Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Bidhan Nath, Guangnan Chen, Les Bowtell, Ahmed Mahmood Raid. Assessment of densified fuel quality parameters: A case study for wheat straw pellet[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 45-58. doi: 10.1016/j.jobab.2022.10.001
Citation: Bidhan Nath, Guangnan Chen, Les Bowtell, Ahmed Mahmood Raid. Assessment of densified fuel quality parameters: A case study for wheat straw pellet[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 45-58. doi: 10.1016/j.jobab.2022.10.001

Assessment of densified fuel quality parameters: A case study for wheat straw pellet

doi: 10.1016/j.jobab.2022.10.001
More Information
  • Corresponding author: E-mail address: Bidhan.nath@usq.edu.au (B. Nath)
  • Received Date: 2022-09-01
  • Accepted Date: 2022-10-04
  • Rev Recd Date: 2022-09-27
  • Available Online: 2022-10-20
  • Publish Date: 2023-02-01
  • An investigation was conducted to examine the impact of additive mixing with wheat straw (WS) for pellet making. This study manufactured seven types of pellets with different additive combinations to evaluate pellet quality characteristics and their relationships. A laboratory-type hammer mill and a pellet mill were used for feedstock preparation and pellet production. Experimental investigations showed that the lignin content increased from 7.0% to 13.1%, which was a primary need for pelletization. Also, the heating value rose from 17.02 to 20.36 MJ/kg. However, the ash content also increased from 7.09% to 16.2%. Results showed that dimension (length and diameter), durability, and tensile strength increased significantly with additives while the fines content decreased. The fines content had an inverse relationship with durability and strength. Wheat straw (60%), together with 10% sawdust (SD), 10% corn starch (CS), 10% bentonite clay (BC), and 10% biochar (BiC), was optimal with good pellet performance (T7). In addition, both the T5 pellets (70% WS, 10% SD, 10% BiC, and 10% BC) and the T6 pellets (70% WS, 10% SD, 10% BiC, and 10% CS) provide suitable quality according to EN plus 2015 standard requirements. The ash content of produced pellet was higher than the recommended value, which suggests that further research onto the alternative additive use for ash reduction is needed.


  • Declaration of Competing Interest There are no conflicts to declare.
  • loading
  • Agar, D.A., Rudolfsson, M., Kalén, G., Campargue, M., da Silva Perez, D., Larsson, S.H., 2018. A systematic study of ring-die pellet production from forest and agricultural biomass. Fuel Process. Technol. 180, 47–55. doi: 10.1016/j.fuproc.2018.08.006
    Al-Widyan, M.I., Al-Jalil, H.F., 2001. Stress-density relationship and energy requirement of compressed olive cake. Appl. Eng. Agric. 17, 749–753.
    Assi, A., Bilo, F., Zanoletti, A., Ponti, J., Valsesia, A., Spina, R.L., Depero, L.E., Bontempi, E., 2020. Review of the reuse possibilities concerning ash residues from thermal process in a medium-sized urban system in northern Italy. Sustainability 12, 4193. doi: 10.3390/su12104193
    Brand, M.A., Jacinto, R.C., Antunes, R., da Cunha, A.B., 2017. Production of briquettes as a tool to optimize the use of waste from rice cultivation and industrial processing. Renew. Energy 111, 116–123. doi: 10.1016/j.renene.2017.03.084
    Carroll, J.P., Finnan, J., 2012. Physical and chemical properties of pellets from energy crops and cereal straws. Biosyst. Eng. 112, 151–159. doi: 10.1016/j.biosystemseng.2012.03.012
    Carvalho, L., Wopienka, E., Pointner, C., Lundgren, J., Verma, V.K., Haslinger, W., Schmidl, C., 2013. Performance of a pellet boiler fired with agricultural fuels. Appl. Energy 104, 286–296. doi: 10.1016/j.apenergy.2012.10.058
    Demirbas, A., 2004. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30, 219–230. doi: 10.1016/j.pecs.2003.10.004
    El-Sayed, S.A., Elsaid Mohamed, M.K., 2018. Mechanical properties and characteristics of wheat straw and pellets. Energy Environ. 29, 1224–1246. doi: 10.1177/0958305x18772414
    El-Sobky, E.S.E.A., 2017. Effect of burned rice straw, phosphorus and nitrogen fertilization on wheat (Triticum aestivum L. ). Ann. Agric. Sci. 62, 113–120. doi: 10.1016/j.aoas.2017.05.007
    Emami, S., Tabil, L., Adapa, P., George, E., Tilay, A., Dalai, A., Drisdelle, M., Ketabi, L., 2014. Effect of fuel additives on agricultural straw pellet quality. Int. J. Agric. Biol. Eng. 7, 92–100.
    Fasina, O.O., 2008. Physical properties of peanut hull pellets. Bioresour. Technol. 99, 1259–1266. doi: 10.1016/j.biortech.2007.02.041
    Gil, M.V., Oulego, P., Casal, M.D., Pevida, C., Pis, J.J., Rubiera, F., 2010. Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresour. Technol. 101, 8859–8867. doi: 10.1016/j.biortech.2010.06.062
    Halder P.K., Hossain, M.A., Paul, N., Khan, I., 2014. Agricultural residue potential for electricity generation in Bangladesh. IOSR J. Mech. Civil Eng., 11, 89–95. doi: 10.9790/1684-11238995
    Holt, G.A., Blodgett, T.L., Nakayama, F.S., 2006. Physical and combustion characteristics of pellet fuel from cotton gin by-products produced by select processing treatments. Ind. Crops Prod. 24, 204–213. doi: 10.1016/j.indcrop.2006.06.005
    Huangfu, Y.B., Li, H.X., Chen, X.F., Xue, C.Y., Chen, C., Liu, G.Q., 2014. Effects of moisture content in fuel on thermal performance and emission of biomass semi-gasified cookstove. Energy Sustain. Dev. 21, 60–65. doi: 10.1016/j.esd.2014.05.007
    Iroba, K., Tabil, L., Sokhansanj, S., Venkatesh, M., 2014. Producing durable pellets from barley straw subjected to radio frequency-alkaline and steam explosion pretreatments. Int. J. Agric. Biol. Eng. 7, 68–82.
    Ishii, K., Furuichi, T., 2014. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets. Waste Manag. 34, 2621–2626. doi: 10.1016/j.wasman.2014.08.008
    Islam, M., Hashem, M.A., Islam, S., Alam, M., Rahim, M., Akterruzzaman, M., 2021. Utilization of crop residues in rural household of Bangladesh. Progressive Agric. 31, 164–177. doi: 10.3329/pa.v31i3.52119
    Järvinen, T., Agar, D., 2014. Experimentally determined storage and handling properties of fuel pellets made from torrefied whole-tree pine chips, logging residues and beech stem wood. Fuel 129, 330–339. doi: 10.1016/j.fuel.2014.03.057
    Jiang, L.B., Yuan, X.Z., Li, H., Chen, X.H., Xiao, Z.H., Liang, J., Leng, L.J., Guo, Z., Zeng, G.M., 2016. Co-pelletization of sewage sludge and biomass: thermogravimetric analysis and ash deposits. Fuel Process. Technol. 145, 109–115. doi: 10.1016/j.fuproc.2016.01.027
    Kaliyan, N., Vance Morey, R., 2009. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33, 337–359. doi: 10.1016/j.biombioe.2008.08.005
    Karim, M., Karim, R., Islam, M., Muhammad-Sukki, F., Bani, N., Muhtazaruddin, M.N., 2019. Renewable energy for sustainable growth and development: an evaluation of law and policy of Bangladesh. Sustainability 11, 1–30.
    Kashaninejad, M., Tabil, L.G., 2011. Effect of microwave–chemical pre-treatment on compression characteristics of biomass grinds. Biosyst. Eng. 108, 36–45. doi: 10.1016/j.biosystemseng.2010.10.008
    Kashaninejad, M., Tabil, L.G., Knox, R., 2014. Effect of compressive load and particle size on compression characteristics of selected varieties of wheat straw grinds. Biomass Bioenergy 60, 1–7. doi: 10.1016/j.biombioe.2013.11.017
    Khan, M., Hussain, M., Deviatkin, I., Havukainen, J., Horttanainen, M., 2021, Environmental impacts of wooden, plastic, and wood-polymer composite pallet: a life cycle assessment approach. Int. J. Life Cycle Assessment 26, 1607–1622. doi: 10.1007/s11367-021-01953-7
    Liu, Z.J., Liu, X.E., Fei, B.H., Jiang, Z.H., Cai, Z.Y., Yu, Y., 2013. The properties of pellets from mixing bamboo and rice straw. Renew. Energy 55, 1–5. doi: 10.1016/j.renene.2012.12.014
    Liu, Z.J., Mi, B.B., Jiang, Z.H., Fei, B.H., Cai, Z.Y., Liu, X.E., 2016. Improved bulk density of bamboo pellets as biomass for energy production. Renew. Energy 86, 1–7. doi: 10.1016/j.renene.2015.08.011
    Mahapatra, A.K., Harris, D.L., Durham, D.L., Lucas, S., Terrill, T.H., Kouakou, B., Kannan, G., 2010. Effects of moisture change on the physical and thermal properties of sericea lespedeza pellets. Int. Agricult. Eng. J. 19, 23–29.
    Mani, S., Tabil, L.G., Sokhansanj, S., 2004. Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenergy 27, 339–352. doi: 10.1016/j.biombioe.2004.03.007
    Mani, S., Tabil, L.G., Sokhansanj, S., 2006. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30, 648–654. doi: 10.1016/j.biombioe.2005.01.004
    Masud, M.H., Nuruzzaman, M., Ahamed, R., Ananno, A.A., Tomal, A.N.M.A., 2019. Renewable energy in Bangladesh: current situation and future prospect. Int. J. Sustain. Energy 39, 132–175.
    Nguyen, Q.N., Cloutier, A., Stevanovic, T., Achim, A., 2017. Pressurized hot water treatment of sugar maple and yellow birch wood particles for high quality fuel pellet production. Biomass Bioenergy 98, 206–213. doi: 10.1016/j.biombioe.2017.01.028
    Niedziółka, I., Szpryngiel, M., Kachel-Jakubowska, M., Kraszkiewicz, A., Zawiślak, K., Sobczak, P., Nadulski, R., 2015. Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass. Renew. Energy 76, 312–317. doi: 10.1016/j.renene.2014.11.040
    Nilsson, D., Bernesson, S., Hansson, P.A., 2011. Pellet production from agricultural raw materials: a systems study. Biomass Bioenergy 35, 679–689. doi: 10.1016/j.biombioe.2010.10.016
    Nunes, L.J.R., Matias, J.C.O., Catalão, J.P.S., 2014. Mixed biomass pellets for thermal energy production: a review of combustion models. Appl. Energy 127, 135–140. doi: 10.1016/j.apenergy.2014.04.042
    Núñez-Retana, V.D., Rosales-Serna, R., Prieto-Ruíz, J. Á., Wehenkel, C., Carrillo-Parra, A., 2020. Improving the physical, mechanical and energetic properties of Quercus spp. wood pellets by adding pine sawdust. PeerJ 8, e9766. doi: 10.7717/peerj.9766
    Olsson, A.M., Salmén, L., 1997. The effect of lignin composition on the viscoelastic properties of wood. Nord. Pulp Pap. Res. J. 12, 140–144. doi: 10.3183/npprj-1997-12-03-p140-144
    Pampuro, N., Busato, P., Cavallo, E., 2018. Effect of densification conditions on specific energy requirements and physical properties of compacts made from hop cone. Energies 11, 2389. doi: 10.3390/en11092389
    Pokhrel, G., Han, Y., Gardner, D.J., 2021. Comparative study of the properties of wood flour and wood pellets manufactured from secondary processing mill residues. Polymers 13, 2487. doi: 10.3390/polym13152487
    Pradhan, P., Mahajani, S.M., Arora, A., 2018. Production and utilization of fuel pellets from biomass: a review. Fuel Process. Technol. 181, 215–232. doi: 10.1016/j.fuproc.2018.09.021
    Ríos-Badrán, I.M., Luzardo-Ocampo, I., García-Trejo, J.F., Santos-Cruz, J., Gutiérrez-Antonio, C., 2020. Production and characterization of fuel pellets from rice husk and wheat straw. Renew. Energy 145, 500–507. doi: 10.1016/j.renene.2019.06.048
    Romasanta, R.R., Sander, B.O., Gaihre, Y.K., Alberto, M.C., Gummert, M., Quilty, J., Nguyen, V.H., Castalone, A.G., Balingbing, C., Sandro, J., Correa, T. Jr, Wassmann, R., 2017. How does burning of rice straw affect CH4 and N2O emissions? A comparative experiment of different on-field straw management practices. Agric. Ecosyst. Environ. 239, 143–153. doi: 10.1016/j.agee.2016.12.042
    Sadaka, S., Negi, S., 2009. Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ. Prog. Sustain. Energy 28, 427–434. doi: 10.1002/ep.10392
    Samuelsson, R., Larsson, S.H., Thyrel, M., Lestander, T.A., 2012. Moisture content and storage time influence the binding mechanisms in biofuel wood pellets. Appl. Energy 99, 109–115. doi: 10.1016/j.apenergy.2012.05.004
    Serrano, C., Monedero, E., Lapuerta, M., Portero, H., 2011. Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process. Technol. 92, 699–706. doi: 10.1016/j.fuproc.2010.11.031
    Shaw, M.D., Karunakaran, C., Tabil, L.G., 2009. Physicochemical characteristics of densified untreated and steam exploded poplar wood and wheat straw grinds. Biosyst. Eng. 103, 198–207. doi: 10.1016/j.biosystemseng.2009.02.012
    Stelte, W., Clemons, C., Holm, J.K., Ahrenfeldt, J., Henriksen, U.B., Sanadi, A.R., 2011. Thermal transitions of the amorphous polymers in wheat straw. Ind. Crops Prod. 34, 1053–1056. doi: 10.1016/j.indcrop.2011.03.014
    Tabil, L.G., 1996. Binding and pelleting characteristics of alfalfa. Saskatchewan: University of Saskatchewan, Saskatchewan.
    Telmo, C., Lousada, J., 2011. Heating values of wood pellets from different species. Biomass Bioenergy 35, 2634–2639. doi: 10.1016/j.biombioe.2011.02.043
    Theerarattananoon, K., Xu, F., Wilson, J., Staggenborg, S., McKinney, L., Vadlani, P., Pei, Z.J., Wang, D.H., 2012. Effects of the pelleting conditions on chemical composition and sugar yield of corn stover, big bluestem, wheat straw, and sorghum stalk pellets. Bioprocess Biosyst. Eng. 35, 615–623. doi: 10.1007/s00449-011-0642-8
    Tilay, A., Azargohar, R., Drisdelle, M., Dalai, A., Kozinski, J., 2015. Canola meal moisture-resistant fuel pellets: study on the effects of process variables and additives on the pellet quality and compression characteristics. Ind. Crops Prod. 63, 337–348. doi: 10.1016/j.indcrop.2014.10.008
    Ungureanu, N., Vladut, V., Voicu, G., Dinca, M.N., Zabava, B.S., 2018. Influence of biomass moisture content on pellet properties: review. Engineering for Rural Development 1876–1883.
    Yılmaz, H., Çanakcı, M., Topakcı, M., Karayel, D., 2021. The effect of raw material moisture and particle size on agri-pellet production parameters and physical properties: a case study for greenhouse melon residues. Biomass Bioenergy 150, 106125. doi: 10.1016/j.biombioe.2021.106125
    Zafari A., Kianmehr M.H., 2014. Factors affecting mechanical properties of biomass pellet from compost. Environ. Technol. 35, 478–486. doi: 10.1080/09593330.2013.833639
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (3) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint