Volume 7 Issue 4
Oct.  2022
Turn off MathJax
Article Contents
Feiyu Tian, Xinwu Xu. Dynamical mechanical behaviors of rubber-filled wood fiber composites with urea formaldehyde resin[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 320-327. doi: 10.1016/j.jobab.2022.05.004
Citation: Feiyu Tian, Xinwu Xu. Dynamical mechanical behaviors of rubber-filled wood fiber composites with urea formaldehyde resin[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 320-327. doi: 10.1016/j.jobab.2022.05.004

Dynamical mechanical behaviors of rubber-filled wood fiber composites with urea formaldehyde resin

doi: 10.1016/j.jobab.2022.05.004
More Information
  • Corresponding author: E-mail address: xucarpenter@aliyun.com (X. Xu)
  • Received Date: 2021-11-29
  • Accepted Date: 2022-02-21
  • Rev Recd Date: 2022-02-15
  • Available Online: 2022-05-18
  • Publish Date: 2022-11-01
  • Wood composites glued with thermosetting synthetic resins tend to show inadequate damping performance caused by the cured resinous matrix. Waste rubber maintains prominent elasticity and is feasible to be an optional modifier. To that end, composite panels of granulated tire rubber (GTR) powders and thermal-mechanically pulped wood fibers were fabricated in this study. Urea formaldehyde (UF) resin was applied as the bonding agent (10% based on wood/rubber total weight). Dynamical mechanical analysis (DMA) was conducted to disclose the thermo-mechanical behaviors of the rubber-filled wood fiber composites. Influence of two technical parameters, i.e., GTR powder size (0.55–1.09 mm) and addition content (10%, 20% and 30% based on wood/rubber total weight), was specifically discussed. The results showed that storage modulus (E') of the rubber-filled composite decreased while loss factor (tan δ) increased monotonously along with elevated temperature. A steady "plateau" region among 110–170 ℃ was found where both E' and tan δ keep constant. Accordingly, tan δ showed two peak values at 103–108 and 231–233 ℃ due to glass transition of lignin and thermal degradation of hemicellulose, respectively. Addition of rubber fillers resulted in lower bending and internal bonding strengths as well as storage modulus values. When the temperature was above 183 ℃, all the rubber-filled composites showed higher tan δ values than the control. The findings above fully demonstrate the improved damping performance of the UF-bonded wood fiber composites on account of rubber component. Further work is still needed to optimize the rubber/fiber interfacial bonding strength.

     

  • Conflict of Interest  There are no conflicts to declare.
  • loading
  • Ayrilmis, N., Buyuksari, U., Avci, E., 2009a. Utilization of waste tire rubber in manufacture of oriented strandboard. Waste Manag. 29, 2553–2557. doi: 10.1016/j.wasman.2009.05.017
    Ayrilmis, N., Buyuksari, U., Avci, E., 2009b. Utilization of waste tire rubber in the manufacturing of particleboard. Mater. Manuf. Process. 24, 688–692. doi: 10.1080/10426910902769376
    Bai, W., 2009. New Application of Crystalline Cellulose in Rubber Composites. Oregon: Oregon State University.
    Chang, B.P., Gupta, A., Muthuraj, R., Mekonnen, T.H., 2021. Bioresourced fillers for rubber composite sustainability: current development and future opportunities. Green Chem. 23, 5337–5378. doi: 10.1039/d1gc01115d
    Han, S.G., Na, B., Luo, W.J., Wu, Y.F., Lu, X.N., 2011. DMA spectra analysis of fast-growing poplar with different moisture contents. J. Northeast. For. Univ. 39, 69–70, 96.
    Jacob, M., Francis, B., Thomas, S., Varughese, K.T., 2006. Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites. Polym. Compos. 27, 671–680. doi: 10.1002/pc.20250
    Jain, N., Verma, A., Singh, V.K., 2019. Dynamic mechanical analysis and creep-recovery behaviour of polyvinyl alcohol based cross-linked biocomposite reinforced with basalt fiber. Mater. Res. Express 6, 105373. doi: 10.1088/2053-1591/ab4332
    Kazemi, H., Mighri, F., Park, K.W., Frikha, S., Rodrigue, D., 2022. Effect of cellulose fiber surface treatment to replace carbon black in natural rubber hybrid composites. Rubber Chem. Technol. 95, 128–146. doi: 10.5254/rct.21.78988
    Kim, D.Y., Nishiyama, Y., Wada, M., Kuga, S., Okano, T., 2001. Thermal decomposition of cellulose crystallites in wood. Holzforschung 55, 521–524. doi: 10.1515/hf.2001.084
    Onic, L., Bucur, V., Ansell, M.P., Pizzi, A., Deglise, X., Merlin, A., 1998. Dynamic thermomechanical analysis as a control technique for thermoset bonding of wood joints. Int. J. Adhesion Adhesives 18, 89–94. doi: 10.1016/S0143-7496(97)00049-3
    Roy, K., Chandra Debnath, S., Das, A., Heinrich, G., Potiyaraj, P., 2018. Exploring the synergistic effect of short jute fiber and nanoclay on the mechanical, dynamic mechanical and thermal properties of natural rubber composites. Polym. Test. 67, 487–493. doi: 10.1016/j.polymertesting.2018.03.032
    Saji, J., Khare, A., Choudhary, R.N.P., Mahapatra, S.P., 2014. Visco-elastic and dielectric relaxation behavior of multiwalled carbon-nanotube reinforced silicon elastomer nanocomposites. J. Polym. Res. 21, 1–13.
    Samantarai, S., Nag, A., Singh, N., Dash, D., Nando, G.B., Das, N.C., 2019. Physico-mechanical and dynamic mechanical properties of meta-pentadecenyl phenol functionalized acrylonitrile–butadiene rubber nanoclay composites. Rubber Chem. Technol. 92, 496–512. doi: 10.5254/rct.19.81486
    Singh, K., Jain, N., Verma, A., Singh, V.K., Chauhan, S., 2020. Functionalized graphite–reinforced cross-linked poly(vinyl alcohol) nanocomposites for vibration isolator application: morphology, mechanical, and thermal assessment. Matls. Perf. Charact. 9, 20190254. doi: 10.1520/MPC20190254
    Song, X.M., 1995. Wood Fiber and Recycled Tire Rubber Hybrid Composites. Michigan: Michigan Technological University.
    Srivastava, S.K., Mishra, Y.K., 2018. Nanocarbon reinforced rubber nanocomposites: detailed insights about mechanical, dynamical mechanical properties, payne, and mullin effects. Nanomaterials (Basel)8, 945. doi: 10.3390/nano8110945
    Sun, W., 2009. Study on Wood-Rubber Composites and Application in Soundproof Flooring. Beijing: Beijing Forestry University.
    Tunnicliffe, L.B., Nelson, K., Pan, S.B., Curtis, J., Herd, C.R., 2020. Reinforcement of rubber by carbon black and lignin-coated nanocellulose fibrils. Rubber Chem. Technol. 93, 633–651. doi: 10.5254/rct.20.79961
    Verma, A., Singh, C., Singh, V.K., Jain, N., 2019. Fabrication and characterization of chitosan-coated sisal fiber: phytagel modified soy protein-based green composite. J. Compos. Mater. 53, 2481–2504. doi: 10.1177/0021998319831748
    Wang, J.W., Laborie, M.P.G., Wolcott, M.P., 2009. Kinetic analysis of phenol-formaldehyde bonded wood joints with dynamical mechanical analysis. Thermochim. Acta 491, 58–62. doi: 10.1016/j.tca.2009.03.001
    Weilert, I., Giese, U., 2021. Lightweight elastomer compounds reinforced with cellulose nanofibrils and a carbon black hybrid filler system. Rubber Chem. Technol. 94, 145–159. doi: 10.5254/rct.20.80404
    Xu, X.W., Chen, L., Han, J.Q., Zhan, X.X., 2019. Influence of silane/MaPE dual coupling agents on the rheological and mechanical properties of sawdust/rubber/HDPE composites. Holzforschung 73, 605–611. doi: 10.1515/hf-2018-0181
    Xu, X.W., Tian, F.Y., Li, X.K., 2020. Regenerated waste tire powders as fillers for wood fiber composites. BioResources 15, 3029–3040. doi: 10.15376/biores.15.2.3029-3040
    Zhao, J., Wang, X.M., Chang, J.M., Zheng, K., 2008. Optimization of processing variables in wood-rubber composite panel manufacturing technology. Bioresour. Technol. 99, 2384–2391. doi: 10.1016/j.biortech.2007.05.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (463) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return