Turn off MathJax
Article Contents
Junlei Xiao, Huiling Li, Hua Zhang, Shuijian He, Qian Zhang, Kunming Liu, Shaohua Jiang, Gaigai Duan, Kai Zhang. Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2022.05.003
Citation: Junlei Xiao, Huiling Li, Hua Zhang, Shuijian He, Qian Zhang, Kunming Liu, Shaohua Jiang, Gaigai Duan, Kai Zhang. Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2022.05.003

Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges

doi: 10.1016/j.jobab.2022.05.003

No. 20212BAB203013). Hua Zhang thanks financial support from the China Scholarship Council (CSC).

No. 51903123), Natural Science Foundation of Jiangsu Province (No. BK20190760), and the Jiangxi Provincial Natural Science Foundation (No. 20202BABL213007

This work was supported by National Science Foundation of China (No. 22005147

  • With the increasing demand for sustainable energy storage systems, the development of various advanced materials from a renewable source is imminent. Owing to the advantages of high specific surface area, unique nanostructure, modifiability, and excellent mechanical strength, nanocellulose integrated with other conductive materials, such as nanocarbons, conducting polymers, and metal oxides, has been emerged as promising candidate materials for green and renewable energy storage devices. Besides, nanocellulose-derived carbon materials with good electrical conductivity and tunable microstructures can be fabricated via simple carbonization, which has been widely used as supercapacitor electrode materials. Herein, we present a comprehensive review that focuses on the development of nanocellulose materials for sustainable energy storage, particularly on supercapacitors. The fabrication strategies of nanocellulose-derived hybrid materials are first presented and summarized, followed by highlighting the use of natural nanocellulose for constructing composite electrode materials including two-dimension film electrodes, and three-dimension aerogel electrodes for supercapacitors. In addition, the possible limitations and potentials of nanocellulose in supercapacitors are outlooked.


  • loading
  • Adhamash, E., Pathak, R., Chen, K., Rahman, M.T., El-Magrous, A., Gu, Z.R., Lu, S., Qiao, Q.Q., Zhou, Y., 2020. High-energy plasma activation of renewable carbon for enhanced capacitive performance of supercapacitor electrode. Electrochim. Acta 362, 137148.
    Bahloul, A., Kassab, Z., El Bouchti, M., Hannache, H., Qaiss, A.E.K., Oumam, M., El Achaby, M., 2021. Micro- and nano-structures of cellulose from eggplant plant(Solanum melongena L.) agricultural residue. Carbohydr. Polym. 253, 117311.
    Byrne, N., de Silva, R., Ma, Y.B., Sixta, H., Hummel, M., 2018. Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production. Cellulose 25, 723-733 (Lond).
    Cakici, M., Kakarla, R.R., Alonso-Marroquin, F., 2017. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO 2 structured electrodes. Chem. Eng. J. 309, 151-158.
    Cao, L.H., Li, H.L., Liu, X.L., Liu, S.W., Zhang, L., Xu, W.H., Yang, H.Q., Hou, H.Q., He, S.J., Zhao, Y., Jiang, S.H., 2021. Nitrogen, sulfur co-doped hierarchical carbon encapsulated in graphene with "sphere-in-layer" interconnection for high-performance supercapacitor. J. Colloid Interface Sci. 599, 443-452.
    Cao, L.H., Li, H.L., Xu, Z.X., Gao, R.R., Wang, S.Q., Zhang, G.Y., Jiang, S.H., Xu, W.H., Hou, H.Q., 2021. Camellia pollen-derived carbon with controllable N content for high-performance supercapacitors by ammonium chloride activation and dual N-doping. ChemNanoMat 7, 34-43.
    Cao, L.H., Li, H.L., Xu, Z.X., Zhang, H.J., Ding, L.H., Wang, S.Q., Zhang, G.Y., Hou, H.Q., Xu, W.H., Yang, F., Jiang, S.H., 2021. Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor. Diam. Relat. Mater. 114, 108316.
    Cao, W., Liu, Y., Xu, F., Xia, Q., Du, G.P., Fan, Z.Y., Chen, N., 2021. Metal-organic framework derived carbon-coated spherical bimetallic nickel-cobalt sulfide nanoparticles for hybrid supercapacitors. Electrochim. Acta 385, 138433.
    Cao, Y.H., Wang, X.M., Gu, Z.R., Fan, Q.H., Gibbons, W., Gadhamshetty, V., Ai, N., Zeng, G.N., 2018. Potassium chloride templated carbon preparation for supercapacitor. J. Power Sources 384, 360-366.
    Chang, C.S., Li, M., Niu, P., Zhang, L., Wang, S.L., 2021. A facile dual-functional hydrothermal-assisted synthesis strategy of hierarchical porous carbon for enhanced supercapacitor performance. Sustain. Mater. Technol. 28, e00265.
    Chen, C.J., Hu, L.B., 2018. Nanocellulose toward advanced energy storage devices:structure and electrochemistry. Acc. Chem. Res. 51, 3154-3165.
    Chen, C.J., Zhang, Y., Li, Y.J., Dai, J.Q., Song, J.W., Yao, Y.G., Gong, Y.H., Kierzewski, I., Xie, J., Hu, L.B., 2017. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538-545.
    Chen, H., Liu, D., Shen, Z.H., Bao, B.F., Zhao, S.Y., Wu, L.M., 2015. Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials. Electrochim. Acta 180, 241-251.
    Chen, H., Zheng, Y., Zhu, X.Q., Hong, W.L., Tong, Y.F., Lu, Y.Z., Pei, G., Pang, Y.J., Shen, Z.H., Guan, C., 2021. Bamboo-derived porous carbons for Zn-ion hybrid supercapacitors. Mater. Res. Bull. 139, 111281.
    Chen, L., Chen, L.N., Ai, Q., Li, D.P., Si, P.C., Feng, J.K., Zhang, L., Li, Y.H., Lou, J., Ci, L.J., 2018. Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@polypyrrole@graphene film. Chem. Eng. J. 334, 184-190.
    Chen, T.T., Luo, L., Luo, L.C., Deng, J.P., Wu, X., Fan, M.Z., Du, G.B., Zhao, W.G., 2021. High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material obtained from bio-waste. Renew. Energy 175, 760-769.
    Chen, W.S., Yu, H.P., Sang-Young, L., Wei, T., Li, J., Fan, Z.J., 2018. Nanocellulose:a promising nanomaterial for advanced electrochemical energy storage. Chem.Soc. Rev. 47, 2837-2872.
    Chen, Y.M., Zhang, L., Yang, Y., Pang, B., Xu, W.H., Duan, G.G., Jiang, S.H., Zhang, K., 2021. Recent progress on nanocellulose aerogels:preparation, modification, composite fabrication, applications. Adv. Mater. 33, e2005569.
    Chen, Y.M., Zhou, L.J., Chen, L., Duan, G.G., Mei, C.T., Huang, C.B., Han, J.Q., Jiang, S.H., 2019. Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 26, 6653-6667.
    Chen, Y.P., Lyu, S.Y., Han, S.J., Chen, Z.L., Wang, W.J., Wang, S.Q., 2018. Nanocellulose/polypyrrole aerogel electrodes with higher conductivity via adding vapor grown nano-carbon fibers as conducting networks for supercapacitor application. RSC Adv. 8, 39918-39928.
    Cheng, J., Liu, Y.C., Zhang, X.X., Miao, X.F., Chen, Y.Q., Chen, S.J., Lin, J.H., Zhang, Y.N., 2021. Structure engineering in interconnected porous hollow carbon spheres with superior rate capability for supercapacitors and lithium-sulfur batteries. Chem. Eng. J. 419, 129649.
    Deng, X.L., Zou, K.Y., Cai, P., Wang, B.W., Hou, H.S., Zou, G.Q., Ji, X.B., 2020. Advanced battery-type anode materials for high-performance sodium-ion capacitors.Small Methods 4, 2000401.
    Dias, G.M.V., Müller, D., Wesling, B.N., Bernardes, J.C., Hotza, D., Rambo, C.R., 2019. Enhancing specific capacitance and cyclic stability through incorporation of MnO 2 into bacterial nanocellulose/PPy·CuCl2 flexible electrodes. Energy Technol. 7, 1900328.
    Ding, Q.Q., Xu, X.W., Yue, Y.Y., Mei, C.T., Huang, C.B., Jiang, S.H., Wu, Q.L., Han, J.Q., 2018. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl. Mater. Interfaces 10, 27987-28002.
    Dong, D., Zhang, Y.S., Xiao, Y., Wang, T., Wang, J.W., Gao, W., 2022. Oxygen-enriched coal-based porous carbon under plasma-assisted MgCO3 activation as supercapacitor electrodes. Fuel 309, 122168.
    Dong, K., Peng, X., Wang, Z.L., 2020. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32, e1902549.
    Dong, L.B., Xu, C.J., Li, Y., Huang, Z.H., Kang, F.Y., Yang, Q.H., Zhao, X., 2016. Flexible electrodes and supercapacitors for wearable energy storage:a review by category. J. Mater. Chem. A 4, 4659-4685.
    Duan, C.X., Dong, L., Li, F.E., Xie, Y.W., Huang, B.C., Wang, K., Yu, Y., Xi, H.X., 2020. Room-temperature rapid synthesis of two-dimensional metal-organic framework nanosheets with tunable hierarchical porosity for enhanced adsorption desulfurization performance. Ind. Eng. Chem. Res. 59, 18857-18864.
    Duan, G.G., Zhao, L.Y., Chen, L., Wang, F., He, S.J., Jiang, S.H., Zhang, Q., 2021. ZnCl2 regulated flax-based porous carbon fibers for supercapacitors with good cycling stability. New J. Chem. 45, 22602-22609 2021.
    Dubal, D.P., Chodankar, N.R., Kim, D.H., Gomez-Romero, P., 2018. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065-2129.
    Dumanlı, A.G., Windle, A.H., 2012. Carbon fibres from cellulosic precursors:a review. J. Mater. Sci. 47, 4236-4250.
    Erlandsson, J., López Durán, V., Granberg, H., Sandberg, M., Larsson, P.A., Wågberg, L., 2016. Macro- and mesoporous nanocellulose beads for use in energy storage devices. Appl. Mater. Today 5, 246-254.
    Etman, A.S., Wang, Z.H., El Ghazaly, A., Sun, J.L., Nyholm, L., Rosen, J., 2019. Flexible freestanding MoO3-x-carbon nanotubes-nanocellulose paper electrodes for charge-storage applications. ChemSusChem 12, 5157-5163.
    Fang, D., Yan, B., Agarwal, S., Xu, W.H., Zhang, Q., He, S.J., Hou, H.Q., 2021. Electrospun poly[poly(2, 5-benzophenone)] bibenzopyrrolone/polyimide nanofiber membrane for high-temperature and strong-alkali supercapacitor. J. Mater. Sci. 56, 9344-9355.
    Feng, H.B., Hu, H., Dong, H.W., Xiao, Y., Cai, Y.J., Lei, B.F., Liu, Y.L., Zheng, M.T., 2016. Hierarchical structured carbon derived from bagasse wastes:a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J. Power Sources 302, 164-173.
    Gao, Q.L., Li, D.S., Liu, X.M., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Zhou, R.C., 2020. Biomass-derived mesoporous carbons materials coated by α-Mn3O4 with ultrafast zinc-ion diffusion ability as cathode for aqueous zinc ion batteries. Electrochim. Acta 335, 135642.
    Guan, F.Y., Chen, S.Y., Sheng, N., Chen, Y., Yao, J.J., Pei, Q.B., Wang, H.P., 2019. Mechanically robust reduced graphene oxide/bacterial cellulose film obtained via biosynthesis for flexible supercapacitor. Chem. Eng. J. 360, 829-837.
    Gunasekaran, S.S., Badhulika, S., 2021. High-performance solid-state supercapacitor based on sustainable synthesis of meso-macro porous carbon derived from hemp fibres via CO 2 activation. J. Energy Storage 41, 102997.
    Guo, W.C., Guo, X.T., Yang, L., Wang, T.Y., Zhang, M.H., Duan, G.G., Liu, X.H., Li, Y.W., 2021. Synthetic melanin facilitates MnO supercapacitors with high specific capacitance and wide operation potential window. Polymer 235, 124276.
    Guo, X.Y., Zhang, Q., Li, Q., Yu, H.P., Liu, Y.X., 2019. Composite aerogels of carbon nanocellulose fibers and mixed-valent manganese oxides as renewable supercapacitor electrodes. Polymers 11, 129.
    Gupta, A., Sardana, S., Dalal, J., Lather, S., Maan, A.S., Tripathi, R., Punia, R., Singh, K., Ohlan, A., 2020. Nanostructured polyaniline/graphene/Fe2O3 composites hydrogel as a high-performance flexible supercapacitor electrode material. ACS Appl. Energy Mater. 3, 6434-6446.
    Gupta, G.K., Shukla, P., 2020. Lignocellulosic biomass for the synthesis of nanocellulose and its eco-friendly advanced applications. Front. Chem. 8, 601256.
    Han, X.T., Xiao, G.C., Wang, Y.C., Chen, X.N., Duan, G.G., Wu, Y.Z., Gong, X., Wang, H.X., 2020. Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. J. Mater. Chem. A 8, 23059-23095.
    Han, Z., Zhong, W., Wang, K., 2020. Preparation and examination of nitrogen-doped bamboo porous carbon for supercapacitor materials. J. For. Eng. 5, 76-83.
    Hao, T.T., Wang, S., Xu, H.B., Zhang, X., Xue, J.Y., Liu, S.K., Song, Y., Li, Y., Zhao, J.P., 2021. Highly robust, transparent, and conductive films based on AgNW-C nanowires for flexible smart windows. Appl. Surf. Sci. 559, 149846.
    He, S.J., Wang, X., Xiang, G.M., Lac, K., Wang, S.N., Ding, Z.F., 2018. Electrogenerated chemiluminescence from the monomer of a tetradentate chelate Pt(II) compound.Electrochim. Acta 271, 448-453.
    He, X.J., Li, R.C., Han, J.F., Yu, M.X., Wu, M.B., 2013. Facile preparation of mesoporous carbons for supercapacitors by one-step microwave-assisted ZnCl2 activation.Mater. Lett. 94, 158-160.
    Hemanth, N.R., Kandasubramanian, B., 2020. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting Applications:a review. Chem.Eng. J. 392, 123678.
    Hou, M.J., Hu, Y.M., Xu, M.J., Li, B., 2020. Nanocellulose based flexible and highly conductive film and its application in supercapacitors. Cellulose 27, 9457-9466.
    Hou, M.J., Xu, M.J., Hu, Y.M., Li, B., 2019. Nanocellulose incorporated graphene/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes. Electrochim. Acta 313, 245-254.
    Hsu, H.H., Khosrozadeh, A., Li, B.Y., Luo, G.X., Xing, M., Zhong, W., 2019. An eco-friendly, nanocellulose/RGO/in situ formed polyaniline for flexible and free-standing supercapacitors. ACS Sustain. Chem. Eng. 7, 4766-4776.
    Hu, R.F., Zhao, J., Zhu, G.D., Zheng, J.P., 2018. Fabrication of flexible free-standing reduced graphene oxide/polyaniline nanocomposite film for all-solid-state flexible supercapacitor. Electrochim. Acta 261, 151-159.
    Hu, Y., Quan, H.Y., Cui, J.M., Luo, W.S., Zeng, W.L., Chen, D.Z., 2021. Carbon nanodot modified N, O-doped porous carbon for solid-state supercapacitor:a comparative study with carbon nanotube and graphene oxide. J. Alloy. Compd. 877, 160237.
    Huang, G.X., Geng, Q.H., Xing, B.L., Liu, Y.B., Li, Y.Y., Liu, Q.R., Jia, J.B., Chen, L.J., Zhang, C.X., 2020. Manganous nitrate-assisted potassium hydroxide activation of humic acid to prepare oxygen-rich hierarchical porous carbon as high-performance supercapacitor electrodes. J. Power Sources 449, 227506.
    Huang, S.Q., Chen, P.S., Lin, W.Z., Lyu, S.W., Chen, G.D., Yin, X.Y., Chen, W.X., 2016. Electrodeposition of polypyrrole on carbon nanotube-coated cotton fabrics for all-solid flexible supercapacitor electrodes. RSC Adv. 6, 13359-13364.
    Hussain, S., Javed, M.S., Asim, S., Shaheen, A., Khan, A.J., Abbas, Y., Ullah, N., Iqbal, A., Wang, M.S., Qiao, G.J., Yun, S.N., 2020. Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 46, 6406-6412.
    Inal, I.I.G., Holmes, S.M., Banford, A., Aktas, Z., 2015. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl. Surf. Sci. 357, 696-703.
    Iradukunda, Y., Wang, G.Y., Li, X., Shi, G.F., Hu, Y.W., Luo, F.F., Yi, K.Q., Albashir, A.I.M., Niu, X.L., Wu, Z.J., 2021. High performance of activated carbons prepared from mangosteen (Garcinia mangostana) peels using the hydrothermal process. J. Energy Storage 39, 102577.
    Ji, X.Q., Sun, D.L., Zou, W.H., Wang, Z.H., Sun, D.B., 2021. Ni/MnO2 doping pulping lignin-based porous carbon as supercapacitors electrode materials. J. Alloy.Compd. 876, 160112.
    Jian, S.J., Ma, X.F., Wang, Q.M., Wu, J.L., Wang, Y.F., Jiang, S.H., Xu, W.H., Yang, W.S., 2021. Hierarchical porous Co3O4 nanocages with elaborate microstructures derived from ZIF-67 toward lithium storage. Vacuum 184, 109879.
    Jiang, C.L., Yakaboylu, G.A., Yumak, T., Zondlo, J.W., Sabolsky, E.M., Wang, J.X., 2020. Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes. Renew. Energy 155, 38-52.
    Jiang, Q.S., Kacica, C., Soundappan, T., Liu, K.K., Tadepalli, S., Biswas, P., Singamaneni, S., 2017. An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors. J. Mater. Chem. A 5, 13976-13982.
    Jiang, X.Y., Bai, Y.Y., Chen, X.F., Liu, W., 2020. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod. 5, 16-25.
    Jiao, S.Q., Zhou, A.G., Wu, M.Z., Hu, H.B., 2019. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv. Sci. 6, 1900529 (Weinh).
    Jjagwe, J., Olupot, P.W., Menya, E., Kalibbala, H.M., 2021. Synthesis and application of granular activated carbon from biomass waste materials for water treatment:a review. J. Bioresour. Bioprod. 6, 292-322.
    Kim, D.W., Jung, S.M., Jung, H.Y., 2020. A super-thermostable, flexible supercapacitor for ultralight and high performance devices. J. Mater. Chem. A 8, 532-542.
    Kim, J.H., Lee, D., Lee, Y.H., Chen, W.S., Lee, S.Y., 2019. Nanocellulose for energy storage systems:beyond the limits of synthetic materials. Adv. Mater. 31, e1804826.
    Kumar, S., Saeed, G., Zhu, L., Hui, K.N., Kim, N.H., Lee, J.H., 2021. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor:a review. Chem. Eng. J. 403, 126352.
    Lai, E.P., Yue, X.X., Ning, W.E., Huang, J.W., Ling, X.L., Lin, H.T., 2019. Three-dimensional graphene-based composite hydrogel materials for flexible supercapacitor electrodes. Front. Chem. 7, 660.
    Lee, D., Cho, Y.G., Song, H.K., Chun, S.J., Park, S.B., Choi, D.H., Lee, S.Y., Yoo, J., Lee, S.Y., 2017. Coffee-driven green activation of cellulose and its use for all-paper flexible supercapacitors. ACS Appl. Mater. Interfaces 9, 22568-22577.
    Lee, J.S.M., Briggs, M.E., Hu, C.C., Cooper, A.I., 2018. Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 46, 277-289.
    Li, D.S., Gao, Q.L., Zhang, H., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Chang, J., 2020. MnO2 particles grown on the surface of N-doped hollow porous carbon nanospheres for aqueous rechargeable zinc ion batteries. Appl. Surf. Sci. 510, 145458.
    Li, D.S., Liu, B., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Yue, K., Meng, Q.H., 2019. Magnetic ferroferric oxide/phenolic resin/silver core-shell nanocomposite as recyclable substrates for enhancing surface-enhanced Raman scattering. J. Sol Gel Sci. Technol. 92, 124-133.
    Li, D.S., Wu, S., Wang, Y.F., Sun, M., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Wang, X.Q., 2019. Manganese oxides/N-doped carbon particles with high capacity retention for aqueous rechargeable zinc battery. J. Nanopart. Res. 21, 1-10.
    Li, H.L., Cao, L.H., Wang, F., Duan, G.G., Xu, W.H., Mei, C.T., Zhang, G.Y., Liu, K.M., Yang, M., Jiang, S.H., 2020. Fatsia japonica-derived hierarchical porous carbon for supercapacitors with high energy density and long cycle life. Front. Chem. 8, 89.
    Li, H.L., Cao, L.H., Zhang, H.J., Tian, Z.W., Zhang, Q., Yang, F., Yang, H.Q., He, S.J., Jiang, S.H., 2022. Intertwined carbon networks derived from polyimide/cellulose composite as porous electrode for symmetrical supercapacitor. J. Colloid Interface Sci. 609, 179-187.
    Li, J.S., Lu, W.B., Yan, Y.S., Chou, T.W., 2017. High performance solid-state flexible supercapacitor based on Fe3O4/carbon nanotube/polyaniline ternary films. J.Mater. Chem. A 5, 11271-11277.
    Li, M., Park, H.G., 2019. Improved high-rate performance of a supercapacitor electrode from manganese-oxide-coated vertically aligned carbon nanotubes prepared by a pulsed current electrodeposition method. Electrochim. Acta 296, 676-682.
    Li, S.Z., Wen, J., Mo, X.M., Long, H., Wang, H.N., Wang, J.B., Fang, G.J., 2014. Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J. Power Sources 256, 206-211.
    Li, Y.C., Li, Z.H., Xing, B., Li, H.M., Ma, Z.Q., Zhang, W.B., Reubroycharoen, P., Wang, S.R., 2021. Green conversion of bamboo chips into high-performance phenol adsorbent and supercapacitor electrodes by simultaneous activation and nitrogen doping. J. Anal. Appl. Pyrolysis 155, 105072.
    Li, Z., Ahadi, K., Jiang, K.R., Ahvazi, B., Li, P., Anyia, A.O., Cadien, K., Thundat, T., 2017. Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors. Nano Res. 10, 1847-1860.
    Li, Z., Liu, J., Jiang, K.R., Thundat, T., 2016. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 25, 161-169.
    Li, Z.L., Ren, J., Yang, C.M., He, Y.X., Liang, Y., Liu, J.L., Waterhouse, G.I.N., Li, J.H., Qian, D., 2021. Sodium 5-sulfosalicylate-assisted hydrothermal synthesis of a self-supported Co3S4-Ni3S2@nickel foam electrode for all-solid-state asymmetric supercapacitors. J. Alloy. Compd. 889, 161661.
    Liang, J., Tian, B., Li, S.Q., Jiang, C.Z., Wu, W., 2020. All-printed MnHCF-MnOx-based high-performance flexible supercapacitors. Adv. Energy Mater. 10, 2000022.
    Liao, H.Y., Zhou, F.L., Zhang, Z.Z., Yang, J., 2019. A self-healable and mechanical toughness flexible supercapacitor based on polyacrylic acid hydrogel electrolyte.Chem. Eng. J. 357, 428-434.
    Ling, Z., Wang, Z.Y., Zhang, M.D., Yu, C., Wang, G., Dong, Y.F., Liu, S.H., Wang, Y.W., Qiu, J.S., 2016. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Funct. Mater 26, 111-119.
    Liu, D., Liu, J.L., Wang, Q., Du, P.C., Wei, W.L., Liu, P., 2019. PANI coated microporous graphene fiber capable of subjecting to external mechanical deformation for high performance flexible supercapacitors. Carbon 143, 147-153.
    Liu, K.K., Jiang, Q.S., Kacica, C., Derami, H.G., Biswas, P., Singamaneni, S., 2018. Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Adv. 8, 31296-31302.
    Liu, M.C., Kong, L.B., Zhang, P., Luo, Y.C., Kang, L., 2012. Porous wood carbon monolith for high-performance supercapacitors. Electrochim. Acta 60, 443-448.
    Liu, Q., Nayfeh, O., Nayfeh, M.H., Yau, S.T., 2013. Flexible supercapacitor sheets based on hybrid nanocomposite materials. Nano Energy 2, 133-137.
    Liu, S.D., Kang, L., Henzie, J., Zhang, J., Ha, J.S., Amin, M.A., Hossain, M.S.A., Jun, S.C., Yamauchi, Y., 2021. Recent advances and perspectives of battery-type anode materials for potassium ion storage. ACS Nano 15, 18931-18973.
    Liu, S.D., Kang, L., Hu, J.S., Jung, E., Zhang, J., Jun, S.C., Yamauchi, Y., 2021. Unlocking the potential of oxygen-deficient copper-doped Co3O4 nanocrystals confined in carbon as an advanced electrode for flexible solid-state supercapacitors. ACS Energy Lett. 6, 3011-3019.
    Liu, S.D., Kang, L., Zhang, J., Jun, S.C., Yamauchi, Y., 2021. Carbonaceous anode materials for non-aqueous sodium- and potassium-ion hybrid capacitors. ACS Energy Lett. 6, 4127-4154.
    Liu, S.D., Kang, L., Zhang, J., Jung, E., Lee, S.C., Jun, S.C., 2020. Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Storage Mater. 32, 167-177.
    Liu, T., Liu, J.H., Zhang, L.Y., Cheng, B., Yu, J.G., 2020. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor.J. Mater. Sci. Technol. 47, 113-121.
    Liu, T., Yan, R.Y., Huang, H.J., Pan, L., Cao, X.B., deMello, A., Niederberger, M., 2020. A micromolding method for transparent and flexible thin-film supercapacitors and hybrid supercapacitors. Adv. Funct. Mater. 30, 2004410.
    Liu, X.G., Ma, C.D., Li, J.X., Zielinska, B., Kalenczuk, R.J., Chen, X.C., Chu, P.K., Tang, T., Mijowska, E., 2019. Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. J. Power Sources 412, 1-9.
    Liu, Y., Xiang, C.L., Chu, H.L., Qiu, S.J., McLeod, J., She, Z., Xu, F., Sun, L.X., Zou, Y.J., 2020. Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors. J. Mater. Sci. Technol. 37, 135-142.
    Liu, Y.K., Lu, Q.L., Huang, Z., Sun, S.Q., Yu, B., Evariste, U., Jiang, G.H., Yao, J.M., 2018. Electrodeposition of Ni-Co-S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors. J. Alloy. Compd. 762, 301-311.
    Lou, G.B., Pei, G., Wu, Y.T., Lu, Y.Z., Wu, Y.T., Zhu, X.Q., Pang, Y.J., Shen, Z.H., Wu, Q., Fu, S.Y., Chen, H., 2021. Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chem. Eng. J. 413, 127502.
    Luo, X.D., Wang, Y., Shen, Z.F., Cui, L.F., Wang, Y.G., Li, X., 2021. Construction of hierarchically porous biomass carbon using iodine as pore-making agent for energy storage. J. Colloid Interface Sci. 599, 351-359.
    Lv, Y.Y., Zhou, Y., Shao, Z.Q., Liu, Y.H., Wei, J., Ye, Z.Q., 2019. Nanocellulose-derived carbon nanosphere fibers-based nanohybrid aerogel for high-performance all-solid-state flexible supercapacitors. J. Mater. Sci. Mater. Electron. 30, 8585-8594.
    Lyu, S.Y., Chen, Y.P., Zhang, L.F., Han, S.J., Lu, Y., Chen, Y., Yang, N., Chen, Z.L., Wang, S.Q., 2019. Nanocellulose supported hierarchical structured polyaniline/nanocarbon nanocomposite electrode via layer-by-layer assembly for green flexible supercapacitors. RSC Adv. 9, 17824-17834.
    Ma, Q.H., Xi, H.T., Cui, F., Zhang, J.J., Chen, P., Cui, T.Y., 2022. Self-templating synthesis of hierarchical porous carbon with multi-heteroatom co-doping from tea waste for high-performance supercapacitor. J. Energy Storage 45, 103509.
    Ma, Y.L., Zhu, X.Q., Wang, B.Y., Liu, S.Y., Meng, T.T., Chen, H., Peng, B., Deng, Z.W., 2020. Sacrificial template synthesis of hierarchical nickel hydroxidenitrate hollow colloidal particles for electrochemical energy storage. Chem. Eng. Sci. 217, 115548.
    Mohd Abdah, M.A.A., Azman, N.H.N., Kulandaivalu, S., Sulaiman, Y., 2020. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater. Des. 186, 108199.
    Mu, J.H., Li, Q., Kong, X.J., Wu, X.Z., Sunarso, J., Zhao, Y., Zhou, J., Zhuo, S.P., 2019. Characterization of hierarchical porous carbons made from bean curd via K2CO3 activation as a supercapacitor electrode. ChemElectroChem 6, 4022-4030.
    Norouzi, O., Pourhosseini, S.E.M., Naderi, H.R., di Maria, F., Dutta, A., 2021. Integrated hybrid architecture of metal and biochar for high performance asymmetric supercapacitors. Sci. Rep. 11, 5387.
    Phiri, J., Dou, J.Z., Vuorinen, T., Gane, P.A.C., Maloney, T.C., 2019. Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes. ACS Omega 4, 18108-18117.
    Qi, W.H., Lv, R.H., Na, B., Liu, H.S., He, Y., Yu, N., 2018. Nanocellulose-assisted growth of manganese dioxide on thin graphite papers for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 6, 4739-4745.
    Qiu, W.W., Zhao, J.L., Song, X.D., Mao, Q., Ren, S.Z., Hao, C., Xiao, Y.H., 2020. One-step activation synthesized hierarchical porous carbon spheres from resorcinol-thiourea-formaldehyde for electrochemical capacitors. Ind. Eng. Chem. Res 59, 226-235.
    Qu, Z.C., Shi, M.J., Wu, H.Z., Liu, Y.C., Jiang, J.T., Yan, C., 2019. An efficient binder-free electrode with multiple carbonized channels wrapped by NiCo2O4 nanosheets for high-performance capacitive energy storage. J. Power Sources 410/411, 179-187.
    Rufford, T.E., Hulicova-Jurcakova, D., Khosla, K., Zhu, Z.H., Lu, G.Q., 2010. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J. Power Sources 195, 912-918.
    Saeb, M.R., Rabiee, N., Seidi, F., Farasati Far, B., Bagherzadeh, M., Lima, E.C., Rabiee, M., 2021. Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection. J. Bioresour. Bioprod. 6, 215-222.
    Salunkhe, R.R., Kaneti, Y.V., Kim, J., Kim, J.H., Yamauchi, Y., 2016. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res 49, 2796-2806.
    Sandhiya, M., Nadira, M.P., Sathish, M., 2021. Fabrication of flexible supercapacitor using N-doped porous activated carbon derived from poultry waste. Energy Fuels 35, 15094-15100.
    Shen, Y.F., 2020. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass Bioenergy 134, 105479.
    Shi, Y., Peng, L.L., Ding, Y., Zhao, Y., Yu, G.H., 2015. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev 44, 6684-6696.
    Shu, Y., Bai, Q.H., Fu, G.X., Xiong, Q.C., Li, C., Ding, H.F., Shen, Y.H., Uyama, H., 2020. Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor. Carbohydr. Polym. 227, 115346.
    Song, M.Y., Zhou, Y.H., Ren, X., Wan, J.F., Du, Y.Y., Wu, G., Ma, F.W., 2019. Biowaste-based porous carbon for supercapacitor:the influence of preparation processes on structure and performance. J. Colloid Interface Sci. 535, 276-286.
    Song, Z.Y., Duan, H., Zhu, D.Z., Lv, Y.K., Xiong, W., Cao, T.C., Li, L.C., Liu, M.X., Gan, L.H., 2019. Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a "water-in-salt" gel electrolyte. J. Mater. Chem. A 7, 15801-15811.
    Sun, M., Li, D.S., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Guo, Y.Z., Liu, Y.M., 2019. Mn3O4@NC composite nanorods as a cathode for rechargeable aqueous Zn-ion batteries. ChemElectroChem 6, 2510-2516.
    Sun, M., Zhang, H., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Wang, X.Q., Duan, X.L., Ge, S.Z., 2019. Co/CoO@N-C nanocomposites as high-performance anodes for lithium-ion batteries. J. Alloy. Compd 771, 290-296.
    Tanguy, N.R., Wu, H.R., Nair, S.S., Lian, K., Yan, N., 2021. Lignin cellulose nanofibrils as an electrochemically functional component for high-performance and flexible supercapacitor electrodes. ChemSusChem 14, 1057-1067.
    Tao, Y.J., Liu, W.N., Li, Z.P., Zheng, Y., Zhu, X.Q., Wang, H., Wang, Y.N., Lin, Q., Wu, Q., Pang, Y.J., Shen, Z.H., Chen, H., 2021. Boosting supercapacitive performance of flexible carbon via surface engineering. J. Colloid Interface Sci. 602, 636-645.
    Tao, Y.J., Wu, Y.T., Chen, H., Chen, W.J., Wang, J.J., Tong, Y.F., Pei, G., Shen, Z.H., Guan, C., 2020. Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor. Chem. Eng. J. 396, 125364.
    Teo, E.Y.L., Muniandy, L., Ng, E.P., Adam, F., Mohamed, A.R., Jose, R., Chong, K.F., 2016. High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim. Acta 192, 110-119.
    Tian, O.Y., Zhang, T.Y., Wang, H.Z., Yang, F., Yan, J., Zhu, K., Ye, K., Wang, G.L., Zhou, L.M., Cheng, K., Cao, D.X., 2018. High-throughput fabrication of porous carbon by chemical foaming strategy for high performance supercapacitor. Chem. Eng. J. 352, 459-468.
    Virtanen, J., Pammo, A., Keskinen, J., Sarlin, E., Tuukkanen, S., 2017. Pyrolysed cellulose nanofibrils and dandelion Pappus in supercapacitor application. Cellulose 24, 3387-3397.
    Wang, A., Sun, K., Xu, R.T., Sun, Y.J., Jiang, J.C., 2021. Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation. J.Clean. Prod. 283, 125385.
    Wang, C.S., Liu, T.Z., 2017. Nori-based N, O, S, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor. J. Alloy. Compd. 696, 42-50.
    Wang, C.S., Yan, B., Zheng, J.J., Feng, L., Chen, Z.Z., Zhang, Q., Liao, T., Chen, J.Y., Jiang, S.H., Du, C., He, S.J., 2022. Recent progress in template-assisted synthesis of porous carbons for supercapacitors. Adv. Powder Mater. 1, 100018.
    Wang, D.G., Liang, Z.B., Gao, S., Qu, C., Zou, R.Q., 2020. Metal-organic framework-based materials for hybrid supercapacitor application. Coord. Chem. Rev 404, 213093.
    Wang, F., Chen, L., Li, H.L., Duan, G.G., He, S.J., Zhang, L., Zhang, G.Y., Zhou, Z.P., Jiang, S.H., 2020. N-doped honeycomb-like porous carbon towards high-performance supercapacitor. Chin. Chem. Lett. 31, 1986-1990.
    Wang, F., Cheong, J.Y., He, Q., Duan, G.G., He, S.J., Zhang, L., Zhao, Y., Kim, I.D., Jiang, S.H., 2021. Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors. Chem. Eng. J. 414, 128767.
    Wang, F., Cheong, J.Y., Lee, J., Ahn, J., Duan, G.G., Chen, H.L., Zhang, Q., Kim, I.D., Jiang, S.H., 2021. Pyrolysis of enzymolysis-treated wood:hierarchically assembled porous carbon electrode for advanced energy storage devices. Adv. Funct. Mater. 31, 2101077.
    Wang, F., Liu, X.L., Duan, G.G., Yang, H.Q., Cheong, J.Y., Lee, J., Ahn, J., Zhang, Q., He, S.J., Han, J.Q., Zhao, Y., Kim, I.D., Jiang, S.H., 2021. Wood-derived, conductivity and hierarchical pore integrated thick electrode enabling high areal/volumetric energy density for hybrid capacitors. Small 17, e2102532.
    Wang, F., Zhang, L., Zhang, Q., Yang, J.J., Duan, G.G., Xu, W.H., Yang, F., Jiang, S.H., 2021. Electrode thickness design toward bulk energy storage devices with high areal/volumetric energy density. Appl. Energy 289, 116734.
    Wang, H., Wang, W.Y., Wang, H.J., Jin, X., Niu, H.T., Wang, H.X., Zhou, H., Lin, T., 2018. High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer. ACS Appl. Energy Mater. 1, 431-439.
    Wang, L., Borghei, M., Ishfaq, A., Lahtinen, P., Ago, M., Papageorgiou, A.C., Lundahl, M.J., Johansson, L.S., Kallio, T., Rojas, O.J., 2020. Mesoporous carbon microfibers for electroactive materials derived from lignocellulose nanofibrils. ACS Sustain. Chem. Eng. 8, 8549-8561.
    Wang, L., Han, Y.Z., Feng, X., Zhou, J.W., Qi, P.F., Wang, B., 2016. Metal-organic frameworks for energy storage:batteries and supercapacitors. Coord. Chem. Rev. 307, 361-381.
    Wang, M., Yang, J., Liu, S.Y., Li, M.Z., Hu, C., Qiu, J.S., 2020. Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors. J. Colloid Interface Sci. 560, 69-76.
    Wang, Q.H., Xia, T., Jia, X.W., Zhao, J.Q., Li, Q.Y., Ao, C.H., Deng, X.Y., Zhang, X.M., Zhang, W., Lu, C.H., 2020. Honeycomb-structured carbon aerogels from nanocellulose and skin secretion of Andrias davidianus for highly compressible binder-free supercapacitors. Carbohydr. Polym. 245, 116554.
    Wang, R., Xuelian, Z., Xu, T., Bian, H., Dai, H., 2021. Research progress on the preparation of lignin-derived carbon dots and graphene quantum dots. J. For. Eng. 6, 29-37.
    Wang, Y.F., Zhang, L., Hou, H.Q., Xu, W.H., Duan, G.G., He, S.J., Liu, K.M., Jiang, S.H., 2021. Recent progress in carbon-based materials for supercapacitor electrodes:a review. J. Mater. Sci. 56, 173-200.
    Wang, Y.L., Qu, Q.L., Cui, J.X., Lu, T., Li, F.H., Zhang, M.J., Liu, K.M., Zhang, Q., He, S.J., Huang, C.B., 2021. Design and fabrication of cellulose derived free-standing carbon nanofiber membranes for high performance supercapacitors. Carbohydr. Polym. Technol. Appl. 2, 100117.
    Wang, Y.M., Lin, X.J., Liu, T., Chen, H., Chen, S., Jiang, Z.J., Liu, J., Huang, J.L., Liu, M.L., 2018. Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 28, 1806207.
    Wang, Y.Y., Li, Y.M., Zhang, W., Yin, P., Shang, L., Ma, R.N., Jia, L.P., Xue, Q.W., He, S.J., Wang, H.S., 2021. Lowly-aggregated perylene diimide as a near-infrared electrochemiluminescence luminophore for ultrasensitive immunosensors at low potentials. Analyst 146, 3679-3685.
    Wang, Z.H., Carlsson, D.O., Tammela, P., Hua, K., Zhang, P., Nyholm, L., Strømme, M., 2015. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9, 7563-7571.
    Waribam, P., Ngo, S.D., Tran, T.T.V., Kongparakul, S., Reubroycharoen, P., Chanlek, N., Wei, L., Zhang, H.B., Guan, G.Q., Samart, C., 2020. Waste biomass valorization through production of xylose-based porous carbon microspheres for supercapacitor applications. Waste Manag. 105, 492-500.
    Wei, L.S., Deng, W.J., Li, S.S., Wu, Z.G., Cai, J.H., Luo, J.W., 2022. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J. Bioresour. Bioprod. 7, 63-72.
    Wu, H., Li, W.Y., Zhao, M.C., Lu, S.C., Huang, L.L., Chen, L.H., 2020. Progress in cellulose-based self-healing gels. J. For. Eng. 5, 11-17.
    Wu, J., Xia, M.W., Zhang, X., Chen, Y.Q., Sun, F., Wang, X.H., Yang, H.P., Chen, H.P., 2020. Hierarchical porous carbon derived from wood tar using crab as the template:performance on supercapacitor. J. Power Sources 455, 227982.
    Wu, Y.T., Chen, H., Lu, Y.Z., Yang, J., Zhu, X.Q., Zheng, Y., Lou, G.B., Wu, Y.T., Wu, Q., Shen, Z.H., Pan, Z.H., 2021. Rational design of cobalt-nickel double hydroxides for flexible asymmetric supercapacitor with improved electrochemical performance. J. Colloid Interface Sci. 581, 455-464.
    Xie, L.J., Sun, G.H., Su, F.Y., Guo, X.Q., Kong, Q.Q., Li, X.M., Huang, X.H., Wan, L., Song, W., Li, K.X., Lv, C.X., Chen, C.M., 2016. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A Mater. Energy Sustain. 4, 1637-1646.
    Xiong, C.Y., Li, M.R., Nie, S.X., Dang, W.H., Zhao, W., Dai, L., Ni, Y.H., 2020. Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free Wood@Polyaniline supercapacitor material for renewable energy storage application. J. Power Sources 471, 228448.
    Xiong, S.S., Jiang, S.Y., Wang, J., Lin, H.J., Lin, M.X., Weng, S.T., Liu, S., Jiao, Y., Xu, Y.C., Chen, J.R., 2020. A high-performance hybrid supercapacitor with NiO derived NiO@Ni-MOF composite electrodes. Electrochim. Acta 340, 135956.
    Xu, B., Chen, Y.F., Wei, G., Cao, G.P., Zhang, H., Yang, Y.S., 2010. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. Mater.Chem. Phys. 124, 504-509.
    Xu, C., Kong, X.Y., Zhou, S.Y., Zheng, B., Huo, F.W., Strømme, M., 2018. Interweaving metal-organic framework-templated Co-Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices. J. Mater. Chem. A 6, 24050-24057.
    Xu, J., Tan, Z.Q., Zeng, W.C., Chen, G.X., Wu, S.L., Zhao, Y., Ni, K., Tao, Z.C., Ikram, M., Ji, H.X., Zhu, Y.W., 2016. A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 28, 5222-5228.
    Xu, T., Du, H.S., Liu, H.Y., Liu, W., Zhang, X.Y., Si, C.L., Liu, P.W., Zhang, K., 2021. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 33, e2101368.
    Xu, X.T., Yang, T., Zhang, Q.W., Xia, W., Ding, Z.B., Eid, K., Abdullah, A.M., Shahriar, A., Hossain, M., Zhang, S.H., Tang, J., Pan, L.K., Yamauchi, Y., 2020. Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chem. Eng. J. 390, 124493.
    Xue, D.F., Zhu, D.Z., Xiong, W., Cao, T.C., Wang, Z.W., Lv, Y.K., Li, L.C., Liu, M.X., Gan, L.H., 2019. Template-free, self-doped approach to porous carbon spheres with high N/O contents for high-performance supercapacitors. ACS Sustain. Chem. Eng. 7, 7024-7034.
    Yan, B., Zheng, J.J., Wang, F., Zhao, L.Y., Zhang, Q., Xu, W.H., He, S.J., 2021. Review on porous carbon materials engineered by ZnO templates:Design, synthesis and capacitance performance. Mater. Des. 201, 109518.
    Yan, H., Li, Y.M., Guo, X.Y., Zhou, M.X., Wang, H.Q., Dai, Y., Zheng, J.C., 2018. Synergistic supercritical water "wet" activated biomass carbon as high performances electrode materials for supercapacitor. J. Electrochem. Soc. 165, A2075-A2083.
    Yang, H.Q., Jiyoung, L., Young, C.J., Wang, Y.F., Duan, G.G., Hou, H.Q., Jiang, S.H., Doo, K.I., 2021. Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries:fundamentals, recent advances, and challenges. Energy Environ. Sci. 14, 4228-4267.
    Yang, L., Guo, X.T., Jin, Z.K., Guo, W.C., Duan, G.G., Liu, X.H., Li, Y.W., 2021. Emergence of melanin-inspired supercapacitors. Nano Today 37, 101075.
    Yang, W.S., Wang, Y.F., Wang, Q.M., Wu, J.L., Duan, G.G., Xu, W.H., Jian, S.J., 2021. Magnetically separable and recyclable Fe3O4@PDA covalent grafted by l-cysteine core-shell nanoparticles toward efficient removal of Pb2+. Vacuum 189, 110229.
    Yu, S., Zhu, X.Q., Lou, G.B., Wu, Y.T., Xu, K.T., Zhang, Y., Zhang, L.M., Zhu, E.H., Chen, H., Shen, Z.H., Bao, B.F., Fu, S.Y., 2018. Sustainable hierarchical porous biomass carbons enriched with pyridinic and pyrrolic nitrogen for asymmetric supercapacitor. Mater. Des. 149, 184-193.
    Zhang, B., He, J.K., Zheng, G.F., Huang, Y.Y., Wang, C., He, P.S., Sui, F.P., Meng, L.C., Lin, L.W., 2021. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes. J. Mater. Sci. Technol. 82, 135-143.
    Zhang, H., Wang, Y.F., Liu, W.L., Kong, F.G., Ren, M.M., Wang, S.J., Wang, X.Q., Duan, X.L., Peng, D., 2018. Designed synthesis of CoO/CuO/rGO ternary nanocomposites as high-performance anodes for lithium-ion batteries. JOM 70, 1793-1799.
    Zhang, Q., Chen, C.J., Chen, W.S., Pastel, G., Guo, X.Y., Liu, S.X., Wang, Q.W., Liu, Y.X., Li, J., Yu, H.P., Hu, L.B., 2019. Nanocellulose-enabled, all-nanofiber, high-performance supercapacitor. ACS Appl. Mater. Interfaces 11, 5919-5927.
    Zhang, W.F., Huang, Z.H., Guo, Z., Li, C., Kang, F.Y., 2010. Porous carbons prepared from deoiled asphalt and their electrochemical properties for supercapacitors.Mater. Lett. 64, 1868-1870.
    Zhang, Y., Liu, L., Zhang, P.X., Wang, J., Xu, M., Deng, Q., Zeng, Z.L., Deng, S.G., 2019. Ultra-high surface area and nitrogen-rich porous carbons prepared by a low-temperature activation method with superior gas selective adsorption and outstanding supercapacitance performance. Chem. Eng. J. 355, 309-319.
    Zhang, Y., Wei, L., Lu, L., Gan, L., Pan, M., 2020. Adsorption-photocatalytic properties of cellulose nanocrystal supported ZnO nanocomposites. J. For. Eng. 5, 29-35.
    Zhang, Z., Li, L., Qing, Y., Lu, X.H., Wu, Y.Q., Yan, N., Yang, W., 2019. Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor. J. Phys. Chem. C 123, 23374-23381.
    Zhang, Z.J., Dong, C., Ding, X.Y., Xia, Y.K., 2015. A generalized ZnCl2 activation method to produce nitrogen-containing nanoporous carbon materials for supercapacitor applications. J. Alloy. Compd. 636, 275-281.
    Zhao, C.J., Ding, Y.W., Huang, Y.X., Li, N., Hu, Y.Q., Zhao, C.H., 2021. Soybean root-derived N, O co-doped hierarchical porous carbon for supercapacitors. Appl. Surf.Sci. 555, 149726.
    Zhao, F., Song, F.X., Chen, Q.L., 2021. Nitrogen/sulfur codoped FCC-slurry-based porous carbon materials in symmetric supercapacitors. Appl. Surf. Sci. 561, 150063.
    Zhao, J., Li, Y.J., Huang, F.G., Zhang, H.Q., Gong, J.W., Miao, C.X., Zhu, K., Cheng, K., Ye, K., Yan, J., Cao, D.X., Wang, G.L., Zhang, X.F., 2018. High-performance asymmetric supercapacitor assembled with three-dimensional, coadjacent graphene-like carbon nanosheets and its composite. J. Electroanal. Chem. 823, 474-481.
    Zhao, X., Mao, L., Cheng, Q.H., Li, J., Liao, F.F., Yang, G.Y., Xie, L., Zhao, C.L., Chen, L.Y., 2020. Two-dimensional spinel structured co-based materials for high performance supercapacitors:a critical review. Chem. Eng. J. 387, 124081.
    Zheng, C., Zhu, S., Lu, Y., Mei, C., Xu, X., Yue, Y., Han, J., 2020. Synthesis and characterization of cellulose nanofibers/polyacrylic acid-polyacrylamide double network electroconductive hydrogel. J. For. Eng. 5, 93-100.
    Zheng, Q.F., Cai, Z.Y., Ma, Z.Q., Gong, S.Q., 2015. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 7, 3263-3271.
    Zheng, S., Zhang, J.W., Deng, H.B., Du, Y.M., Shi, X.W., 2021. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Bioresour. Bioprod. 6, 142-151.
    Zhi, M.J., Liu, S.H., Hong, Z.L., Wu, N.Q., 2014. Electrospun activated carbon nanofibers for supercapacitor electrodes. RSC Adv. 4, 43619-43623.
    Zhou, S.Y., Kong, X.Y., Zheng, B., Huo, F.W., Strømme, M., Xu, C., 2019. Cellulose nanofiber@conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano 13, 9578-9586.
    Zhu, X.Q., Yu, S., Xu, K.T., Zhang, Y., Zhang, L.M., Lou, G.B., Wu, Y.T., Zhu, E.H., Chen, H., Shen, Z.H., Bao, B.F., Fu, S.Y., 2018. Sustainable activated carbons from dead Ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci. 181, 36-45.
    Zong, Q., Yang, H., Wang, Q.Q., Zhang, Q.L., Zhu, Y.L., Wang, H.Y., Shen, Q.H., 2019. Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors. Chem. Eng. J. 361, 1-11.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (22) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint