Citation: | Junlei Xiao, Huiling Li, Hua Zhang, Shuijian He, Qian Zhang, Kunming Liu, Shaohua Jiang, Gaigai Duan, Kai Zhang. Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2022.05.003 |
Adhamash, E., Pathak, R., Chen, K., Rahman, M.T., El-Magrous, A., Gu, Z.R., Lu, S., Qiao, Q.Q., Zhou, Y., 2020. High-energy plasma activation of renewable carbon for enhanced capacitive performance of supercapacitor electrode. Electrochim. Acta 362, 137148.
|
Bahloul, A., Kassab, Z., El Bouchti, M., Hannache, H., Qaiss, A.E.K., Oumam, M., El Achaby, M., 2021. Micro- and nano-structures of cellulose from eggplant plant(Solanum melongena L.) agricultural residue. Carbohydr. Polym. 253, 117311.
|
Byrne, N., de Silva, R., Ma, Y.B., Sixta, H., Hummel, M., 2018. Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production. Cellulose 25, 723-733 (Lond).
|
Cakici, M., Kakarla, R.R., Alonso-Marroquin, F., 2017. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO 2 structured electrodes. Chem. Eng. J. 309, 151-158.
|
Cao, L.H., Li, H.L., Liu, X.L., Liu, S.W., Zhang, L., Xu, W.H., Yang, H.Q., Hou, H.Q., He, S.J., Zhao, Y., Jiang, S.H., 2021. Nitrogen, sulfur co-doped hierarchical carbon encapsulated in graphene with "sphere-in-layer" interconnection for high-performance supercapacitor. J. Colloid Interface Sci. 599, 443-452.
|
Cao, L.H., Li, H.L., Xu, Z.X., Gao, R.R., Wang, S.Q., Zhang, G.Y., Jiang, S.H., Xu, W.H., Hou, H.Q., 2021. Camellia pollen-derived carbon with controllable N content for high-performance supercapacitors by ammonium chloride activation and dual N-doping. ChemNanoMat 7, 34-43.
|
Cao, L.H., Li, H.L., Xu, Z.X., Zhang, H.J., Ding, L.H., Wang, S.Q., Zhang, G.Y., Hou, H.Q., Xu, W.H., Yang, F., Jiang, S.H., 2021. Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor. Diam. Relat. Mater. 114, 108316.
|
Cao, W., Liu, Y., Xu, F., Xia, Q., Du, G.P., Fan, Z.Y., Chen, N., 2021. Metal-organic framework derived carbon-coated spherical bimetallic nickel-cobalt sulfide nanoparticles for hybrid supercapacitors. Electrochim. Acta 385, 138433.
|
Cao, Y.H., Wang, X.M., Gu, Z.R., Fan, Q.H., Gibbons, W., Gadhamshetty, V., Ai, N., Zeng, G.N., 2018. Potassium chloride templated carbon preparation for supercapacitor. J. Power Sources 384, 360-366.
|
Chang, C.S., Li, M., Niu, P., Zhang, L., Wang, S.L., 2021. A facile dual-functional hydrothermal-assisted synthesis strategy of hierarchical porous carbon for enhanced supercapacitor performance. Sustain. Mater. Technol. 28, e00265.
|
Chen, C.J., Hu, L.B., 2018. Nanocellulose toward advanced energy storage devices:structure and electrochemistry. Acc. Chem. Res. 51, 3154-3165.
|
Chen, C.J., Zhang, Y., Li, Y.J., Dai, J.Q., Song, J.W., Yao, Y.G., Gong, Y.H., Kierzewski, I., Xie, J., Hu, L.B., 2017. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538-545.
|
Chen, H., Liu, D., Shen, Z.H., Bao, B.F., Zhao, S.Y., Wu, L.M., 2015. Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials. Electrochim. Acta 180, 241-251.
|
Chen, H., Zheng, Y., Zhu, X.Q., Hong, W.L., Tong, Y.F., Lu, Y.Z., Pei, G., Pang, Y.J., Shen, Z.H., Guan, C., 2021. Bamboo-derived porous carbons for Zn-ion hybrid supercapacitors. Mater. Res. Bull. 139, 111281.
|
Chen, L., Chen, L.N., Ai, Q., Li, D.P., Si, P.C., Feng, J.K., Zhang, L., Li, Y.H., Lou, J., Ci, L.J., 2018. Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@polypyrrole@graphene film. Chem. Eng. J. 334, 184-190.
|
Chen, T.T., Luo, L., Luo, L.C., Deng, J.P., Wu, X., Fan, M.Z., Du, G.B., Zhao, W.G., 2021. High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material obtained from bio-waste. Renew. Energy 175, 760-769.
|
Chen, W.S., Yu, H.P., Sang-Young, L., Wei, T., Li, J., Fan, Z.J., 2018. Nanocellulose:a promising nanomaterial for advanced electrochemical energy storage. Chem.Soc. Rev. 47, 2837-2872.
|
Chen, Y.M., Zhang, L., Yang, Y., Pang, B., Xu, W.H., Duan, G.G., Jiang, S.H., Zhang, K., 2021. Recent progress on nanocellulose aerogels:preparation, modification, composite fabrication, applications. Adv. Mater. 33, e2005569.
|
Chen, Y.M., Zhou, L.J., Chen, L., Duan, G.G., Mei, C.T., Huang, C.B., Han, J.Q., Jiang, S.H., 2019. Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 26, 6653-6667.
|
Chen, Y.P., Lyu, S.Y., Han, S.J., Chen, Z.L., Wang, W.J., Wang, S.Q., 2018. Nanocellulose/polypyrrole aerogel electrodes with higher conductivity via adding vapor grown nano-carbon fibers as conducting networks for supercapacitor application. RSC Adv. 8, 39918-39928.
|
Cheng, J., Liu, Y.C., Zhang, X.X., Miao, X.F., Chen, Y.Q., Chen, S.J., Lin, J.H., Zhang, Y.N., 2021. Structure engineering in interconnected porous hollow carbon spheres with superior rate capability for supercapacitors and lithium-sulfur batteries. Chem. Eng. J. 419, 129649.
|
Deng, X.L., Zou, K.Y., Cai, P., Wang, B.W., Hou, H.S., Zou, G.Q., Ji, X.B., 2020. Advanced battery-type anode materials for high-performance sodium-ion capacitors.Small Methods 4, 2000401.
|
Dias, G.M.V., Müller, D., Wesling, B.N., Bernardes, J.C., Hotza, D., Rambo, C.R., 2019. Enhancing specific capacitance and cyclic stability through incorporation of MnO 2 into bacterial nanocellulose/PPy·CuCl2 flexible electrodes. Energy Technol. 7, 1900328.
|
Ding, Q.Q., Xu, X.W., Yue, Y.Y., Mei, C.T., Huang, C.B., Jiang, S.H., Wu, Q.L., Han, J.Q., 2018. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl. Mater. Interfaces 10, 27987-28002.
|
Dong, D., Zhang, Y.S., Xiao, Y., Wang, T., Wang, J.W., Gao, W., 2022. Oxygen-enriched coal-based porous carbon under plasma-assisted MgCO3 activation as supercapacitor electrodes. Fuel 309, 122168.
|
Dong, K., Peng, X., Wang, Z.L., 2020. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32, e1902549.
|
Dong, L.B., Xu, C.J., Li, Y., Huang, Z.H., Kang, F.Y., Yang, Q.H., Zhao, X., 2016. Flexible electrodes and supercapacitors for wearable energy storage:a review by category. J. Mater. Chem. A 4, 4659-4685.
|
Duan, C.X., Dong, L., Li, F.E., Xie, Y.W., Huang, B.C., Wang, K., Yu, Y., Xi, H.X., 2020. Room-temperature rapid synthesis of two-dimensional metal-organic framework nanosheets with tunable hierarchical porosity for enhanced adsorption desulfurization performance. Ind. Eng. Chem. Res. 59, 18857-18864.
|
Duan, G.G., Zhao, L.Y., Chen, L., Wang, F., He, S.J., Jiang, S.H., Zhang, Q., 2021. ZnCl2 regulated flax-based porous carbon fibers for supercapacitors with good cycling stability. New J. Chem. 45, 22602-22609 2021.
|
Dubal, D.P., Chodankar, N.R., Kim, D.H., Gomez-Romero, P., 2018. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065-2129.
|
Dumanlı, A.G., Windle, A.H., 2012. Carbon fibres from cellulosic precursors:a review. J. Mater. Sci. 47, 4236-4250.
|
Erlandsson, J., López Durán, V., Granberg, H., Sandberg, M., Larsson, P.A., Wågberg, L., 2016. Macro- and mesoporous nanocellulose beads for use in energy storage devices. Appl. Mater. Today 5, 246-254.
|
Etman, A.S., Wang, Z.H., El Ghazaly, A., Sun, J.L., Nyholm, L., Rosen, J., 2019. Flexible freestanding MoO3-x-carbon nanotubes-nanocellulose paper electrodes for charge-storage applications. ChemSusChem 12, 5157-5163.
|
Fang, D., Yan, B., Agarwal, S., Xu, W.H., Zhang, Q., He, S.J., Hou, H.Q., 2021. Electrospun poly[poly(2, 5-benzophenone)] bibenzopyrrolone/polyimide nanofiber membrane for high-temperature and strong-alkali supercapacitor. J. Mater. Sci. 56, 9344-9355.
|
Feng, H.B., Hu, H., Dong, H.W., Xiao, Y., Cai, Y.J., Lei, B.F., Liu, Y.L., Zheng, M.T., 2016. Hierarchical structured carbon derived from bagasse wastes:a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J. Power Sources 302, 164-173.
|
Gao, Q.L., Li, D.S., Liu, X.M., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Zhou, R.C., 2020. Biomass-derived mesoporous carbons materials coated by α-Mn3O4 with ultrafast zinc-ion diffusion ability as cathode for aqueous zinc ion batteries. Electrochim. Acta 335, 135642.
|
Guan, F.Y., Chen, S.Y., Sheng, N., Chen, Y., Yao, J.J., Pei, Q.B., Wang, H.P., 2019. Mechanically robust reduced graphene oxide/bacterial cellulose film obtained via biosynthesis for flexible supercapacitor. Chem. Eng. J. 360, 829-837.
|
Gunasekaran, S.S., Badhulika, S., 2021. High-performance solid-state supercapacitor based on sustainable synthesis of meso-macro porous carbon derived from hemp fibres via CO 2 activation. J. Energy Storage 41, 102997.
|
Guo, W.C., Guo, X.T., Yang, L., Wang, T.Y., Zhang, M.H., Duan, G.G., Liu, X.H., Li, Y.W., 2021. Synthetic melanin facilitates MnO supercapacitors with high specific capacitance and wide operation potential window. Polymer 235, 124276.
|
Guo, X.Y., Zhang, Q., Li, Q., Yu, H.P., Liu, Y.X., 2019. Composite aerogels of carbon nanocellulose fibers and mixed-valent manganese oxides as renewable supercapacitor electrodes. Polymers 11, 129.
|
Gupta, A., Sardana, S., Dalal, J., Lather, S., Maan, A.S., Tripathi, R., Punia, R., Singh, K., Ohlan, A., 2020. Nanostructured polyaniline/graphene/Fe2O3 composites hydrogel as a high-performance flexible supercapacitor electrode material. ACS Appl. Energy Mater. 3, 6434-6446.
|
Gupta, G.K., Shukla, P., 2020. Lignocellulosic biomass for the synthesis of nanocellulose and its eco-friendly advanced applications. Front. Chem. 8, 601256.
|
Han, X.T., Xiao, G.C., Wang, Y.C., Chen, X.N., Duan, G.G., Wu, Y.Z., Gong, X., Wang, H.X., 2020. Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. J. Mater. Chem. A 8, 23059-23095.
|
Han, Z., Zhong, W., Wang, K., 2020. Preparation and examination of nitrogen-doped bamboo porous carbon for supercapacitor materials. J. For. Eng. 5, 76-83.
|
Hao, T.T., Wang, S., Xu, H.B., Zhang, X., Xue, J.Y., Liu, S.K., Song, Y., Li, Y., Zhao, J.P., 2021. Highly robust, transparent, and conductive films based on AgNW-C nanowires for flexible smart windows. Appl. Surf. Sci. 559, 149846.
|
He, S.J., Wang, X., Xiang, G.M., Lac, K., Wang, S.N., Ding, Z.F., 2018. Electrogenerated chemiluminescence from the monomer of a tetradentate chelate Pt(II) compound.Electrochim. Acta 271, 448-453.
|
He, X.J., Li, R.C., Han, J.F., Yu, M.X., Wu, M.B., 2013. Facile preparation of mesoporous carbons for supercapacitors by one-step microwave-assisted ZnCl2 activation.Mater. Lett. 94, 158-160.
|
Hemanth, N.R., Kandasubramanian, B., 2020. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting Applications:a review. Chem.Eng. J. 392, 123678.
|
Hou, M.J., Hu, Y.M., Xu, M.J., Li, B., 2020. Nanocellulose based flexible and highly conductive film and its application in supercapacitors. Cellulose 27, 9457-9466.
|
Hou, M.J., Xu, M.J., Hu, Y.M., Li, B., 2019. Nanocellulose incorporated graphene/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes. Electrochim. Acta 313, 245-254.
|
Hsu, H.H., Khosrozadeh, A., Li, B.Y., Luo, G.X., Xing, M., Zhong, W., 2019. An eco-friendly, nanocellulose/RGO/in situ formed polyaniline for flexible and free-standing supercapacitors. ACS Sustain. Chem. Eng. 7, 4766-4776.
|
Hu, R.F., Zhao, J., Zhu, G.D., Zheng, J.P., 2018. Fabrication of flexible free-standing reduced graphene oxide/polyaniline nanocomposite film for all-solid-state flexible supercapacitor. Electrochim. Acta 261, 151-159.
|
Hu, Y., Quan, H.Y., Cui, J.M., Luo, W.S., Zeng, W.L., Chen, D.Z., 2021. Carbon nanodot modified N, O-doped porous carbon for solid-state supercapacitor:a comparative study with carbon nanotube and graphene oxide. J. Alloy. Compd. 877, 160237.
|
Huang, G.X., Geng, Q.H., Xing, B.L., Liu, Y.B., Li, Y.Y., Liu, Q.R., Jia, J.B., Chen, L.J., Zhang, C.X., 2020. Manganous nitrate-assisted potassium hydroxide activation of humic acid to prepare oxygen-rich hierarchical porous carbon as high-performance supercapacitor electrodes. J. Power Sources 449, 227506.
|
Huang, S.Q., Chen, P.S., Lin, W.Z., Lyu, S.W., Chen, G.D., Yin, X.Y., Chen, W.X., 2016. Electrodeposition of polypyrrole on carbon nanotube-coated cotton fabrics for all-solid flexible supercapacitor electrodes. RSC Adv. 6, 13359-13364.
|
Hussain, S., Javed, M.S., Asim, S., Shaheen, A., Khan, A.J., Abbas, Y., Ullah, N., Iqbal, A., Wang, M.S., Qiao, G.J., Yun, S.N., 2020. Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 46, 6406-6412.
|
Inal, I.I.G., Holmes, S.M., Banford, A., Aktas, Z., 2015. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl. Surf. Sci. 357, 696-703.
|
Iradukunda, Y., Wang, G.Y., Li, X., Shi, G.F., Hu, Y.W., Luo, F.F., Yi, K.Q., Albashir, A.I.M., Niu, X.L., Wu, Z.J., 2021. High performance of activated carbons prepared from mangosteen (Garcinia mangostana) peels using the hydrothermal process. J. Energy Storage 39, 102577.
|
Ji, X.Q., Sun, D.L., Zou, W.H., Wang, Z.H., Sun, D.B., 2021. Ni/MnO2 doping pulping lignin-based porous carbon as supercapacitors electrode materials. J. Alloy.Compd. 876, 160112.
|
Jian, S.J., Ma, X.F., Wang, Q.M., Wu, J.L., Wang, Y.F., Jiang, S.H., Xu, W.H., Yang, W.S., 2021. Hierarchical porous Co3O4 nanocages with elaborate microstructures derived from ZIF-67 toward lithium storage. Vacuum 184, 109879.
|
Jiang, C.L., Yakaboylu, G.A., Yumak, T., Zondlo, J.W., Sabolsky, E.M., Wang, J.X., 2020. Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes. Renew. Energy 155, 38-52.
|
Jiang, Q.S., Kacica, C., Soundappan, T., Liu, K.K., Tadepalli, S., Biswas, P., Singamaneni, S., 2017. An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors. J. Mater. Chem. A 5, 13976-13982.
|
Jiang, X.Y., Bai, Y.Y., Chen, X.F., Liu, W., 2020. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod. 5, 16-25.
|
Jiao, S.Q., Zhou, A.G., Wu, M.Z., Hu, H.B., 2019. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv. Sci. 6, 1900529 (Weinh).
|
Jjagwe, J., Olupot, P.W., Menya, E., Kalibbala, H.M., 2021. Synthesis and application of granular activated carbon from biomass waste materials for water treatment:a review. J. Bioresour. Bioprod. 6, 292-322.
|
Kim, D.W., Jung, S.M., Jung, H.Y., 2020. A super-thermostable, flexible supercapacitor for ultralight and high performance devices. J. Mater. Chem. A 8, 532-542.
|
Kim, J.H., Lee, D., Lee, Y.H., Chen, W.S., Lee, S.Y., 2019. Nanocellulose for energy storage systems:beyond the limits of synthetic materials. Adv. Mater. 31, e1804826.
|
Kumar, S., Saeed, G., Zhu, L., Hui, K.N., Kim, N.H., Lee, J.H., 2021. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor:a review. Chem. Eng. J. 403, 126352.
|
Lai, E.P., Yue, X.X., Ning, W.E., Huang, J.W., Ling, X.L., Lin, H.T., 2019. Three-dimensional graphene-based composite hydrogel materials for flexible supercapacitor electrodes. Front. Chem. 7, 660.
|
Lee, D., Cho, Y.G., Song, H.K., Chun, S.J., Park, S.B., Choi, D.H., Lee, S.Y., Yoo, J., Lee, S.Y., 2017. Coffee-driven green activation of cellulose and its use for all-paper flexible supercapacitors. ACS Appl. Mater. Interfaces 9, 22568-22577.
|
Lee, J.S.M., Briggs, M.E., Hu, C.C., Cooper, A.I., 2018. Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 46, 277-289.
|
Li, D.S., Gao, Q.L., Zhang, H., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Chang, J., 2020. MnO2 particles grown on the surface of N-doped hollow porous carbon nanospheres for aqueous rechargeable zinc ion batteries. Appl. Surf. Sci. 510, 145458.
|
Li, D.S., Liu, B., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Yue, K., Meng, Q.H., 2019. Magnetic ferroferric oxide/phenolic resin/silver core-shell nanocomposite as recyclable substrates for enhancing surface-enhanced Raman scattering. J. Sol Gel Sci. Technol. 92, 124-133.
|
Li, D.S., Wu, S., Wang, Y.F., Sun, M., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Wang, X.Q., 2019. Manganese oxides/N-doped carbon particles with high capacity retention for aqueous rechargeable zinc battery. J. Nanopart. Res. 21, 1-10.
|
Li, H.L., Cao, L.H., Wang, F., Duan, G.G., Xu, W.H., Mei, C.T., Zhang, G.Y., Liu, K.M., Yang, M., Jiang, S.H., 2020. Fatsia japonica-derived hierarchical porous carbon for supercapacitors with high energy density and long cycle life. Front. Chem. 8, 89.
|
Li, H.L., Cao, L.H., Zhang, H.J., Tian, Z.W., Zhang, Q., Yang, F., Yang, H.Q., He, S.J., Jiang, S.H., 2022. Intertwined carbon networks derived from polyimide/cellulose composite as porous electrode for symmetrical supercapacitor. J. Colloid Interface Sci. 609, 179-187.
|
Li, J.S., Lu, W.B., Yan, Y.S., Chou, T.W., 2017. High performance solid-state flexible supercapacitor based on Fe3O4/carbon nanotube/polyaniline ternary films. J.Mater. Chem. A 5, 11271-11277.
|
Li, M., Park, H.G., 2019. Improved high-rate performance of a supercapacitor electrode from manganese-oxide-coated vertically aligned carbon nanotubes prepared by a pulsed current electrodeposition method. Electrochim. Acta 296, 676-682.
|
Li, S.Z., Wen, J., Mo, X.M., Long, H., Wang, H.N., Wang, J.B., Fang, G.J., 2014. Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J. Power Sources 256, 206-211.
|
Li, Y.C., Li, Z.H., Xing, B., Li, H.M., Ma, Z.Q., Zhang, W.B., Reubroycharoen, P., Wang, S.R., 2021. Green conversion of bamboo chips into high-performance phenol adsorbent and supercapacitor electrodes by simultaneous activation and nitrogen doping. J. Anal. Appl. Pyrolysis 155, 105072.
|
Li, Z., Ahadi, K., Jiang, K.R., Ahvazi, B., Li, P., Anyia, A.O., Cadien, K., Thundat, T., 2017. Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors. Nano Res. 10, 1847-1860.
|
Li, Z., Liu, J., Jiang, K.R., Thundat, T., 2016. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 25, 161-169.
|
Li, Z.L., Ren, J., Yang, C.M., He, Y.X., Liang, Y., Liu, J.L., Waterhouse, G.I.N., Li, J.H., Qian, D., 2021. Sodium 5-sulfosalicylate-assisted hydrothermal synthesis of a self-supported Co3S4-Ni3S2@nickel foam electrode for all-solid-state asymmetric supercapacitors. J. Alloy. Compd. 889, 161661.
|
Liang, J., Tian, B., Li, S.Q., Jiang, C.Z., Wu, W., 2020. All-printed MnHCF-MnOx-based high-performance flexible supercapacitors. Adv. Energy Mater. 10, 2000022.
|
Liao, H.Y., Zhou, F.L., Zhang, Z.Z., Yang, J., 2019. A self-healable and mechanical toughness flexible supercapacitor based on polyacrylic acid hydrogel electrolyte.Chem. Eng. J. 357, 428-434.
|
Ling, Z., Wang, Z.Y., Zhang, M.D., Yu, C., Wang, G., Dong, Y.F., Liu, S.H., Wang, Y.W., Qiu, J.S., 2016. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Funct. Mater 26, 111-119.
|
Liu, D., Liu, J.L., Wang, Q., Du, P.C., Wei, W.L., Liu, P., 2019. PANI coated microporous graphene fiber capable of subjecting to external mechanical deformation for high performance flexible supercapacitors. Carbon 143, 147-153.
|
Liu, K.K., Jiang, Q.S., Kacica, C., Derami, H.G., Biswas, P., Singamaneni, S., 2018. Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Adv. 8, 31296-31302.
|
Liu, M.C., Kong, L.B., Zhang, P., Luo, Y.C., Kang, L., 2012. Porous wood carbon monolith for high-performance supercapacitors. Electrochim. Acta 60, 443-448.
|
Liu, Q., Nayfeh, O., Nayfeh, M.H., Yau, S.T., 2013. Flexible supercapacitor sheets based on hybrid nanocomposite materials. Nano Energy 2, 133-137.
|
Liu, S.D., Kang, L., Henzie, J., Zhang, J., Ha, J.S., Amin, M.A., Hossain, M.S.A., Jun, S.C., Yamauchi, Y., 2021. Recent advances and perspectives of battery-type anode materials for potassium ion storage. ACS Nano 15, 18931-18973.
|
Liu, S.D., Kang, L., Hu, J.S., Jung, E., Zhang, J., Jun, S.C., Yamauchi, Y., 2021. Unlocking the potential of oxygen-deficient copper-doped Co3O4 nanocrystals confined in carbon as an advanced electrode for flexible solid-state supercapacitors. ACS Energy Lett. 6, 3011-3019.
|
Liu, S.D., Kang, L., Zhang, J., Jun, S.C., Yamauchi, Y., 2021. Carbonaceous anode materials for non-aqueous sodium- and potassium-ion hybrid capacitors. ACS Energy Lett. 6, 4127-4154.
|
Liu, S.D., Kang, L., Zhang, J., Jung, E., Lee, S.C., Jun, S.C., 2020. Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Storage Mater. 32, 167-177.
|
Liu, T., Liu, J.H., Zhang, L.Y., Cheng, B., Yu, J.G., 2020. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor.J. Mater. Sci. Technol. 47, 113-121.
|
Liu, T., Yan, R.Y., Huang, H.J., Pan, L., Cao, X.B., deMello, A., Niederberger, M., 2020. A micromolding method for transparent and flexible thin-film supercapacitors and hybrid supercapacitors. Adv. Funct. Mater. 30, 2004410.
|
Liu, X.G., Ma, C.D., Li, J.X., Zielinska, B., Kalenczuk, R.J., Chen, X.C., Chu, P.K., Tang, T., Mijowska, E., 2019. Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. J. Power Sources 412, 1-9.
|
Liu, Y., Xiang, C.L., Chu, H.L., Qiu, S.J., McLeod, J., She, Z., Xu, F., Sun, L.X., Zou, Y.J., 2020. Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors. J. Mater. Sci. Technol. 37, 135-142.
|
Liu, Y.K., Lu, Q.L., Huang, Z., Sun, S.Q., Yu, B., Evariste, U., Jiang, G.H., Yao, J.M., 2018. Electrodeposition of Ni-Co-S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors. J. Alloy. Compd. 762, 301-311.
|
Lou, G.B., Pei, G., Wu, Y.T., Lu, Y.Z., Wu, Y.T., Zhu, X.Q., Pang, Y.J., Shen, Z.H., Wu, Q., Fu, S.Y., Chen, H., 2021. Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chem. Eng. J. 413, 127502.
|
Luo, X.D., Wang, Y., Shen, Z.F., Cui, L.F., Wang, Y.G., Li, X., 2021. Construction of hierarchically porous biomass carbon using iodine as pore-making agent for energy storage. J. Colloid Interface Sci. 599, 351-359.
|
Lv, Y.Y., Zhou, Y., Shao, Z.Q., Liu, Y.H., Wei, J., Ye, Z.Q., 2019. Nanocellulose-derived carbon nanosphere fibers-based nanohybrid aerogel for high-performance all-solid-state flexible supercapacitors. J. Mater. Sci. Mater. Electron. 30, 8585-8594.
|
Lyu, S.Y., Chen, Y.P., Zhang, L.F., Han, S.J., Lu, Y., Chen, Y., Yang, N., Chen, Z.L., Wang, S.Q., 2019. Nanocellulose supported hierarchical structured polyaniline/nanocarbon nanocomposite electrode via layer-by-layer assembly for green flexible supercapacitors. RSC Adv. 9, 17824-17834.
|
Ma, Q.H., Xi, H.T., Cui, F., Zhang, J.J., Chen, P., Cui, T.Y., 2022. Self-templating synthesis of hierarchical porous carbon with multi-heteroatom co-doping from tea waste for high-performance supercapacitor. J. Energy Storage 45, 103509.
|
Ma, Y.L., Zhu, X.Q., Wang, B.Y., Liu, S.Y., Meng, T.T., Chen, H., Peng, B., Deng, Z.W., 2020. Sacrificial template synthesis of hierarchical nickel hydroxidenitrate hollow colloidal particles for electrochemical energy storage. Chem. Eng. Sci. 217, 115548.
|
Mohd Abdah, M.A.A., Azman, N.H.N., Kulandaivalu, S., Sulaiman, Y., 2020. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater. Des. 186, 108199.
|
Mu, J.H., Li, Q., Kong, X.J., Wu, X.Z., Sunarso, J., Zhao, Y., Zhou, J., Zhuo, S.P., 2019. Characterization of hierarchical porous carbons made from bean curd via K2CO3 activation as a supercapacitor electrode. ChemElectroChem 6, 4022-4030.
|
Norouzi, O., Pourhosseini, S.E.M., Naderi, H.R., di Maria, F., Dutta, A., 2021. Integrated hybrid architecture of metal and biochar for high performance asymmetric supercapacitors. Sci. Rep. 11, 5387.
|
Phiri, J., Dou, J.Z., Vuorinen, T., Gane, P.A.C., Maloney, T.C., 2019. Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes. ACS Omega 4, 18108-18117.
|
Qi, W.H., Lv, R.H., Na, B., Liu, H.S., He, Y., Yu, N., 2018. Nanocellulose-assisted growth of manganese dioxide on thin graphite papers for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 6, 4739-4745.
|
Qiu, W.W., Zhao, J.L., Song, X.D., Mao, Q., Ren, S.Z., Hao, C., Xiao, Y.H., 2020. One-step activation synthesized hierarchical porous carbon spheres from resorcinol-thiourea-formaldehyde for electrochemical capacitors. Ind. Eng. Chem. Res 59, 226-235.
|
Qu, Z.C., Shi, M.J., Wu, H.Z., Liu, Y.C., Jiang, J.T., Yan, C., 2019. An efficient binder-free electrode with multiple carbonized channels wrapped by NiCo2O4 nanosheets for high-performance capacitive energy storage. J. Power Sources 410/411, 179-187.
|
Rufford, T.E., Hulicova-Jurcakova, D., Khosla, K., Zhu, Z.H., Lu, G.Q., 2010. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J. Power Sources 195, 912-918.
|
Saeb, M.R., Rabiee, N., Seidi, F., Farasati Far, B., Bagherzadeh, M., Lima, E.C., Rabiee, M., 2021. Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection. J. Bioresour. Bioprod. 6, 215-222.
|
Salunkhe, R.R., Kaneti, Y.V., Kim, J., Kim, J.H., Yamauchi, Y., 2016. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res 49, 2796-2806.
|
Sandhiya, M., Nadira, M.P., Sathish, M., 2021. Fabrication of flexible supercapacitor using N-doped porous activated carbon derived from poultry waste. Energy Fuels 35, 15094-15100.
|
Shen, Y.F., 2020. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass Bioenergy 134, 105479.
|
Shi, Y., Peng, L.L., Ding, Y., Zhao, Y., Yu, G.H., 2015. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev 44, 6684-6696.
|
Shu, Y., Bai, Q.H., Fu, G.X., Xiong, Q.C., Li, C., Ding, H.F., Shen, Y.H., Uyama, H., 2020. Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor. Carbohydr. Polym. 227, 115346.
|
Song, M.Y., Zhou, Y.H., Ren, X., Wan, J.F., Du, Y.Y., Wu, G., Ma, F.W., 2019. Biowaste-based porous carbon for supercapacitor:the influence of preparation processes on structure and performance. J. Colloid Interface Sci. 535, 276-286.
|
Song, Z.Y., Duan, H., Zhu, D.Z., Lv, Y.K., Xiong, W., Cao, T.C., Li, L.C., Liu, M.X., Gan, L.H., 2019. Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a "water-in-salt" gel electrolyte. J. Mater. Chem. A 7, 15801-15811.
|
Sun, M., Li, D.S., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Guo, Y.Z., Liu, Y.M., 2019. Mn3O4@NC composite nanorods as a cathode for rechargeable aqueous Zn-ion batteries. ChemElectroChem 6, 2510-2516.
|
Sun, M., Zhang, H., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Wang, X.Q., Duan, X.L., Ge, S.Z., 2019. Co/CoO@N-C nanocomposites as high-performance anodes for lithium-ion batteries. J. Alloy. Compd 771, 290-296.
|
Tanguy, N.R., Wu, H.R., Nair, S.S., Lian, K., Yan, N., 2021. Lignin cellulose nanofibrils as an electrochemically functional component for high-performance and flexible supercapacitor electrodes. ChemSusChem 14, 1057-1067.
|
Tao, Y.J., Liu, W.N., Li, Z.P., Zheng, Y., Zhu, X.Q., Wang, H., Wang, Y.N., Lin, Q., Wu, Q., Pang, Y.J., Shen, Z.H., Chen, H., 2021. Boosting supercapacitive performance of flexible carbon via surface engineering. J. Colloid Interface Sci. 602, 636-645.
|
Tao, Y.J., Wu, Y.T., Chen, H., Chen, W.J., Wang, J.J., Tong, Y.F., Pei, G., Shen, Z.H., Guan, C., 2020. Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor. Chem. Eng. J. 396, 125364.
|
Teo, E.Y.L., Muniandy, L., Ng, E.P., Adam, F., Mohamed, A.R., Jose, R., Chong, K.F., 2016. High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim. Acta 192, 110-119.
|
Tian, O.Y., Zhang, T.Y., Wang, H.Z., Yang, F., Yan, J., Zhu, K., Ye, K., Wang, G.L., Zhou, L.M., Cheng, K., Cao, D.X., 2018. High-throughput fabrication of porous carbon by chemical foaming strategy for high performance supercapacitor. Chem. Eng. J. 352, 459-468.
|
Virtanen, J., Pammo, A., Keskinen, J., Sarlin, E., Tuukkanen, S., 2017. Pyrolysed cellulose nanofibrils and dandelion Pappus in supercapacitor application. Cellulose 24, 3387-3397.
|
Wang, A., Sun, K., Xu, R.T., Sun, Y.J., Jiang, J.C., 2021. Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation. J.Clean. Prod. 283, 125385.
|
Wang, C.S., Liu, T.Z., 2017. Nori-based N, O, S, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor. J. Alloy. Compd. 696, 42-50.
|
Wang, C.S., Yan, B., Zheng, J.J., Feng, L., Chen, Z.Z., Zhang, Q., Liao, T., Chen, J.Y., Jiang, S.H., Du, C., He, S.J., 2022. Recent progress in template-assisted synthesis of porous carbons for supercapacitors. Adv. Powder Mater. 1, 100018.
|
Wang, D.G., Liang, Z.B., Gao, S., Qu, C., Zou, R.Q., 2020. Metal-organic framework-based materials for hybrid supercapacitor application. Coord. Chem. Rev 404, 213093.
|
Wang, F., Chen, L., Li, H.L., Duan, G.G., He, S.J., Zhang, L., Zhang, G.Y., Zhou, Z.P., Jiang, S.H., 2020. N-doped honeycomb-like porous carbon towards high-performance supercapacitor. Chin. Chem. Lett. 31, 1986-1990.
|
Wang, F., Cheong, J.Y., He, Q., Duan, G.G., He, S.J., Zhang, L., Zhao, Y., Kim, I.D., Jiang, S.H., 2021. Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors. Chem. Eng. J. 414, 128767.
|
Wang, F., Cheong, J.Y., Lee, J., Ahn, J., Duan, G.G., Chen, H.L., Zhang, Q., Kim, I.D., Jiang, S.H., 2021. Pyrolysis of enzymolysis-treated wood:hierarchically assembled porous carbon electrode for advanced energy storage devices. Adv. Funct. Mater. 31, 2101077.
|
Wang, F., Liu, X.L., Duan, G.G., Yang, H.Q., Cheong, J.Y., Lee, J., Ahn, J., Zhang, Q., He, S.J., Han, J.Q., Zhao, Y., Kim, I.D., Jiang, S.H., 2021. Wood-derived, conductivity and hierarchical pore integrated thick electrode enabling high areal/volumetric energy density for hybrid capacitors. Small 17, e2102532.
|
Wang, F., Zhang, L., Zhang, Q., Yang, J.J., Duan, G.G., Xu, W.H., Yang, F., Jiang, S.H., 2021. Electrode thickness design toward bulk energy storage devices with high areal/volumetric energy density. Appl. Energy 289, 116734.
|
Wang, H., Wang, W.Y., Wang, H.J., Jin, X., Niu, H.T., Wang, H.X., Zhou, H., Lin, T., 2018. High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer. ACS Appl. Energy Mater. 1, 431-439.
|
Wang, L., Borghei, M., Ishfaq, A., Lahtinen, P., Ago, M., Papageorgiou, A.C., Lundahl, M.J., Johansson, L.S., Kallio, T., Rojas, O.J., 2020. Mesoporous carbon microfibers for electroactive materials derived from lignocellulose nanofibrils. ACS Sustain. Chem. Eng. 8, 8549-8561.
|
Wang, L., Han, Y.Z., Feng, X., Zhou, J.W., Qi, P.F., Wang, B., 2016. Metal-organic frameworks for energy storage:batteries and supercapacitors. Coord. Chem. Rev. 307, 361-381.
|
Wang, M., Yang, J., Liu, S.Y., Li, M.Z., Hu, C., Qiu, J.S., 2020. Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors. J. Colloid Interface Sci. 560, 69-76.
|
Wang, Q.H., Xia, T., Jia, X.W., Zhao, J.Q., Li, Q.Y., Ao, C.H., Deng, X.Y., Zhang, X.M., Zhang, W., Lu, C.H., 2020. Honeycomb-structured carbon aerogels from nanocellulose and skin secretion of Andrias davidianus for highly compressible binder-free supercapacitors. Carbohydr. Polym. 245, 116554.
|
Wang, R., Xuelian, Z., Xu, T., Bian, H., Dai, H., 2021. Research progress on the preparation of lignin-derived carbon dots and graphene quantum dots. J. For. Eng. 6, 29-37.
|
Wang, Y.F., Zhang, L., Hou, H.Q., Xu, W.H., Duan, G.G., He, S.J., Liu, K.M., Jiang, S.H., 2021. Recent progress in carbon-based materials for supercapacitor electrodes:a review. J. Mater. Sci. 56, 173-200.
|
Wang, Y.L., Qu, Q.L., Cui, J.X., Lu, T., Li, F.H., Zhang, M.J., Liu, K.M., Zhang, Q., He, S.J., Huang, C.B., 2021. Design and fabrication of cellulose derived free-standing carbon nanofiber membranes for high performance supercapacitors. Carbohydr. Polym. Technol. Appl. 2, 100117.
|
Wang, Y.M., Lin, X.J., Liu, T., Chen, H., Chen, S., Jiang, Z.J., Liu, J., Huang, J.L., Liu, M.L., 2018. Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 28, 1806207.
|
Wang, Y.Y., Li, Y.M., Zhang, W., Yin, P., Shang, L., Ma, R.N., Jia, L.P., Xue, Q.W., He, S.J., Wang, H.S., 2021. Lowly-aggregated perylene diimide as a near-infrared electrochemiluminescence luminophore for ultrasensitive immunosensors at low potentials. Analyst 146, 3679-3685.
|
Wang, Z.H., Carlsson, D.O., Tammela, P., Hua, K., Zhang, P., Nyholm, L., Strømme, M., 2015. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9, 7563-7571.
|
Waribam, P., Ngo, S.D., Tran, T.T.V., Kongparakul, S., Reubroycharoen, P., Chanlek, N., Wei, L., Zhang, H.B., Guan, G.Q., Samart, C., 2020. Waste biomass valorization through production of xylose-based porous carbon microspheres for supercapacitor applications. Waste Manag. 105, 492-500.
|
Wei, L.S., Deng, W.J., Li, S.S., Wu, Z.G., Cai, J.H., Luo, J.W., 2022. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J. Bioresour. Bioprod. 7, 63-72.
|
Wu, H., Li, W.Y., Zhao, M.C., Lu, S.C., Huang, L.L., Chen, L.H., 2020. Progress in cellulose-based self-healing gels. J. For. Eng. 5, 11-17.
|
Wu, J., Xia, M.W., Zhang, X., Chen, Y.Q., Sun, F., Wang, X.H., Yang, H.P., Chen, H.P., 2020. Hierarchical porous carbon derived from wood tar using crab as the template:performance on supercapacitor. J. Power Sources 455, 227982.
|
Wu, Y.T., Chen, H., Lu, Y.Z., Yang, J., Zhu, X.Q., Zheng, Y., Lou, G.B., Wu, Y.T., Wu, Q., Shen, Z.H., Pan, Z.H., 2021. Rational design of cobalt-nickel double hydroxides for flexible asymmetric supercapacitor with improved electrochemical performance. J. Colloid Interface Sci. 581, 455-464.
|
Xie, L.J., Sun, G.H., Su, F.Y., Guo, X.Q., Kong, Q.Q., Li, X.M., Huang, X.H., Wan, L., Song, W., Li, K.X., Lv, C.X., Chen, C.M., 2016. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A Mater. Energy Sustain. 4, 1637-1646.
|
Xiong, C.Y., Li, M.R., Nie, S.X., Dang, W.H., Zhao, W., Dai, L., Ni, Y.H., 2020. Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free Wood@Polyaniline supercapacitor material for renewable energy storage application. J. Power Sources 471, 228448.
|
Xiong, S.S., Jiang, S.Y., Wang, J., Lin, H.J., Lin, M.X., Weng, S.T., Liu, S., Jiao, Y., Xu, Y.C., Chen, J.R., 2020. A high-performance hybrid supercapacitor with NiO derived NiO@Ni-MOF composite electrodes. Electrochim. Acta 340, 135956.
|
Xu, B., Chen, Y.F., Wei, G., Cao, G.P., Zhang, H., Yang, Y.S., 2010. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. Mater.Chem. Phys. 124, 504-509.
|
Xu, C., Kong, X.Y., Zhou, S.Y., Zheng, B., Huo, F.W., Strømme, M., 2018. Interweaving metal-organic framework-templated Co-Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices. J. Mater. Chem. A 6, 24050-24057.
|
Xu, J., Tan, Z.Q., Zeng, W.C., Chen, G.X., Wu, S.L., Zhao, Y., Ni, K., Tao, Z.C., Ikram, M., Ji, H.X., Zhu, Y.W., 2016. A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 28, 5222-5228.
|
Xu, T., Du, H.S., Liu, H.Y., Liu, W., Zhang, X.Y., Si, C.L., Liu, P.W., Zhang, K., 2021. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 33, e2101368.
|
Xu, X.T., Yang, T., Zhang, Q.W., Xia, W., Ding, Z.B., Eid, K., Abdullah, A.M., Shahriar, A., Hossain, M., Zhang, S.H., Tang, J., Pan, L.K., Yamauchi, Y., 2020. Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chem. Eng. J. 390, 124493.
|
Xue, D.F., Zhu, D.Z., Xiong, W., Cao, T.C., Wang, Z.W., Lv, Y.K., Li, L.C., Liu, M.X., Gan, L.H., 2019. Template-free, self-doped approach to porous carbon spheres with high N/O contents for high-performance supercapacitors. ACS Sustain. Chem. Eng. 7, 7024-7034.
|
Yan, B., Zheng, J.J., Wang, F., Zhao, L.Y., Zhang, Q., Xu, W.H., He, S.J., 2021. Review on porous carbon materials engineered by ZnO templates:Design, synthesis and capacitance performance. Mater. Des. 201, 109518.
|
Yan, H., Li, Y.M., Guo, X.Y., Zhou, M.X., Wang, H.Q., Dai, Y., Zheng, J.C., 2018. Synergistic supercritical water "wet" activated biomass carbon as high performances electrode materials for supercapacitor. J. Electrochem. Soc. 165, A2075-A2083.
|
Yang, H.Q., Jiyoung, L., Young, C.J., Wang, Y.F., Duan, G.G., Hou, H.Q., Jiang, S.H., Doo, K.I., 2021. Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries:fundamentals, recent advances, and challenges. Energy Environ. Sci. 14, 4228-4267.
|
Yang, L., Guo, X.T., Jin, Z.K., Guo, W.C., Duan, G.G., Liu, X.H., Li, Y.W., 2021. Emergence of melanin-inspired supercapacitors. Nano Today 37, 101075.
|
Yang, W.S., Wang, Y.F., Wang, Q.M., Wu, J.L., Duan, G.G., Xu, W.H., Jian, S.J., 2021. Magnetically separable and recyclable Fe3O4@PDA covalent grafted by l-cysteine core-shell nanoparticles toward efficient removal of Pb2+. Vacuum 189, 110229.
|
Yu, S., Zhu, X.Q., Lou, G.B., Wu, Y.T., Xu, K.T., Zhang, Y., Zhang, L.M., Zhu, E.H., Chen, H., Shen, Z.H., Bao, B.F., Fu, S.Y., 2018. Sustainable hierarchical porous biomass carbons enriched with pyridinic and pyrrolic nitrogen for asymmetric supercapacitor. Mater. Des. 149, 184-193.
|
Zhang, B., He, J.K., Zheng, G.F., Huang, Y.Y., Wang, C., He, P.S., Sui, F.P., Meng, L.C., Lin, L.W., 2021. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes. J. Mater. Sci. Technol. 82, 135-143.
|
Zhang, H., Wang, Y.F., Liu, W.L., Kong, F.G., Ren, M.M., Wang, S.J., Wang, X.Q., Duan, X.L., Peng, D., 2018. Designed synthesis of CoO/CuO/rGO ternary nanocomposites as high-performance anodes for lithium-ion batteries. JOM 70, 1793-1799.
|
Zhang, Q., Chen, C.J., Chen, W.S., Pastel, G., Guo, X.Y., Liu, S.X., Wang, Q.W., Liu, Y.X., Li, J., Yu, H.P., Hu, L.B., 2019. Nanocellulose-enabled, all-nanofiber, high-performance supercapacitor. ACS Appl. Mater. Interfaces 11, 5919-5927.
|
Zhang, W.F., Huang, Z.H., Guo, Z., Li, C., Kang, F.Y., 2010. Porous carbons prepared from deoiled asphalt and their electrochemical properties for supercapacitors.Mater. Lett. 64, 1868-1870.
|
Zhang, Y., Liu, L., Zhang, P.X., Wang, J., Xu, M., Deng, Q., Zeng, Z.L., Deng, S.G., 2019. Ultra-high surface area and nitrogen-rich porous carbons prepared by a low-temperature activation method with superior gas selective adsorption and outstanding supercapacitance performance. Chem. Eng. J. 355, 309-319.
|
Zhang, Y., Wei, L., Lu, L., Gan, L., Pan, M., 2020. Adsorption-photocatalytic properties of cellulose nanocrystal supported ZnO nanocomposites. J. For. Eng. 5, 29-35.
|
Zhang, Z., Li, L., Qing, Y., Lu, X.H., Wu, Y.Q., Yan, N., Yang, W., 2019. Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor. J. Phys. Chem. C 123, 23374-23381.
|
Zhang, Z.J., Dong, C., Ding, X.Y., Xia, Y.K., 2015. A generalized ZnCl2 activation method to produce nitrogen-containing nanoporous carbon materials for supercapacitor applications. J. Alloy. Compd. 636, 275-281.
|
Zhao, C.J., Ding, Y.W., Huang, Y.X., Li, N., Hu, Y.Q., Zhao, C.H., 2021. Soybean root-derived N, O co-doped hierarchical porous carbon for supercapacitors. Appl. Surf.Sci. 555, 149726.
|
Zhao, F., Song, F.X., Chen, Q.L., 2021. Nitrogen/sulfur codoped FCC-slurry-based porous carbon materials in symmetric supercapacitors. Appl. Surf. Sci. 561, 150063.
|
Zhao, J., Li, Y.J., Huang, F.G., Zhang, H.Q., Gong, J.W., Miao, C.X., Zhu, K., Cheng, K., Ye, K., Yan, J., Cao, D.X., Wang, G.L., Zhang, X.F., 2018. High-performance asymmetric supercapacitor assembled with three-dimensional, coadjacent graphene-like carbon nanosheets and its composite. J. Electroanal. Chem. 823, 474-481.
|
Zhao, X., Mao, L., Cheng, Q.H., Li, J., Liao, F.F., Yang, G.Y., Xie, L., Zhao, C.L., Chen, L.Y., 2020. Two-dimensional spinel structured co-based materials for high performance supercapacitors:a critical review. Chem. Eng. J. 387, 124081.
|
Zheng, C., Zhu, S., Lu, Y., Mei, C., Xu, X., Yue, Y., Han, J., 2020. Synthesis and characterization of cellulose nanofibers/polyacrylic acid-polyacrylamide double network electroconductive hydrogel. J. For. Eng. 5, 93-100.
|
Zheng, Q.F., Cai, Z.Y., Ma, Z.Q., Gong, S.Q., 2015. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 7, 3263-3271.
|
Zheng, S., Zhang, J.W., Deng, H.B., Du, Y.M., Shi, X.W., 2021. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Bioresour. Bioprod. 6, 142-151.
|
Zhi, M.J., Liu, S.H., Hong, Z.L., Wu, N.Q., 2014. Electrospun activated carbon nanofibers for supercapacitor electrodes. RSC Adv. 4, 43619-43623.
|
Zhou, S.Y., Kong, X.Y., Zheng, B., Huo, F.W., Strømme, M., Xu, C., 2019. Cellulose nanofiber@conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano 13, 9578-9586.
|
Zhu, X.Q., Yu, S., Xu, K.T., Zhang, Y., Zhang, L.M., Lou, G.B., Wu, Y.T., Zhu, E.H., Chen, H., Shen, Z.H., Bao, B.F., Fu, S.Y., 2018. Sustainable activated carbons from dead Ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci. 181, 36-45.
|
Zong, Q., Yang, H., Wang, Q.Q., Zhang, Q.L., Zhu, Y.L., Wang, H.Y., Shen, Q.H., 2019. Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors. Chem. Eng. J. 361, 1-11.
|