Turn off MathJax
Article Contents
Ancy S Watson, Suhara Beevy S. Physico-Mechanical Characteristics of Bast Fibres of Sesamum indicum and Sesamum radiatum for Bioprospecting[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2022.07.003
Citation: Ancy S Watson, Suhara Beevy S. Physico-Mechanical Characteristics of Bast Fibres of Sesamum indicum and Sesamum radiatum for Bioprospecting[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2022.07.003

Physico-Mechanical Characteristics of Bast Fibres of Sesamum indicum and Sesamum radiatum for Bioprospecting

doi: 10.1016/j.jobab.2022.07.003
  • Received Date: 2022-04-10
  • Accepted Date: 2022-07-19
  • Rev Recd Date: 2022-07-15
  • Available Online: 2022-09-20
  • Natural fibres are renewable, inexpensive and biodegradable sources of sustainable materials from plants or animals. Bast fibres, as the notable natural fibres, are gathered from the outer cell layers of the stem of plant. Mature and young bast fibres from two species of Sesamum, namely Sesamum indicum L. and S. radiatum Schumach. & Thonn. were extracted through traditional water retting technique and analyzed for their physical, mechanical and chemical attributes. Anatomical studies revealed polygon shaped phloem (bast fibre) cells with small lumen were similar to jute, in terms of architecture, and bagasse, in terms of lumen size. Upon extraction and subsequent drying, the young stems of S. radiatum were found to yield more bast fibres by mass compared with the rest of the Sesamum samples, that was, 0.59 g (dry weight) of bast fibres from 100 g (fresh weight) of stem. According to stereo microscopic images, the mature S. radiatum fibres had rougher edges than the rest. Both S. indicum and S. radiatum fibre surfaces also seemed to have pores, according to scanning electron microscopy (SEM) images. The porosity appeared to get more pronounced as the plants got older. The Sesamum bast fibres were also found to be extremely hydrophilic with a high-water retention value. The fibres obtained from S. radiatum were determined to be suitable for the textile industry due to their light colour, ideal diameter and length, and water-holding capacity that matched the requirements of fabric manufacturing. Even in the absence of a mordant, the mature fibres showed a significant degree and evenness of Alizarin dye attachment, which might be correlated to the increase in fibre surface roughness with fibre maturity. These fibres were also discovered to be comparable with jute in terms of phloem cell shape (polygonal), diameter (13–15 m), tenacity (12.86–32.54 gf/(g·km–1)), and linear density (2.5–3.3 g/km). It suggested that they might find industrial applications if further research were to be done.

     

  • loading
  • Akhila, H., Beevy, S.S., 2011. Morphological and seed protein characterization of the cultivated and the wild taxa of Sesamum L. Plant Syst. Evol. 293, 65-70.
    Akhila, H., Beevy, S.S., 2015a. Quantification of seed oil and evaluation of antioxidant properties in the wild and cultivated species of Sesamum L. (Pedaliaceae). Int. J. Pharm.Pharm. Sci. 7, 136-142.
    Akhila, H., Beevy, S.S., 2015b. Palynological characterization of species of Sesamum(Pedaliaceae) from Kerala:a systematic approach. Plant Syst. Evol. 301, 2179-2188.
    Akin, D.E., Foulk, J.A., Dodd, R.B., 2002. Influence on flax fibers of components in enzyme retting formulations. Text. Res. J. 72, 510-514.
    Alam, S., Khan, G.M.A., 2007. Chemical analysis of okra bast fiber (Abelmoschus esculentus) and its physicochemical properties. J. Text. Appar. Technol. Manage 5, 1-9.
    Al-Oqla, F.M., 2021a. Effects of intrinsic mechanical characteristics of lignocellulosic fibres on the energy absorption and impact rupture stress of low density polyethylene biocomposites. Int. J. Sustain. Eng. 14, 2009-2017.
    Al-Oqla, F.M., Hayajneh, M.T., 2021b. A hierarchy weighting preferences model to optimise green composite characteristics for better sustainable bio-products. Int. J. Sustain. Eng. 14, 1043-1048.
    Al-Oqla, F.M., Hayajneh, M.T., Al-Shrida, M.M., 2022. Mechanical performance, thermal stability and morphological analysis of date palm fiber reinforced polypropylene composites toward functional bio-products. Cellulose 29, 3293-3309.
    Al-Oqla, F.M., Sapuan, S.M., Jawaid, M., 2016. Integrated mechanical-economic-environmental quality of performance for natural fibers for polymeric-based composite materials. J. Nat. Fibers 13, 651-659.
    Anandjiwala, R.D., Blouw, S., 2007. Composites from bast fibres-prospects and potential in the changing market environment. J. Nat. Fibers 4, 91-109.
    Anilakumar, K.R., Pal, A., Khanum, F., Bawa, A.S., 2010. Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds:an overview. Agric. Conspec. Sci. 75, 159-168.
    Asmare, T., 2017. Effect of maturity on fundamental properties of nettle fibers. Technol. JTFT, 1, 1-10.
    Babu, D.R., Kumar, P.V.R., Rani, C.V.D., Reddy, A.V., 2004. Studies on combining ability for yield and yield components in sesame (Sesamum indicum L.). Res. Crop., 2, 409-413.
    Bedigian, D., 2010. Characterization of sesame (Sesamum indicum L.) germplasm:a critique.Genet Resour Crop Evol 57, 641-647.
    Caffall, K.H., Mohnen, D., 2009. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344, 1879-1900.
    Cheng, Q.Z., Wang, S.Q., Rials, T.G., Lee, S.H., 2007. Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14, 593-602.
    Cook, J, 1984. Handbook of Textile Fibres:Man-Made Fibres. New Delhi:Woodhead Publishing Limited.
    Dam, J.E.G.V., van den Oever, M.J.A., Teunissen, W., Keijsers, E.R.P., Peralta, A.G., 2004. Process for production of high density/high performance binderless boards from whole coconut husk. Ind. Crops Prod. 19, 207-216.
    Das, N.R., 2007. Introduction to Crops of India. India:Scientific Publishers, 157.
    Elseify, L.A., Midani, M., Shihata, L.A., El-Mously, H., 2019. Review on cellulosic fibers extracted from date palms (Phoenix Dactylifera L.) and their applications. Cellulose 26, 2209-2232.
    González-Chi, P.I., Rodríguez, G.V., Gómez-Cruz, R., 2002. Thermoplastic composites reinforced with banana (Musa paradisiaca L.) wastes. Int. J. Polym. Mater. Polym. Biomater. 51, 685-694.
    Gupta, U.S., Dhamarikar, M., Dharkar, A., Tiwari, S., Namdeo, R., 2020. Study on the effects of fibre volume percentage on banana-reinforced epoxy composite by finite element method.Adv Compos Hybrid Mater 3, 530-540.
    Herlina Sari, N., Wardana, I.N.G., Irawan, Y.S., Siswanto, E., 2018. Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks. J. Nat. Fibers 15, 545-558.
    Heyne, K., 1987. Useful Plants of Indonesia. Forestry Research and Development Agency, Ministry of Forestry, 2, 1188-1189.
    Jeyaraj, S., Beevy, S.S, 2020. A comparative study on the reproductive success of two species of Sesamum L. (Pedaliaceae). Adv. Zool. Bot. 8, 144-153.
    Karimah, A., Ridho, M.R., Munawar, S.S., Adi, D.S., Ismadi, Damayanti, R., Subiyanto, B., Fatriasari, W., Fudholi, A., 2021. A review on natural fibers for development of eco-friendly bio-composite:characteristics, and utilizations. J. Mater. Res. Technol. 13, 2442-2458.
    Kobayashi, T., 1991. Cytogenetics of Sesame (Sesamum indicum). Developments in Plant Genetics and Breeding. Amsterdam:Elsevier, 581-592.
    Lewin, M., Pearce, E.M., 1998. Handbook of Fiber Chemistry, Revised and Expanded. Boca Raton:CRC Press.
    Maher, R.R., Wardman, R.H., 2015. The Chemistry of Textile Fibres (2nd Edition). London:Royal Society of Chemistry.
    Martin, N., Mouret, N., Davies, P., Baley, C., 2013. Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind.Crops Prod. 49, 755-767.
    Mohanty, A.K., Misra, M., 1995. Studies on jute composites:a literature review. Polym. Plast.Technol. Eng. 34, 729-792.
    Moharir, A.V., 2000. Structure and determinants of fibre strength in native cotton. Indian J. Fibre Text. Res. 25, 1-7.
    Monteiro, S.N., Satyanarayana, K.G., Ferreira, A.S., Nascimento, D.C.O., Lopes, F.P.D., Silva, I.L.A., Bevitori, A.B., Inácio, W.P., Bravo Neto, J., Portela, T.G., 2010. Selection of high strength natural fibers. Matéria (Rio J.) 15, 488-505.
    Morinaga, T., Fukushima, E., Kano, T., Maruyama, Y., Yamasaki, Y., 1929. Chromosome numbers of cultivated plants II. Shokubutsugaku Zasshi 43, 589-594.
    Morrison III, W.H., Archibald, D.D., Sharma, H.S.S., Akin, D.E., 2000. Chemical and physical characterization of water-and dew-retted flax fibers. Ind. Crops Prod. 12, 39-46.
    Morrison, T.A., Jung, H.G., Buxton, D.R., Hatfield, R.D., 1998. Cell-wall composition of maize internodes of varying maturity. Crop Sci. 38, 455-460.
    Mwaikambo, L.Y., 2006. Review of the history, properties and application of plant fibres. Afr. J.Sci. Tech., 7, 121.
    Nayar, N.M., Mehra, K.L., 1970. Sesame:its uses, botany, cytogenetics, and origin. Econ Bot 24, 20-31.
    Pham, T.D., Nguyen, T.D.T., Carlsson, A.S., Bui, T.M., 2010. Morphological evaluation of sesame (Sesamum indicum L.) varieties from different origins. Aust. J. Crop Sci. 4, 498-504.
    Pickering, K.L., Efendy, M.G.A., Le, T.M., 2016. A review of recent developments in natural fibre composites and their mechanical performance. Compos. A Appl. Sci. Manuf. 83, 98-112.
    Pothan, L.A., Thomas, S., Neelakantan, N.R., 1997. Short banana fiber reinforced polyester composites:mechanical, failure and aging characteristics. J. Reinf. Plast. Compos. 16, 744-765.
    Ramaswamy, G.N., Ruff, C.G., Boyd, C.R., 1994. Effect of bacterial and chemical retting on kenaf fiber quality. Text. Res. J. 64, 305-308.
    Ramesh, M., Deepa, C., Kumar, L.R., Sanjay, M.R., Siengchin, S., 2020. Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites:a critical review. J. Ind. Text., 152808372092473.
    Rippon, J.A., Evans, D.J., 2020. Improving the Properties of Natural Fibres by Chemical Treatments. Handbook of Natural Fibres. Amsterdam:Elsevier, 245-321.
    Sadrmanesh, V., Chen, Y., 2019. Bast fibres:structure, processing, properties, and applications.Int. Mater. Rev. 64, 381-406.
    Santhosh, J., 2014. Study of properties of banana fiber reinforced composites. Int. J. Res. Eng.Technol. 3, 144-150.
    Santoso, B., 2009. Peluang pengembangan agave sebagai sumber serat alam. Perspektif, 8, 84-95.
    Sari, N.H., Pruncu, C.I., Sapuan, S.M., Ilyas, R.A., Catur, A.D., Suteja, S., Sutaryono, Y.A., Pullen, G., 2020. The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite. Polym. Test. 91, 106751.
    Sari, N.H., Wardana, I.N.G., Irawan, Y.S., Siswanto, E., 2017. Corn husk fiber-polyester composites as sound absorber:nonacoustical and acoustical properties. Adv. Acoust. Vib. 2017, 4319389.
    Shah, M., Manaf, A., Hussain, M., Farooq, S., 2013. Sulphur fertilization improves the sesame productivity and economic returns under rainfed conditions. Int. J. Agric. Biol., 15, 1301-1306.
    Siakeng, R., Jawaid, M., Tahir, P.M., Siengchin, S., Asim, M., 2020. Improving the properties of pineapple leaf fibres by chemical treatments. Pineapple Leaf Fibers. Singapore:Springer Singapore, 55-71.
    Sinclair, R., 2014. Textiles and fashion:materials, design and technology. Text. Fash. Mater.Des. Technol., 1-845.
    Singh, B.P., 2010. Bast fibres:from plants to products. Industrial crops and uses. CABI. 313.
    Smole, M.S., Hribernik, S., 2013. Plant fibres for textile and technical applications. In:Advances in Agrophysical Research. Rijeka:InTech.
    Tanushree, C.B., 2016. Characterization and mechanical properties of bast fibre. Int. J. Home Sci. 2, 291-295.
    Tisket, A., 2008. Materials:Cloth, Wood, and Paper. New York:The McGraw-Hill Companies.
    Van Sumere, C., 1992. Retting of flax with special reference to enzyme-retting. Available at:https://biblio.ugent.be/publication/222219.
    Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., Santas, R., 2004. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crops Prod. 19, 245-254.
    Wang, H., Schubel, P., Yi, X.S., Zhu, J., Ulven, C., Qiu, Y.P., 2015. Green composite materials.Adv. Mater. Sci. Eng. 2015, 487416.
    Zakikhani, P., Zahari, R., Sultan, M.T.H., Majid, D.L., 2014. Extraction and preparation of bamboo fibre-reinforced composites. Mater. Des. 63, 820-828.
    Zuluaga, R., Putaux, J.L., Restrepo, A., Mondragon, I., Gañán, P., 2007. Cellulose microfibrils from banana farming residues:isolation and characterization. Cellulose 14, 585-592.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (12) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return