Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Liucheng Peng, Jing Yi, Xinyu Yang, Jing Xie, Chenwei Chen. Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 78-89. doi: 10.1016/j.jobab.2022.11.005
Citation: Liucheng Peng, Jing Yi, Xinyu Yang, Jing Xie, Chenwei Chen. Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 78-89. doi: 10.1016/j.jobab.2022.11.005

Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts

doi: 10.1016/j.jobab.2022.11.005
More Information
  • Corresponding author: E-mail address: jxie@shou.edu.cn (J. Xie); E-mail address: cwchen@shou.edu.cn (C. Chen)
  • Received Date: 2022-08-07
  • Accepted Date: 2022-11-05
  • Rev Recd Date: 2022-10-29
  • Available Online: 2022-11-29
  • Publish Date: 2023-02-01
  • Mycelium bio-composites was developed by incubating Pleurotus ostreatus fungi on different substrates from agricultural residual byproducts, including rice straw, bagasse, coir-pith, sawdust, and corn straw. The scanning electron microscope (SEM) results showed that the hypha of composite derived from bagasse was the densest, and the diameter of hypha was the biggest (0.77 µm), which was presumably due to the existence of cellulose in bagasse in the form of dextran and xylan. The maximum and minimum compression strength for sawdust substrate and corn straw substrate were 456.70 and 270.31 kPa, respectively. The flexural strength for bagasse substrate and rice straw substrate were 0.54 and 0.16 MPa, respectively. The two composites derived from rice straw and bagasse exhibited higher hydrophobic properties than others. In comparison, mycelium bio-composite derived from bagasse showed the best comprehensive properties. Except for a little worse anti-creep ability and waterproof performance, other properties of mycelium bio-composites could be comparable to commercially expanded polystyrene (EPS) packaging material. Derived from this study, mycelium material provided a good way to use agricultural residual byproducts and could be a good alternative to non-biodegradable materials for packaging applications.


  • Declaration of Competing Interest  The authors declare that there is no conflict of interest.
    CRediT authorship contribution statement  Liucheng Peng: Conceptualization, Methodology, Software, Investigation, Writing – original draft. Jing Yi: Investigation, Data curation. Xinyu Yang: Investigation, Data curation. Jing Xie: Conceptualization, Resources, Writing – review & editing, Supervision, Data curation. Chenwei Chen: Conceptualization, Methodology, Resources, Writing – review & editing, Supervision, Data curation.
  • loading
  • Adeniyi, A.G., Onifade, D.V., Ighalo, J.O., Adeoye, A.S., 2019. A review of coir fiber reinforced polymer composites. Compos. B 176, 107305. doi: 10.1016/j.compositesb.2019.107305
    Alokika, Anu, Kumar, A., Kumar, V., Singh, B., 2021. Cellulosic and hemicellulosic fractions of sugarcane bagasse: potential, challenges and future perspective. Int. J. Biol. Macromol. 169, 564–582. doi: 10.1016/j.ijbiomac.2020.12.175
    Antinori, M.E., Ceseracciu, L., Mancini, G., Heredia-Guerrero, J.A., Athanassiou, A., 2020. Fine-tuning of physicochemical properties and growth dynamics of Mycelium-based materials. ACS Appl. Bio Mater. 3, 1044–1051. doi: 10.1021/acsabm.9b01031
    Appels, F.V.W., Camere, S., Montalti, M., Karana, E., Jansen, K.M.B., Dijksterhuis, J., Krijgsheld, P., Wösten, H.A.B., 2019. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater. Des. 161, 64–71. doi: 10.1016/j.matdes.2018.11.027
    Attias, N., Danai, O., Abitbol, T., Tarazi, E., Ezov, N., Pereman, I., Grobman, Y.J., 2020. Mycelium bio-composites in industrial design and architecture: comparative review and experimental analysis. J. Clean. Prod. 246, 119037. doi: 10.1016/j.jclepro.2019.119037
    Castiglioni, A., Castellani, L., Cuder, G., Comba, S., 2017. Relevant materials parameters in cushioning for EPS foams. Colloids Surf. A 534, 71–77. doi: 10.1016/j.colsurfa.2017.03.049
    Chen, C.W., Ding, R., Peng, L.C., Xie, J., Yang, F.X., Yang, X.Y., Yu, Q.H., 2021. Effects of exogenous nutrients on the growth of mycelial biomass materials and its characterization. Trans. Chin. Soc. Agric. Eng. 37, 295–302.
    Elsacker, E., Søndergaard, A., van Wylick, A., Peeters, E., de Laet, L., 2021. Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Constr. Build. Mater. 283, 122732. doi: 10.1016/j.conbuildmat.2021.122732
    Elsacker, E., Vandelook, S., Brancart, J., Peeters, E., De Laet, L., 2019. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS One 14, e0213954. doi: 10.1371/journal.pone.0213954
    Falade, A.O., 2021. Valorization of agricultural wastes for production of biocatalysts of environmental significance: towards a sustainable environment. Environ. Sustain. 4, 317–328. doi: 10.1007/s42398-021-00183-9
    Falade, A.O., Mabinya, L.V., Okoh, A.I., Nwodo, U.U., 2020. Agroresidues enhanced peroxidase activity expression by Bacillus sp. MABINYA-1 under submerged fermentation. Bioresour. Bioprocess. 7, 1–9. doi: 10.1186/s40643-019-0289-x
    Haneef, M., Ceseracciu, L., Canale, C., Bayer, I.S., Heredia-Guerrero, J.A., Athanassiou, A., 2017. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7, 41292. doi: 10.1038/srep41292
    He, K., Zhang, J.B., Zeng, Y.M., 2019. Knowledge domain and emerging trends of agricultural waste management in the field of social science: a scientometric review. Sci. Total Environ. 670, 236–244. doi: 10.1016/j.scitotenv.2019.03.184
    Hoa, H.T., Wang, C.L., 2015. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43, 14–23. doi: 10.5941/MYCO.2015.43.1.14
    Holt, G.A., McIntyre, G., Flagg, D., Bayer, E., Wanjura, J.D., Pelletier, M.G., 2012. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: evaluation study of select blends of cotton byproducts. J. Biobased Mater. Bioenergy 6, 431–439. doi: 10.1166/jbmb.2012.1241
    Hou, J.X., 2020. Preparation of Fungal Mycelium/Corn Straw Porous Composite Material. Jilin Agricultural University, Changchun.
    Jiang, L., Walczyk, D., McIntyre, G., Bucinell, R., Tudryn, G., 2017. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. J. Manuf. Process. 28, 50–59. doi: 10.1016/j.jmapro.2017.04.029
    Jones, M., Bhat, T., Kandare, E., Thomas, A., Joseph, P., Dekiwadia, C., Yuen, R., John, S., Ma, J., Wang, C.H., 2018. Thermal degradation and fire properties of fungal mycelium and mycelium - biomass composite materials. Sci. Rep. 8, 17583. doi: 10.1038/s41598-018-36032-9
    Jones, M., Gandia, A., John, S., Bismarck, A., 2020a. Leather-like material biofabrication using fungi. Nat. Sustain. 4, 9–16. doi: 10.1038/s41893-020-00606-1
    Jones, M., Huynh, T., Dekiwadia, C., Daver, F., John, S., 2017. Mycelium composites: a review of engineering characteristics and growth kinetics. J. Bionanosci. 11, 241–257. doi: 10.1166/jbns.2017.1440
    Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S., 2020b. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397. doi: 10.1016/j.matdes.2019.108397
    Jose, J., Uvais, K.N., Sreenadh, T.S., Deepak, A.V., Rejeesh, C.R., 2021. Investigations into the development of a mycelium biocomposite to substitute polystyrene in packaging applications. Arab. J. Sci. Eng. . 46, 2975–2984. . doi: 10.1007/s13369-020-05247-2
    Kamel, R., El-Wakil, N.A., Dufresne, A., Elkasabgy, N.A., 2020. Nanocellulose: from an agricultural waste to a valuable pharmaceutical ingredient. Int. J. Biol. Macromol. 163, 1579–1590. doi: 10.1016/j.ijbiomac.2020.07.242
    Kuribayashi, T., Lankinen, P., Hietala, S., Mikkonen, K.S., 2022. Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state. Compos. A 152, 106688. doi: 10.1016/j.compositesa.2021.106688
    Lazaro Vasquez, E.S., Vega, K.C., 2019. From plastic to biomaterials: prototyping DIY electronics with mycelium. In: Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers. London, United Kingdom, pp. 308–311.
    Lee, T., Choi, J., 2021. Mycelium-composite panels for atmospheric particulate matter adsorption. Res. Mater. 11, 100208.
    Li, Y.J., Huang, P., Guo, S.W., Nie, M., 2020. A promising and green strategy for recycling waste oyster shell powder as bio-filler in polypropylene via mycelium-enlightened interfacial interlocking. J. Clean. Prod. 272, 122694. doi: 10.1016/j.jclepro.2020.122694
    Liu, R., Long, L., Sheng, Y., Xu, J.F., Qiu, H.Y., Li, X.Y., Wang, Y.X., Wu, H.G., 2019. Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Ind. Crops Prod. 141, 111732. doi: 10.1016/j.indcrop.2019.111732
    Liu, Y.L., Kim, H.J., 2017. Fourier transform infrared spectroscopy (FT-IR) and simple algorithm analysis for rapid and non-destructive assessment of developmental cotton fibers. Sensors 17, 1469. doi: 10.3390/s17071469
    Manan, S., Atta, O.M., Shahzad, A., Ul-Islam, M., Ullah, M.W., Yang, G., 2022. Applications of fungal mycelium-based functional biomaterials. Fungal Biopolymers and Biocomposites. Springer Nature Singapore, Singapore, pp. 147–168.
    Manan, S., Ullah, M.W., Ul-Islam, M., Atta, O.M., Yang, G., 2021. Synthesis and applications of fungal mycelium-based advanced functional materials. J. Bioresour. Bioprod. 6, 1–10. doi: 10.1016/j.jobab.2021.01.001
    Ning, F.E., Ou, S.J., Lee, Y.L., 2021. Cognitive research on the development of agricultural waste resource treatment technology for a sustainable environment. IOP Conf. Ser. : Earth Environ. Sci. 811, 012002. doi: 10.1088/1755-1315/811/1/012002
    Pelletier, M.G., Holt, G.A., Wanjura, J.D., Bayer, E., McIntyre, G., 2013. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind. Crops Prod. 51, 480–485. doi: 10.1016/j.indcrop.2013.09.008
    Pena, R., Lang, C., Naumann, A., Polle, A., 2014. Ectomycorrhizal identification in environmental samples of tree roots by Fourier-transform infrared (FTIR) spectroscopy. Front. Plant Sci. 5, 229.
    Powrie W.D., Wu C.H., Molund V.P., 1986. Browning reaction systems as sources of mutagens and antimutagens. Environ. Health Perspect. 67, 47–54. doi: 10.1289/ehp.866747
    Răut, I., Călin, M., Vuluga, Z., Oancea, F., Paceagiu, J., Radu, N., Doni, M., Alexandrescu, E., Purcar, V., Gurban, A.M., Petre, I., Jecu, L., 2021. Fungal based biopolymer composites for construction materials. Materials 14, 2906. doi: 10.3390/ma14112906
    Román-Ramos, J.D., Luna-Molina, F.J., Bailón-Pérez, L.J., 2014. Encofrado perdido constituido por paja cohesionada con micelio como sustituto del poliestireno expandido. Inf. Constr. 66, m006. doi: 10.3989/ic.13.097
    Schritt, H., Vidi, S., Pleissner, D., 2021. Spent mushroom substrate and sawdust to produce mycelium-based thermal insulation composites. J. Clean. Prod. 313, 127910. doi: 10.1016/j.jclepro.2021.127910
    Sharma, S., Basu, S.M., Shetti, N.P., Kamali, M., Walvekar, P., Aminabhavi, T.M., 2020. Waste-to-energy nexus: a sustainable development. Environ. Pollut. 267, 115501. doi: 10.1016/j.envpol.2020.115501
    Singh, G., Arya, S.K., 2021. A review on management of rice straw by use of cleaner technologies: abundant opportunities and expectations for Indian farming. J. Clean. Prod. 291, 125278. doi: 10.1016/j.jclepro.2020.125278
    Sisti, L., Gioia, C., Totaro, G., Verstichel, S., Cartabia, M., Camere, S., Celli, A., 2021. Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Ind. Crops Prod. 170, 113742. doi: 10.1016/j.indcrop.2021.113742
    Sivaprasad, S., Byju, S.K., Prajith, C., Shaju, J., Rejeesh, C.R., 2021. Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Mater. Today Proc. 47, 5038–5044. doi: 10.1016/j.matpr.2021.04.622
    Soboyejo, W., 2003. Mechanical properties of engineered materials. Marcel Dekker, New York.
    Sun, W.J., Tajvidi, M., Hunt, C.G., Howell, C., 2020. All-natural smart mycelium surface with tunable wettability. ACS Appl. Bio Mater. 4, 1015–1022.
    Teixeira, J.L., Matos, M.P., Nascimento, B.L., Griza, S., Holanda, F.S.R., Marino, R.H., 2018. Production and mechanical evaluation of biodegradable composites by white rot fungi. Ciênc. Agrotec. 42, 676–684. doi: 10.1590/1413-70542018426022318
    The World Bank and Institute for Health Metrics and Evaluation and University of Washington, 2016. The Cost of Air Pollution: Strengthening the Economic Case for Action. Available at: https://documents1.worldbank.org/curated/en/781521473177013155/pdf/108141-REVISED-Cost-of-PollutionWebCORRECTEDfile.pdf.
    Toscano Miranda, N., Lopes Motta, I., Maciel Filho, R., Wolf Maciel, M.R., 2021. Sugarcane bagasse pyrolysis: a review of operating conditions and products properties. Renew. Sustain. Energy Rev. 149, 111394. doi: 10.1016/j.rser.2021.111394
    Wang, T.P., Ai, Y.N., Peng, L., Zhang, R.H., Lu, Q., Dong, C.Q., 2018. Pyrolysis characteristics of poplar sawdust by pretreatment of anaerobic fermentation. Ind. Crops Prod. 125, 596–601. doi: 10.1016/j.indcrop.2018.09.033
    Wessels, J.G.H., 1996. Hydrophobins: proteins that change the nature of the fungal surface. Adv. Microb. Physiol. 38, 1–45.
    Xiong, Z.Y., 2007. Experimental Study on Mechanical Behaviors of Expanded Polystyrene(EPS). Xiangtan University, Xiangtan.
    Yang, Z.J., Zhang, F., Still, B., White, M., Amstislavski, P., 2017. Physical and mechanical properties of fungal mycelium-based biofoam. J. Mater. Civ. Eng. 29, 04017030. doi: 10.1061/(ASCE)MT.1943-5533.0001866
    Yuan, Y.H., Lee, T.R., 2013. Contact angle and wetting properties. Surface Science Techniques. Heidelberg: Springer Berlin Heidelberg, 3–34. doi: 10.1007/978-3-642-34243-1_1
    Zhang, K., Xu, R., Abomohra, A.E.F., Xie, S.X., Yu, Z.S., Guo, Q., Liu, P., Peng, L., Li, X.K., 2019. A sustainable approach for efficient conversion of lignin into biodiesel accompanied by biological pretreatment of corn straw. Energy Convers. Manag. 199, 111928. doi: 10.1016/j.enconman.2019.111928
    Zhang, X.J., Hu, J.Y., Fan, X.D., Yu, X., 2022. Naturally grown mycelium-composite as sustainable building insulation materials. J. Clean. Prod. 342, 130784. doi: 10.1016/j.jclepro.2022.130784
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (13) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint