Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Hongwei Ma, Zhiyong Cheng, Xiaobai Li, Bin Li, Yujie Fu, Jianchun Jiang. Advances and challenges of cellulose functional materials in sensors[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 15-32. doi: 10.1016/j.jobab.2022.11.001
Citation: Hongwei Ma, Zhiyong Cheng, Xiaobai Li, Bin Li, Yujie Fu, Jianchun Jiang. Advances and challenges of cellulose functional materials in sensors[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 15-32. doi: 10.1016/j.jobab.2022.11.001

Advances and challenges of cellulose functional materials in sensors

doi: 10.1016/j.jobab.2022.11.001
More Information
  • Corresponding author: E-mail address: libin82192699@nefu.edu.cn (B. Li); E-mail address: yujie_fu@163.com (Y. Fu); E-mail address: bio-energy@163.com (J. Jiang)
  • Received Date: 2022-06-29
  • Accepted Date: 2022-10-08
  • Rev Recd Date: 2022-10-01
  • Available Online: 2022-11-10
  • Publish Date: 2023-02-01
  • As the most abundant natural polymer material on the earth, cellulose is a promising sustainable sensing material due to its high mechanical strength, excellent biocompatibility, good degradation, and regeneration ability. Considering the inherent advantages of cellulose and the success of modern sensors, applying cellulose to sensors has always been the subject of considerable investigation, and significant progress has been made in recent decades. Herein, we reviewed the research progress of cellulose functional materials (CFMs) in recent years. According to the different sources of cellulose, the classification and preparation methods for the design and functionalization of cellulose were summarized with the emphasis on the relationship between their structure and properties. Besides, the applications of advanced sensors based on CFMs in recent years were also discussed. Finally, the potential challenges and prospects of the development of sensor based on CFMs were outlined.

     

  • Declaration of Competing Interest  The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
  • loading
  • Adstedt, K., Popenov, E.A., Pierce, K.J., Xiong, R., Geryak, R., Cherpak, V., Nepal, D., Bunning, T.J., Tsukruk, V.V., 2020. Chiral cellulose nanocrystals with intercalated amorphous polysaccharides for controlled iridescence and enhanced mechanics. Adv. Funct. Mater. 30, 2003597. doi: 10.1002/adfm.202003597
    Ahmadian-Fard-Fini, S., Ghanbari, D., Amiri, O., Salavati-Niasari, M., 2020. Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions. Carbohydr. Polym. 229, 115428. doi: 10.1016/j.carbpol.2019.115428
    Amin, K.N.M., Hosseinmardi, A., Martin, D.J., Annamalai, P.K., 2022. A mixed acid methodology to produce thermally stable cellulose nanocrystal at high yield using phosphoric acid. J. Bioresour. Bioprod. 7, 99–108. doi: 10.1016/j.jobab.2021.12.002
    Ates, B., Koytepe, S., Ulu, A., Gurses, C., Thakur, V.K., 2020. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem. Rev. 120, 9304–9362. doi: 10.1021/acs.chemrev.9b00553
    Barandun, G., Soprani, M., Naficy, S., Grell, M., Kasimatis, M., Chiu, K.L., Ponzoni, A., Güder, F., 2019. Cellulose fibers enable near-zero-cost electrical sensing of water-soluble gases. ACS Sens. 4, 1662–1669. doi: 10.1021/acssensors.9b00555
    Bethke, K., Palantöken, S., Andrei, V., Roß, M., Raghuwanshi, V.S., Kettemann, F., Greis, K., Ingber, T.T.K., Stückrath, J.B., Valiyaveettil, S., Rademann, K., 2018. Functionalized cellulose for water purification, antimicrobial applications, and sensors. Adv. Funct. Mater. 28, 1800409. doi: 10.1002/adfm.201800409
    Bumbudsanpharoke, N., Lee, W., Chung, U., Ko, S., 2018. Study of humidity-responsive behavior in chiral nematic cellulose nanocrystal films for colorimetric response. Cellulose 25, 305–317. doi: 10.1007/s10570-017-1571-8
    Chen, C.C., Wang, Y.R., Wu, Q.J., Wan, Z.M., Li, D.G., Jin, Y.C., 2020a. Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors. Chem. Eng. J. 400, 125876. doi: 10.1016/j.cej.2020.125876
    Chen, S.Q., Wang, Y.D., Fei, B., Long, H.F., Wang, T., Zhang, T.H., Chen, L., 2022. Development of a flexible and highly sensitive pressure sensor based on an aramid nanofiber-reinforced bacterial cellulose nanocomposite membrane. Chem. Eng. J. 430, 131980. doi: 10.1016/j.cej.2021.131980
    Chen, Y.W., Liu, Y.H., Xia, Y.M., Liu, X.Q., Qiang, Z., Yang, J.Y., Zhang, B.L., Hu, Z.D., Wang, Q., Wu, W.F., Duan, Y.X., Fu, K.K., Zhang, J.M., 2020b. Electric field-induced assembly and alignment of silver-coated cellulose for polymer composite films with enhanced dielectric permittivity and anisotropic light transmission. ACS Appl. Mater. Interfaces 12, 24242–24249. doi: 10.1021/acsami.0c03086
    Chen, Z.H., Zhuo, H., Hu, Y.J., Lai, H.H., Liu, L.X., Zhong, L.X., Peng, X. W, 2020c. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 30, 1910292. doi: 10.1002/adfm.201910292
    Cheng, H., Du, Y.R., Wang, B.J., Mao, Z.P., Xu, H., Zhang, L.P., Zhong, Y., Jiang, W., Wang, L.J., Sui, X.F., 2018. Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chem. Eng. J. 338, 1–7. doi: 10.1016/j.cej.2017.12.134
    Cheng, R., Zeng, J.S., Wang, B., Li, J.P., Cheng, Z., Xu, J., Gao, W.H., Chen, K.F., 2021. Ultralight, flexible and conductive silver nanowire/nanofibrillated cellulose aerogel for multifunctional strain sensor. Chem. Eng. J. 424, 130565. doi: 10.1016/j.cej.2021.130565
    Cho, S.Y., Yu, H., Choi, J., Kang, H., Park, S., Jang, J.S., Hong, H.J., Kim, I.D., Lee, S.K., Jeong, H.S., Jung, H.T., 2019. Continuous meter-scale synthesis of weavable tunicate cellulose/carbon nanotube fibers for high-performance wearable sensors. ACS Nano 13, 9332–9341. doi: 10.1021/acsnano.9b03971
    Chortos, A., Liu, J., Bao, Z.N., 2016. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950. doi: 10.1038/nmat4671
    Conley, K., Godbout, L., Whitehead, M.A., van de Ven, T.G.M., 2016. Origin of the twist of cellulosic materials. Carbohydr. Polym. 135, 285–299. doi: 10.1016/j.carbpol.2015.08.029
    Dai, L., Wang, Y., Zou, X.J., Chen, Z.R., Liu, H., Ni, Y.H., 2020. Ultrasensitive physical, bio, and chemical sensors derived from 1-, 2-, and 3-D nanocellulosic materials. Small 16, e1906567. doi: 10.1002/smll.201906567
    de Espinosa Lucas, M., Worarin, M., Dafni, M., Christoph, W., 2017. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev. 117, 12851–12892. doi: 10.1021/acs.chemrev.7b00168
    Diamond, D., Coyle, S., Scarmagnani, S., Hayes, J., 2008. Wireless sensor networks and chemo-/biosensing. Chem. Rev. 108, 652–679. doi: 10.1021/cr0681187
    Dincer, C., Bruch, R., Costa-Rama, E., Fernández-Abedul, M.T., Merkoçi, A., Manz, A., Urban, G.A., Güder, F., 2019. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater. 31, e1806739.
    Dong, Y., Akinoglu, E., Zhang, H.Y., Maasoumi, F., Zhou, J.P., Mulvaney, P., 2019. An optically responsive soft etalon based on ultrathin cellulose hydrogels. Adv. Funct. Mater. 29, 1904290. doi: 10.1002/adfm.201904290
    Du, H.S., Liu, W., Zhang, M.M., Si, C.L., Zhang, X.Y., Li, B., 2019. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 209, 130–144. doi: 10.1016/j.carbpol.2019.01.020
    Duan, Z.H., Jiang, Y.D., Zhao, Q.N., Huang, Q., Wang, S., Zhang, Y.J., Wu, Y.W., Liu, B.H., Zhen, Y., Tai, H.L., 2021. Daily writing carbon ink: novel application on humidity sensor with wide detection range, low detection limit and high detection resolution. Sens. Actuat. B Chem. 339, 129884. doi: 10.1016/j.snb.2021.129884
    Fan, J., Zhang, S.F., Xu, Y.S., Wei, N., Wan, B., Qian, L.W., Liu, Y., 2020. A polyethylenimine/salicylaldehyde modified cellulose Schiff base for selective and sensitive Fe3+ detection. Carbohydr. Polym. 228, 115379. doi: 10.1016/j.carbpol.2019.115379
    Fei, G.Q., Wang, Y., Wang, H.H., Ma, Y.N., Guo, Q., Huang, W.H., Yang, D., Shao, Y.M., Ni, Y.H., 2019. Fabrication of bacterial cellulose/polyaniline nanocomposite paper with excellent conductivity, strength, and flexibility. ACS Sustainable Chem. Eng. 7, 8215–8225. doi: 10.1021/acssuschemeng.8b06306
    Fu, Q.L., Chen, Y., Sorieul, M., 2020. Wood-based flexible electronics. ACS Nano 14, 3528–3538. doi: 10.1021/acsnano.9b09817
    Gao, C.M., Xue, J., Zhang, L.N., Zhao, P.N., Cui, K., Ge, S.G., Yu, J.H., 2019. Paper based modification-free photoelectrochemical sensing platform with single-crystalline aloe like TiO2 as electron transporting material for cTnI detection. Biosens. Bioelectron. 131, 17–23. doi: 10.1016/j.bios.2019.01.038
    Golmohammadi, H., Morales-Narváez, E., Naghdi, T., Merkoçi, A., 2017. Nanocellulose in sensing and biosensing. Chem. Mater. 29, 5426–5446. doi: 10.1021/acs.chemmater.7b01170
    Gong, M., Zhang, L.Q., Wan, P.B., 2020. Polymer nanocomposite meshes for flexible electronic devices. Prog. Polym. Sci. 107, 101279. doi: 10.1016/j.progpolymsci.2020.101279
    Grey, P., Fernandes, S.N., Gaspar, D., Fortunato, E., Martins, R., Godinho, M.H., Pereira, L., 2019. Field-effect transistors: field-effect transistors on photonic cellulose nanocrystal solid electrolyte for circular polarized light sensing (adv. funct. mater. 21/2019). Adv. Funct. Mater. 29, 1970145. doi: 10.1002/adfm.201970145
    Grosse-Puppendahl, T., Holz, C., Cohn, G., Wimmer, R., Bechtold, O., Hodges, S., Reynolds, M.S., Smith, J.R., 2017. Finding common ground: a survey of capacitive sensing in human-computer interaction. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver, Colorado, USA. New York: ACM, pp. 3293–3315.
    Guan, X., Hou, Z.N., Wu, K., Zhao, H.R., Liu, S., Fei, T., Zhang, T., 2021. Flexible humidity sensor based on modified cellulose paper. Sens. Actuat. B Chem. 339, 129879. doi: 10.1016/j.snb.2021.129879
    Güder, F., Ainla, A., Redston, J., Mosadegh, B., Glavan, A.C., Martin, T.J., Whitesides, G., 2016. Paper-based electrical respiration sensor. Angew. Chem. Int. Ed. 55, 5727–5732. doi: 10.1002/anie.201511805
    Gui, Z., Zhu, H.L., Gillette, E., Han, X.G., Rubloff, G.W., Hu, L.B., Lee, S.B., 2013. Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7, 6037–6046. doi: 10.1021/nn401818t
    Gullapalli, H., Vemuru, V.S.M., Kumar, A., Botello-Mendez, A., Vajtai, R., Terrones, M., Nagarajaiah, S., Ajayan, P.M., 2010. Flexible piezoelectric ZnO-paper nanocomposite strain sensor. Small 6, 1641–1646. doi: 10.1002/smll.201000254
    Han, S., Alvi, N.U.H., Granlöf, L., Granberg, H., Berggren, M., Fabiano, S., Crispin, X., 2019. A multiparameter pressure-temperature-humidity sensor based on mixed ionic–electronic cellulose aerogels. Adv. Sci. 6, 1802128. doi: 10.1002/advs.201802128
    Heinze, T., Liebert, T., 2001. Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 26, 1689–1762. doi: 10.1016/S0079-6700(01)00022-3
    Homola, J., 2008. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493. doi: 10.1021/cr068107d
    Hosseini, H., Kokabi, M., Mousavi, S.M., 2018. Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor. Carbohydr. Polym. 201, 228–235. doi: 10.1016/j.carbpol.2018.08.054
    Hou, C.J., Dong, J.L., Zhang, G.P., Lei, Y., Yang, M., Zhang, Y.C., Liu, Z., Zhang, S.Y., Huo, D.Q., 2011. Colorimetric artificial tongue for protein identification. Biosens. Bioelectron. 26, 3981–3986. doi: 10.1016/j.bios.2010.11.025
    Hou, K., Nie, Y.L., Tendo Mugaanire, I., Guo, Y., Zhu, M.F., 2020. A novel leaf inspired hydrogel film based on fiber reinforcement as rapid steam sensor. Chem. Eng. J. 382, 122948. doi: 10.1016/j.cej.2019.122948
    Hu, J., Stein, A., Bühlmann, P., 2016. A disposable planar paper-based potentiometric ion-sensing platform. Angew. Chem. Int. Ed. 55, 7544–7547. doi: 10.1002/anie.201603017
    Hu, R., Feng, J., Hu, D.H., Wang, S.Q., Li, S.Y., Li, Y., Yang, G.Q., 2010. A rapid aqueous fluoride ion sensor with dual output modes. Angew. Chem. Int. Ed Engl. 49, 4915–4918. doi: 10.1002/anie.201000790
    Hu, S.Q., Wu, S.N., Li, C.X., Chen, R.Z., Forsberg, E., He, S.L., 2020. SNR-enhanced temperature-insensitive microfiber humidity sensor based on upconversion nanoparticles and cellulose liquid crystal coating. Sens. Actuat. B Chem. 305, 127517. doi: 10.1016/j.snb.2019.127517
    Huang, J., Matsunaga, N., Shimanoe, K., Yamazoe, N., Kunitake, T., 2005. Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing. Chem. Mater. 17, 3513–3518. doi: 10.1021/cm047819m
    Huang, J.Y., Li, D.W., Zhao, M., Ke, H.Z., Mensah, A., Lv, P.F., Tian, X.J., Wei, Q.F., 2019. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors. Chem. Eng. J. 373, 1357–1366. doi: 10.1016/j.cej.2019.05.136
    Hulanicki, A., Glab, S., Ingman, F., 1991. Chemical sensors: definitions and classification. Pure Appl. Chem. 63, 1247–1250. doi: 10.1351/pac199163091247
    Jelinek, R., Kolusheva, S., 2004. Carbohydrate biosensors. Chem. Rev. 104, 5987–6015. doi: 10.1021/cr0300284
    Jiang, X.Y., Xia, J., Luo, X.G., 2020. Simple, rapid, and highly sensitive colorimetric sensor strips from a porous cellulose membrane stained with Victoria blue B for efficient detection of trace Cd(II) in water. ACS Sustainable Chem. Eng. 8, 5184–5191. doi: 10.1021/acssuschemeng.9b07614
    Jing, X., Li, H., Mi, H.Y., Liu, Y.J., Feng, P.Y., Tan, Y.M., Turng, L.S., 2019. Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection. Sens. Actuat. B Chem. 295, 159–167. doi: 10.1016/j.snb.2019.05.082
    Johnson, K.S., Needoba, J.A., Riser, S.C., Showers, W.J., 2007. Chemical sensor networks for the aquatic environment. Chem. Rev. 107, 623–640. doi: 10.1021/cr050354e
    Johri, N., Jacquillet, G., Unwin, R., 2010. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine. Biometals 23, 783–792. doi: 10.1007/s10534-010-9328-y
    Jurs, P.C., Bakken, G.A., McClelland, H.E., 2000. Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem. Rev. 100, 2649–2678. doi: 10.1021/cr9800964
    Kang, J., Son, D., Wang, G.J.N., Liu, Y.X., Lopez, J., Kim, Y., Oh, J.Y., Katsumata, T., Mun, J., Lee, Y., Jin, L.H., Tok, J.B.H., Bao, Z.N., 2018. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, 1706846. doi: 10.1002/adma.201706846
    Kang, X.L., Yip, S., Meng, Y., Wang, W., Li, D.J., Liu, C.T., Ho, J.C., 2021. High-performance electrically transduced hazardous gas sensors based on low-dimensional nanomaterials. Nanoscale Adv. 3, 6254–6270. doi: 10.1039/d1na00433f
    Khattab, T.A., Dacrory, S., Abou-Yousef, H., Kamel, S., 2019. Development of microporous cellulose-based smart xerogel reversible sensor via freeze drying for naked-eye detection of ammonia gas. Carbohydr. Polym. 210, 196–203. doi: 10.1016/j.carbpol.2019.01.067
    Khine, Y.Y., Stenzel, M.H., 2020. Surface modified cellulose nanomaterials: a source of non-spherical nanoparticles for drug delivery. Mater. Horiz. 7, 1727–1758. doi: 10.1039/c9mh01727e
    Kim, D., Lee, D.K., Yoon, J., Hahm, D., Lee, B., Oh, E., Kim, G., Seo, J., Kim, H., Hong, Y., 2021. Electronic skin based on a cellulose/carbon nanotube fiber network for large-area 3D touch and real-time 3D surface scanning. ACS Appl. Mater. Interfaces, 2021Oct28.
    Kim, J., Yun, S., Ounaies, Z., 2006. Discovery of cellulose as a smart material. Macromolecules 39, 4202–4206. doi: 10.1021/ma060261e
    Koga, H., Nagashima, K., Huang, Y.T., Zhang, G.Z., Wang, C., Takahashi, T., Inoue, A., Yan, H., Kanai, M., He, Y., Uetani, K., Nogi, M., Yanagida, T., 2019. Paper-based disposable molecular sensor constructed from oxide nanowires, cellulose nanofibers, and pencil-drawn electrodes. ACS Appl. Mater. Interfaces 11, 15044–15050. doi: 10.1021/acsami.9b01287
    Kontturi, E., Laaksonen, P., Linder, M.B., Nonappa, Gröschel, A.H., Rojas, O.J., Ikkala, O., 2018. Advanced materials through assembly of nanocelluloses. Adv. Mater. 30, e1703779. doi: 10.1002/adma.201703779
    Kuang, Y.D., Chen, C.J., Pastel, G., Li, Y.J., Song, J.W., Mi, R.Y., Kong, W.Q., Liu, B.Y., Jiang, Y.Q., Yang, K., Hu, L.B., 2018. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 8, 1802398. doi: 10.1002/aenm.201802398
    Kwon, O.S., Song, H.S., Park, T.H., Jang, J., 2019. Conducting nanomaterial sensor using natural receptors. Chem. Rev. 119, 36–93. doi: 10.1021/acs.chemrev.8b00159
    Lai, C.W., Yu, S.S., 2020. 3D printable strain sensors from deep eutectic solvents and cellulose nanocrystals. ACS Appl. Mater. Interfaces 12, 34235–34244. doi: 10.1021/acsami.0c11152
    Lai, Y.C., Deng, J.N., Niu, S.M., Peng, W.B., Wu, C.S., Liu, R.Y., Wen, Z., Wang, Z.L., 2016. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater. 28, 10024–10032. doi: 10.1002/adma.201603527
    Le, X.X., Lu, W., Zhang, J.W., Chen, T., 2019. Recent progress in biomimetic anisotropic hydrogel actuators. Adv. Sci. (Weinh) 6, 1801584. doi: 10.1002/advs.201801584
    Lee, H., Shin, T.H., Cheon, J., Weissleder, R., 2015. Recent developments in magnetic diagnostic systems. Chem. Rev. 115, 10690–10724. doi: 10.1021/cr500698d
    Lee, J.S., Cho, A.N., Jin, Y., Kim, J., Kim, S., Cho, S.W., 2018. Bio-artificial tongue with tongue extracellular matrix and primary taste cells. Biomaterials 151, 24–37. doi: 10.3847/1538-4365/aadcad
    Lee, W.S., Choi, J., 2019. Hybrid integration of carbon nanotubes and transition metal dichalcogenides on cellulose paper for highly sensitive and extremely deformable chemical sensors. ACS Appl. Mater. Interfaces 11, 19363–19371. doi: 10.1021/acsami.9b03296
    Lee, Y.B., Choi, H., Zhang, H.Y., Wu, Y., Lee, D.B., Wong, W.S., Tang, X.S., Park, J., Yu, H.Y., Tam, K.C., 2021. Sensitive, stretchable, and sustainable conductive cellulose nanocrystal composite for human motion detection. ACS Sustainable Chem. Eng. 9, 17351–17361. doi: 10.1021/acssuschemeng.1c06741
    Lewis, F.L., 2005. Wireless sensor networks. Smart Environments. Hoboken: John Wiley & Sons, Inc., pp. 11–46.
    Li, G.C., Chu, Z.Y., Gong, X.F., Xiao, M., Dong, Q.C., Zhao, Z.K., Hu, T.J., Zhang, Y., Wang, J., Tan, Y.L., Jiang, Z.H., 2022. A wide-range linear and stable piezoresistive sensor based on methylcellulose-reinforced, lamellar, and wrinkled graphene aerogels. Adv. Mater. Technol. 7, 2101021. doi: 10.1002/admt.202101021
    Li, L.Y., Lu, F.X., Wang, C., Zhang, F.L., Liang, W.H., Kuga, S., Dong, Z.C., Zhao, Y., Huang, Y., Wu, M., 2018. Flexible double-cross-linked cellulose-based hydrogel and aerogel membrane for supercapacitor separator. J. Mater. Chem. A 6, 24468–24478. doi: 10.1039/c8ta07751g
    Li, M.C., Wu, Q.L., Song, K., Lee, S.Y., Qing, Y., Wu, Y.Q., 2015. Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain. Chem. Eng. 3, 821–832. doi: 10.1021/acssuschemeng.5b00144
    Li, Q.M., Yin, R., Zhang, D.B., Liu, H., Chen, X.Y., Zheng, Y.J., Guo, Z.H., Liu, C.T., Shen, C.Y., 2020a. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J. Mater. Chem. A 8, 21131–21141. doi: 10.1039/d0ta07832h
    Li, Z.X., Wang, J., Dai, L., Sun, X.H., An, M., Duan, C., Li, J., Ni, Y.H., 2020b. Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generation. ACS Appl. Mater. Interfaces 12, 55205–55214. doi: 10.1021/acsami.0c17970
    Liang, Q.Q., Zhang, D., Wu, Y.C., Chen, S.Y., Han, Z.L., Wang, B.X., Wang, H.P., 2022. Self-stretchable fiber liquid sensors made with bacterial cellulose/carbon nanotubes for smart diapers. ACS Appl. Mater. Interfaces 14, 21319–21329. doi: 10.1021/acsami.2c00960
    Ling, H., Chen, R.W., Huang, Q.B., Shen, F., Wang, Y.Y., Wang, X.H., 2020. Transparent, flexible and recyclable nanopaper-based touch sensors fabricated via inkjet-printing. Green Chem. 22, 3208–3215. doi: 10.1039/d0gc00658k
    Ling, S.J., Chen, W.S., Fan, Y.M., Zheng, K., Jin, K., Yu, H.P., Buehler, M.J., Kaplan, D.L., 2018. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polym. Sci. 85, 1–56. doi: 10.1016/j.progpolymsci.2018.06.004
    Liu, G.J., Tian, S.N., Li, C.Y., Xing, G.W., Zhou, L., 2017a. Aggregation-induced-emission materials with different electric charges as an artificial tongue: design, construction, and assembly with various pathogenic bacteria for effective bacterial imaging and discrimination. ACS Appl. Mater. Interfaces 9, 28331–28338. doi: 10.1021/acsami.7b09848
    Liu, H.Y., Du, H.S., Zheng, T., Liu, K., Ji, X.X., Xu, T., Zhang, X.Y., Si, C.L., 2021. Cellulose based composite foams and aerogels for advanced energy storage devices. Chem. Eng. J. 426, 130817. doi: 10.1016/j.cej.2021.130817
    Liu, J., Wang, H.Y., Liu, T., Wu, Q.N., Ding, Y.H., Ou, R.X., Guo, C.G., Liu, Z.Z., Wang, Q.W., 2022. Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome. Adv. Funct. Mater. 32, 2204686. doi: 10.1002/adfm.202204686
    Liu, Y.Y., Xu, B., Sun, S.T., Wei, J., Wu, L.M., Yu, Y.L., 2017b. Humidity- and photo-induced mechanical actuation of cross-linked liquid crystal polymers. Adv. Mater. 29, 1604792. doi: 10.1002/adma.201604792
    Lu, J.S., Han, X., Dai, L., Li, C.Y., Wang, J.F., Zhong, Y.D., Yu, F.X., Si, C.L., 2020. Conductive cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness, self-adhesion, flexibility and adjustable strain responsiveness. Carbohydr. Polym. 250, 117010. doi: 10.1016/j.carbpol.2020.117010
    Luo, M.Y., Li, M.F., Li, Y.Q., Chang, K.Q., Liu, K., Liu, Q.Z., Wang, Y.D., Lu, Z.T., Liu, X., Wang, D., 2017. In-situ polymerization of PPy/cellulose composite sponge with high elasticity and conductivity for the application of pressure sensor. Compos. Commun. 6, 68–72. doi: 10.1016/j.coco.2017.10.001
    Ma, C.X., Lu, W., Yang, X.X., He, J., Le, X.X., Wang, L., Zhang, J.W., Serpe, M.J., Huang, Y.J., Chen, T., 2018. Actuators: bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors (adv. funct. mater. 7/2018). Adv. Funct. Mater. 28, 1870043. doi: 10.1002/adfm.201870043
    Mahadeva, S.K., Yun, S., Kim, J., 2011. Flexible humidity and temperature sensor based on cellulose-polypyrrole nanocomposite. Sens. Actuat. A Phys. 165, 194–199. doi: 10.1016/j.sna.2010.10.018
    Matsuguchi, M., Kuroiwa, T., Miyagishi, T., Suzuki, S., Ogura, T., Sakai, Y., 1998. Stability and reliability of capacitive-type relative humidity sensors using crosslinked polyimide films. Sens. Actuat. B Chem. 52, 53–57. doi: 10.1016/S0925-4005(98)00255-X
    Mei, Q.S., Jing, H.R., Li, Y., Yisibashaer, W., Chen, J., Bing, N.L., Zhang, Y., 2016. Smartphone based visual and quantitative assays on upconversional paper sensor. Biosens. Bioelectron. 75, 427–432. doi: 10.1016/j.bios.2015.08.054
    Miao, X.R., Lin, J.Y., Bian, F.G., 2020. Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. J. Bioresour. Bioprod. 5, 26–36. doi: 10.1016/j.jobab.2020.03.003
    Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994. doi: 10.1039/c0cs00108b
    Nassar, J.M., Cordero, M.D., Kutbee, A.T., Karimi, M.A., Sevilla, G.A.T., Hussain, A.M., Shamim, A., Hussain, M.M., 2016. Paper skin multisensory platform for simultaneous environmental monitoring. Adv. Mater. Technol. 1, 1600004. doi: 10.1002/admt.201600004
    Park, T., Kim, N., Kim, D., Kim, S.W., Oh, Y., Yoo, J.K., You, J., Um, M.K., 2019. An organic/inorganic nanocomposite of cellulose nanofibers and ZnO nanorods for highly sensitive, reliable, wireless, and wearable multifunctional sensor applications. ACS Appl. Mater. Interfaces 11, 48239–48248. doi: 10.1021/acsami.9b17824
    Peng, N, Huang, D, Gong, C, Wang, Y, Zhou, J, Chang, C., 2020. Controlled arrangement of nanocellulose in polymeric matrix: from reinforcement to functionality. ACS Nano, 2020Dec14.
    Potyrailo, R.A., 2016. Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev. 116, 11877–11923. doi: 10.1021/acs.chemrev.6b00187
    Pu, X., Liu, M.M., Chen, X.Y., Sun, J.M., Du, C.H., Zhang, Y., Zhai, J.Y., Hu, W.G., Wang, Z.L., 2017. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3, e1700015. doi: 10.1126/sciadv.1700015
    Qian, C.C., Li, L.H., Gao, M., Yang, H.Y., Cai, Z.R., Chen, B.D., Xiang, Z.Y., Zhang, Z.J., Song, Y.L., 2019. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy 63, 103885. doi: 10.1016/j.nanoen.2019.103885
    Qin, Y., Mo, J.L., Liu, Y.H., Zhang, S., Wang, J.L., Fu, Q., Wang, S.F., Nie, S.X., 2022. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 32, 2201846. doi: 10.1002/adfm.202201846
    Ragazzini, I., Gualandi, I., Selli, S., Polizzi, C., Cassani, M.C., Nanni, D., Gambassi, F., Tarterini, F., Tonelli, D., Scavetta, E., Ballarin, B., 2021. A simple and industrially scalable method for making a PANI-modified cellulose touch sensor. Carbohydr. Polym. 254, 117304. doi: 10.1016/j.carbpol.2020.117304
    Sakai, Y., Sadaoka, Y., Matsuguchi, M., 1996. Humidity sensors based on polymer thin films. Sens. Actuat. B Chem. 35, 85–90. doi: 10.1016/S0925-4005(96)02019-9
    Shao, C.Y., Wang, M., Meng, L., Chang, H.L., Wang, B., Xu, F., Yang, J., and Wan, P.B., 2018. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 30, 3110–3121. doi: 10.1021/acs.chemmater.8b01172
    Shaukat, R.A., Khan, M.U., Saqib, Q.M., Chougale, M.Y., Kim, J., Bae, J., 2021. All range highly linear and sensitive humidity sensor based on 2D material TiSi2 for real-time monitoring. Sens. Actuat. B Chem. 345, 130371. doi: 10.1016/j.snb.2021.130371
    Sheng, N., Ji, P., Zhang, M.H., Wu, Z.T., Liang, Q.Q., Chen, S.Y., Wang, H.P., 2021. High sensitivity polyurethane-based fiber strain sensor with porous structure via incorporation of bacterial cellulose nanofibers. Adv. Electron. Mater. 7, 2001235. doi: 10.1002/aelm.202001235
    Shi, K.M., Zou, H.Y., Sun, B., Jiang, P.K., He, J.L., Huang, X.Y., 2020. Dielectric modulated cellulose paper/PDMS-based triboelectric nanogenerators for wireless transmission and electropolymerization applications. Adv. Funct. Mater. 30, 1904536. doi: 10.1002/adfm.201904536
    Siripongpreda, T., Somchob, B., Rodthongkum, N., Hoven, V.P., 2021. Bacterial cellulose-based re-swellable hydrogel: facile preparation and its potential application as colorimetric sensor of sweat pH and glucose. Carbohydr. Polym. 256, 117506. doi: 10.1016/j.carbpol.2020.117506
    Son, D., Kang, J., Vardoulis, O., Kim, Y., Matsuhisa, N., Oh, J.Y., To, J.W., Mun, J., Katsumata, T., Liu, Y.X., McGuire, A.F., Krason, M., Molina-Lopez, F., Ham, J., Kraft, U., Lee, Y., Yun, Y., Tok, J.B.H., Bao, Z.N., 2018. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065. doi: 10.1038/s41565-018-0244-6
    Song, M.L., Yu, H.Y., Zhu, J.Y., Ouyang, Z.F., Abdalkarim, S.Y.H., Tam, K.C., Li, Y.Z., 2020. Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals. Chem. Eng. J. 398, 125547. doi: 10.1016/j.cej.2020.125547
    Spencer, B.F., Ruiz-Sandoval, M.E., Kurata, N., 2004. Smart sensing technology: opportunities and challenges. Struct. Control Health Monit. 11, 349–368. doi: 10.1002/stc.48
    Spinks, G.M., 2020. Advanced actuator materials powered by biomimetic helical fiber topologies. Adv. Mater. 32, 1904093. doi: 10.1002/adma.201904093
    Stern, R., Jedrzejas, M.J., 2008. Carbohydrate polymers at the center of life's origins: the importance of molecular processivity. Chem. Rev. 108, 5061–5085. doi: 10.1021/cr078240l
    Su, T, Liu, N, Lei, D, Wang, L, Ren, Z, Zhang, Q, Su, J, Zhang, Z, Gao, Y., 2022. Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism. ACS Nano, 2022May3.
    Su, T.Y., Liu, N.S., Gao, Y.H., Lei, D.D., Wang, L.X., Ren, Z.Q., Zhang, Q.X., Su, J., Zhang, Z., 2021. MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy 87, 106151. doi: 10.1016/j.nanoen.2021.106151
    Sun, C.Y., Zhu, D.D., Jia, H.Y., Lei, K., Zheng, Z., Wang, X.L., 2019. Humidity and heat dual response cellulose nanocrystals/poly(N-isopropylacrylamide) composite films with cyclic performance. ACS Appl. Mater. Interfaces 11, 39192–39200. doi: 10.1021/acsami.9b14201
    Sun, F., Wu, K., Hung, H.C., Zhang, P., Che, X.R., Smith, J., Lin, X.J., Li, B.W., Jain, P., Yu, Q.M., Jiang, S.Y., 2017. Paper sensor coated with a poly(carboxybetaine)-multiple DOPA conjugate via dip-coating for biosensing in complex media. Anal. Chem. 89, 10999–11004. doi: 10.1021/acs.analchem.7b02876
    Tai, H.L., Duan, Z.H., Wang, Y., Wang, S., Jiang, Y.D., 2020. Paper-based sensors for gas, humidity, and strain detections: a review. ACS Appl. Mater. Interfaces 12, 31037–31053. doi: 10.1021/acsami.0c06435
    Tang, J.T., Sisler, J., Grishkewich, N., Tam, K.C., 2017. Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci. 494, 397–409. doi: 10.1016/j.jcis.2017.01.077
    Thomas, B., Raj, M.C., Athira K.B., Rubiyah M.H., Joy, J., Moores, A., Drisko, G.L., Sanchez, C., 2018. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118, 11575–11625. doi: 10.1021/acs.chemrev.7b00627
    Tong, R.P., Chen, G.X., Pan, D.H., Qi, H.S., Li, R.A., Tian, J.F., Lu, F.C., He, M.H., 2019. Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors. Biomacromolecules 20, 2096–2104. doi: 10.1021/acs.biomac.9b00322
    Tu, H., Zhu, M.X., Duan, B., Zhang, L.N., 2021. Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33, e2000682. doi: 10.1002/adma.202000682
    Ummartyotin, S., Manuspiya, H., 2015. A critical review on cellulose: from fundamental to an approach on sensor technology. Renew. Sustain. Energy Rev. 41, 402–412. doi: 10.1016/j.rser.2014.08.050
    Uzun, S., Seyedin, S., Stoltzfus, A.L., Levitt, A.S., Alhabeb, M., Anayee, M., Strobel, C.J., Razal, J.M., Dion, G., Gogotsi, Y., 2019. Knittable and washable multifunctional MXene-coated cellulose yarns. Adv. Funct. Mater. 29, 1905015. doi: 10.1002/adfm.201905015
    Walters, C.M., Matharu, G.K., Hamad, W.Y., Lizundia, E., MacLachlan, M.J., 2021. Chiral nematic cellulose nanocrystal/Germania and carbon/Germania composite aerogels as supercapacitor materials. Chem. Mater. 33, 5197–5209. doi: 10.1021/acs.chemmater.1c01272
    Wang, C., Pan, Z.Z., Lv, W., Liu, B.L., Wei, J., Lv, X.H., Luo, Y., Nishihara, H., Yang, Q.H., 2019. A directional strain sensor based on anisotropic microhoneycomb cellulose nanofiber-carbon nanotube hybrid aerogels prepared by unidirectional freeze drying. Small 15, e1805363. doi: 10.1002/smll.201805363
    Wang, D.C., Yu, H.Y., Fan, X.M., Gu, J.P., Ye, S.N., Yao, J.M., Ni, Q.Q., 2018a. High aspect ratio carboxylated cellulose nanofibers cross-linked to robust aerogels for superabsorption-flocculants: paving way from nanoscale to macroscale. ACS Appl. Mater. Interfaces 10, 20755–20766. doi: 10.1021/acsami.8b04211
    Wang, G.F., Li, Y.S., Cai, Z.Z., Dou, X.C., 2020a. A colorimetric artificial olfactory system for airborne improvised explosive identification. Adv. Mater. 32, e1907043. doi: 10.1002/adma.201907043
    Wang, H.Q., Li, J.C., Yu, X., Yan, G.H., Tang, X., Sun, Y., Zeng, X.H., Lin, L., 2021a. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Carbohydr. Polym. 255, 117443. doi: 10.1016/j.carbpol.2020.117443
    Wang, H.Q., Luo, H.S., Zhou, H.K., Zhou, X.D., Zhang, X.X., Lin, W.J., Yi, G.B., Zhang, Y.H., 2018b. Dramatically enhanced strain- and moisture-sensitivity of bioinspired fragmentized carbon architectures regulated by cellulose nanocrystals. Chem. Eng. J. 345, 452–461. doi: 10.1016/j.cej.2018.04.003
    Wang, J.L., Guo, Y.J., Long, G.D., Tang, Y.L., Tang, Q.B., Zu, X.T., Ma, J.Y., Du, B., Torun, H., Fu, Y.Q., 2020b. Integrated sensing layer of bacterial cellulose and polyethyleneimine to achieve high sensitivity of ST-cut quartz surface acoustic wave formaldehyde gas sensor. J. Hazard. Mater. 388, 121743. doi: 10.1016/j.jhazmat.2019.121743
    Wang, L., Guo, W., Zhu, H.X., He, H., Wang, S. F, 2021b. Preparation and properties of a dual-function cellulose nanofiber-based bionic biosensor for detecting silver ions and acetylcholinesterase. J. Hazard. Mater. 403, 123921. doi: 10.1016/j.jhazmat.2020.123921
    Wang, L., Zhang, M.Y., Yang, B., Tan, J.J., Ding, X.Y., 2020c. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14, 10633–10647. doi: 10.1021/acsnano.0c04888
    Wang, L.L., Chen, D., Jiang, K., Shen, G.Z., 2017. New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev. 46, 6764–6815. doi: 10.1039/C7CS00278E
    Wang, X.D., Wang, Z.S., Wang, X.Y., Shi, L.Y., Ran, R., 2021c. Preparation of silver nanoparticles by solid-state redox route from hydroxyethyl cellulose for antibacterial strain sensor hydrogel. Carbohydr. Polym. 257, 117665. doi: 10.1016/j.carbpol.2021.117665
    Wang, Y., Zhang, L.N., Zhou, J.P., Lu, A, 2020d. Flexible and transparent cellulose-based ionic film as a humidity sensor. ACS Appl. Mater. Interfaces 12, 7631–7638. doi: 10.1021/acsami.9b22754
    Wu, B.L., Zhu, G., Dufresne, A., Lin, N., 2019. Fluorescent aerogels based on chemical crosslinking between nanocellulose and carbon dots for optical sensor. ACS Appl. Mater. Interfaces 11, 16048–16058. doi: 10.1021/acsami.9b02754
    Wu, Z.L., Yang, J., Sun, X., Wu, Y.J., Wang, L., Meng, G., Kuang, D.L., Guo, X.Z., Qu, W.J., Du, B.S., Liang, C.Y., Fang, X.D., Tang, X.S., He, Y., 2021. An excellent impedance-type humidity sensor based on halide perovskite CsPbBr3 nanoparticles for human respiration monitoring. Sens. Actuat. B Chem. 337, 129772. doi: 10.1016/j.snb.2021.129772
    Xu, M.C., Wu, X.Y., Yang, Y., Ma, C.H., Li, W., Yu, H.P., Chen, Z.J., Li, J., Zhang, K., Liu, S.X., 2020. Designing hybrid chiral photonic films with circularly polarized room-temperature phosphorescence. ACS Nano 14, 11130–11139. doi: 10.1021/acsnano.0c02060
    Xu, X.R., Wu, S.N., Cui, J., Yang, L.Y., Wu, K., Chen, X., Sun, D.P., 2021. Highly stretchable and sensitive strain sensor based on polypyrrole coated bacterial cellulose fibrous network for human motion detection. Compos. B Eng. 211, 108665. doi: 10.1016/j.compositesb.2021.108665
    Yang, L.Y., Xu, X.R., Liu, M.D., Chen, C., Cui, J., Chen, X., Wu, K., Sun, D.P., 2021. Wearable and flexible bacterial cellulose/polyaniline ammonia sensor based on a synergistic doping strategy. Sens. Actuat. B Chem. 334, 129647. doi: 10.1016/j.snb.2021.129647
    Yang, Y., Lu, Y.T., Zeng, K., Heinze, T., Groth, T., and Zhang, K., 2020. Recent progress on cellulose-based ionic compounds for biomaterials. Adv. Mater. 33, 2000717.
    Ye, Y.H., Zhang, Y.F., Chen, Y., Han, X.S., Jiang, F., 2020. Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30, 2003430. doi: 10.1002/adfm.202003430
    Yeom, J., Choe, A., Lim, S., Lee, Y., Na, S.Y., Ko, H., 2020. Soft and ion-conducting hydrogel artificial tongue for astringency perception. Sci. Adv. 6, eaba5785. doi: 10.1126/sciadv.aba5785
    Yun, S., Kim, J., 2010. Multi-walled carbon nanotubes-cellulose paper for a chemical vapor sensor. Sens. Actuat. B Chem. 150, 308–313. doi: 10.1016/j.snb.2010.06.068
    Zhai, J.Y., Zhang, Y., Cui, C., Li, A., Wang, W.J., Guo, R.H., Qin, W.F., Ren, E.H., Xiao, H.Y., Zhou, M., 2021. Flexible waterborne polyurethane/cellulose nanocrystal composite aerogels by integrating graphene and carbon nanotubes for a highly sensitive pressure sensor. ACS Sustainable Chem. Eng. 9, 14029–14039. doi: 10.1021/acssuschemeng.1c03068
    Zhang, C.L., Cha, R.T., Zhang, P., Luo, H.Z., Jiang, X.Y., 2022. Cellulosic substrate materials with multi-scale building blocks: fabrications, properties and applications in bioelectronic devices. Chem. Eng. J. 430, 132562. doi: 10.1016/j.cej.2021.132562
    Zhang, G.J., Liao, Q.L., Ma, M.Y., Gao, F.F., Zhang, Z., Kang, Z., Zhang, Y., 2018. Uniformly assembled vanadium doped ZnO microflowers/bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 52, 501–509. doi: 10.1016/j.nanoen.2018.08.020
    Zhang, S.D., Sun, K., Liu, H., Chen, X.Y., Zheng, Y.J., Shi, X.Z., Zhang, D.B., Mi, L.W., Liu, C.T., Shen, C.Y., 2020. Enhanced piezoresistive performance of conductive WPU/CNT composite foam through incorporating brittle cellulose nanocrystal. Chem. Eng. J. 387, 124045. doi: 10.1016/j.cej.2020.124045
    Zhao, D.W., Zhu, Y., Cheng, W.K., Chen, W.S., Wu, Y.Q., Yu, H.P., 2021. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, e2000619. doi: 10.1002/adma.202000619
    Zhao, G.M., Zhang, Y., Zhai, S.C., Sugiyama, J., Pan, M.Z., Shi, J.B., Lu, H.Y., 2020b. Dual response of photonic films with chiral nematic cellulose nanocrystals: humidity and formaldehyde. ACS Appl. Mater. Interfaces 12, 17833–17844. doi: 10.1021/acsami.0c00591
    Zhao, T.H., Parker, R.M., Williams, C.A., Lim, K.T.P., Frka-Petesic, B., Vignolini, S., 2019. Printing of responsive photonic cellulose nanocrystal microfilm arrays. Adv. Funct. Mater. 29, 1804531. doi: 10.1002/adfm.201804531
    Zhi, H., Zhang, X.B., Wang, F.Y., Wan, P., Feng, L, 2021. Flexible Ti3C2Tx MXene/PANI/bacterial cellulose aerogel for e-skins and gas sensing. ACS Appl. Mater. Interfaces 13, 45987–45994. doi: 10.1021/acsami.1c12991
    Zhou, S.Y., Qiu, Z., Strømme, M., Wang, Z.H., 2020. Highly crystalline PEDOT nanofiber templated by highly crystalline nanocellulose. Adv. Funct. Mater. 30, 2005757. doi: 10.1002/adfm.202005757
    Zhou, Z., Shi, Z., Cai, X., Zhang, S., Corder, S.G., Li, X., Zhang, Y., Zhang, G., Chen, L., and Liu, M., Kaplan, D.L., Omenetto, F.G., Mao, Y., Tao, Z., Tao, T.H., 2017. The use of functionalized silk fibroin films as a platform for optical diffraction-based sensing applications. Adv. Mater. 29, 1605471. doi: 10.1002/adma.201605471
    Zhu, H.L., Luo, W., Ciesielski, P.N., Fang, Z.Q., Zhu, J.Y., Henriksson, G., Himmel, M.E., Hu, L.B., 2016. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116, 9305–9374. doi: 10.1021/acs.chemrev.6b00225
    Zhu, Q.Q., Liu, S.M., Sun, J.Z., Liu, J., Kirubaharan, C.J., Chen, H.L., Xu, W.H., Wang, Q.Q., 2020. Stimuli-responsive cellulose nanomaterials for smart applications. Carbohydr. Polym. 235, 115933. doi: 10.1016/j.carbpol.2020.115933
    Zou, Z.N., Zhu, C.P., Li, Y., Lei, X.F., Zhang, W., Xiao, J.L., 2018. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 4, eaaq0508. doi: 10.1126/sciadv.aaq0508
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (5) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return