followed by water and acetone extractions. Waste Biomass Valorization 9, 2423- 2432.
    Berglund, L.A., Burgert, I., 2018. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30, e1704285.
    Burgert, I., Cabane, E., Zollfrank, C., Berglund, L., 2015. Bio-inspired functional wood-based materials:hybrids and replicates. Int. Mater. Rev. 60, 431-450.
    Chang, H.J., Tu, K.K., Wang, X.Q., Liu, J.L., 2015. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Adv. 5, 30647-30653.
    Chen, L., Xu, Z.W., Wang, F., Duan, G.G., Xu, W.H., Zhang, G.Y., Yang, H.Q., Liu, J.B., Jiang, S.H., 2020.A flame-retardant and transparent wood/polyimide composite with excellent mechanical strength.
    Compos. Commun. 20, 100355.Feng, T.S., Qin, J.K., Shao, Y.L., Jia, L.L., Li, Q., Hu, Y.C., 2019. Size-controlled transparent jute fiber for replacing transparent wood in industry production area. Coatings 9, 433.
    Fink, S., 1992. Transparent wood:a new approach in the functional study of wood structure.Holzforschung 46, 403-408.
    Grassie, N., Guy, M.I., Tennent, N.H., 1986. Degradation of epoxy polymers:Part 4-Thermal degradation of bisphenol-A diglycidyl ether cured with ethylene diamine. Polym. Degrad. Stab. 14, 125-137.
    Guo, K.Y., Wu, Q., Mao, M., Chen, H., Zhang, G.D., Zhao, L., Gao, J.F., Song, P.G., Tang, L.C., 2020.Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Compos. B Eng. 193, 108017.
    Gwon, J.G., Lee, S.Y., Doh, G.H., Kim, J.H., 2010. Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J. Appl. Polym. Sci. 116, 3212-3219.
    Han, X.S., Wang, Z.X., Ding, L.H., Chen, L., Wang, F., Pu, J.W., Jiang, S.H., 2021. Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chin. Chem. Lett. 32, 3105-3108.
    Han, X.S., Ye, Y.H., Lam, F., Pu, J.W., Jiang, F., 2019. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J. Mater. Chem. A 7, 27023-27031.
    Hou, D.X., Li, T., Chen, X., He, S.M., Dai, J.Q., Mofid, S.A., Hou, D.Y., Iddya, A., Jassby, D., Yang, R.G., Hu, L.B., Ren, Z.J., 2019. Hydrophobic nanostructured wood membrane for thermally efficient distillation. Sci. Adv. 5, eaaw3203.
    KılınÇ, A.Ç., Köktaş, S., Atagür, M., Seydibeyoglu, M.Ö., 2018. Effect of extraction methods on the properties of althea officinalis L. fibers. J. Nat. Fibers 15, 325-336.
    Kudanga, T., Prasetyo, E.., Sipilä, J., Nousiainen, P., Widsten, P., Kandelbauer, A., Nyanhongo, G.., Guebitz, G., 2008. Laccase-mediated wood surface functionalization. Eng. Life Sci. 8, 297-302.
    Li, Q., Qin, J.K., Li, S., Zhao, X., Hu, Y.C., 2020. Transparent fiber wood composite materials containing long afterglow as lighting equipment. J. Appl. Polym. Sci. 137, 49203.
    Li, Y.Y., Fu, Q.L., Yang, X., Berglund, L., 2018. Transparent wood for functional and structural applications. Philos. Trans. A Math. Phys. Eng. Sci. 376, 20170182.
    Li, Y.Y., Fu, Q.L., Yu, S., Yan, M., Berglund, L., 2016. Optically transparent wood from a nanoporous cellulosic template:combining functional and structural performance. Biomacromolecules 17, 1358- 1364.
    Lin, W.S., Huang, Y.D., Li, J., Liu, Z.Q., Yang, W.B., Li, R., Chen, H.X., Zhang, X.X., 2018. Preparation of highly hydrophobic and anti-fouling wood using poly(methylhydrogen)siloxane. Cellulose 25, 7341- 7353.
    Liu, M.H., Lyu, S.Y., Peng, L.M., Lyu, J.X., Huang, Z.H., 2021. Radiata pine fretboard material of string instruments treated with furfuryl alcohol followed by tung oil. Holzforschung 75, 480-493.
    Lu, M.T., He, W., Li, Z., Qiang, H., Cao, J.Z., Guo, F.Y., Wang, R., Guo, Z.H., 2020. Effect of lignin content on properties of flexible transparent poplar veneer fabricated by impregnation with epoxy resin.Polymers 12, 2602.
    Manimaran, P., Senthamaraikannan, P., Sanjay, M.R., Marichelvam, M.K., Jawaid, M., 2018. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr. Polym. 181, 650-658.
    Matsunaga, M., Hewage, D., Kataoka, Y., Ishikawa, A., Kobayashi, M., Kiguchi, M., 2016. Acetylation of wood using supercritical carbon dioxide. J. Trop. For. Sci. 28, 132-138.
    Mi, R.Y., Chen, C.J., Keplinger, T., Pei, Y., He, S.M., Liu, D.P., Li, J.G., Dai, J.Q., Hitz, E., Yang, B., Burgert, I., Hu, L.B., 2020. Scalable aesthetic transparent wood for energy efficient buildings. Nat.Commun. 11, 3836.
    Nejat, P., Jomehzadeh, F., Taheri, M.M., Gohari, M., Abd Majid, M.Z., 2015. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 43, 843-862.
    Nguila Inari, G., Petrissans, M., Gerardin, P., 2006. Chemical reactivity of heat-treated wood. Wood Sci.Technol. 41, 157-168.
    Qiang, F., Hu, L.L., Gong, L.X., Zhao, L., Li, S.N., Tang, L.C., 2018. Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states. Chem.Eng. J. 334, 2154-2166.
    Sudin, R., Swamy, N., 2006. Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. J. Mater. Sci. 41, 6917-6924.
    Tu, K.K., Wang, X.Q., Kong, L.Z., Chang, H.J., Liu, J.L., 2016. Fabrication of robust, damage-tolerant superhydrophobic coatings on naturally micro-grooved wood surfaces. RSC Adv. 6, 701-707.
    Wang, K.L., Dong, Y.M., Yan, Y.T., Zhang, W., Qi, C.S., Han, C.R., Li, J.Z., Zhang, S.F., 2017. Highly hydrophobic and self-cleaning bulk wood prepared by grafting long-chain alkyl onto wood cell walls.Wood Sci. Technol. 51, 395-411.
    Wu, J.M., Wu, Y., Yang, F., Tang, C.Y., Huang, Q.T., Zhang, J.L., 2019. Impact of delignification on morphological, optical and mechanical properties of transparent wood. Compos. A Appl. Sci. Manuf. 117, 324-331.
    Wu, Q., Gong, L.X., Li, Y., Cao, C.F., Tang, L.C., Wu, L.B., Zhao, L., Zhang, G.D., Li, S.N., Gao, J.F., Li, Y.J., Mai, Y.W., 2018. Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings. ACS Nano 12, 416-424.
    Wu, Y., Wang, Y.J., Yang, F., 2021. Comparison of multilayer transparent wood and single layer transparent wood with the same thickness. Front. Mater. 8, 633345.
    Wu, Y., Wang, Y.J., Yang, F., Wang, J., Wang, X.H., 2020. Study on the properties of transparent bamboo prepared by epoxy resin impregnation. Polymers 12, 863.
    Yang, H.P., Yan, R., Chen, H.P., Lee, D.H., Zheng, C.G., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781-1788.
    Yu, Z.Y., Yao, Y.J., Yao, J.N., Zhang, L.M., Chen, Z., Gao, Y.F., Luo, H.J., 2017. Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications. J. Mater. Chem. A 5, 6019- 6024.
    Zhang, G.D., Wu, Z.H., Xia, Q.Q., Qu, Y.X., Pan, H.T., Hu, W.J., Zhao, L., Cao, K., Chen, E.Y., Yuan, Z., Gao, J.F., Mai, Y.W., Tang, L.C., 2021. Ultrafast flame-induced pyrolysis of poly(dimethylsiloxane) foam materials toward exceptional superhydrophobic surfaces and reliable mechanical robustness. ACS Appl. Mater. Interfaces 13, 23161-23172.
    Zhang, L.M., Wang, A., Zhu, T.L., Chen, Z., Wu, Y.P., Gao, Y.F., 2020a. Transparent wood composites fabricated by impregnation of epoxy resin and W-doped VO2 nanoparticles for application in energy-saving windows. ACS Appl. Mater. Interfaces 12, 34777-34783.
    Zhang, Z.H., Zhang, J.W., Cao, C.F., Guo, K.Y., Zhao, L., Zhang, G.D., Gao, J.F., Tang, L.C., 2020b. Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response. Chem. Eng. J. 386, 123894.
    Zhou, H., Wang, H.X., Niu, H.T., Zhao, Y., Xu, Z.G., Lin, T., 2017. A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces. Adv. Funct. Mater. 27, 1604261.
    Zhu, M.W., Song, J.W., Li, T., Gong, A., Wang, Y.B., Dai, J.Q., Yao, Y.G., Luo, W., Henderson, D., Hu, L.B., 2016. Highly anisotropic, highly transparent wood composites. Adv. Mater. 28, 7563.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return