Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Yuri I. Golovin, Alexander A. Gusev, Dmitry Yu. Golovin, Sergey M. Matveev, Alexander I. Tyrin, Alexander A. Samodurov, Viktor V. Korenkov, Inna A. Vasyukova, Maria A. Yunaсk. Multiscale wood micromechanics and size effects study via nanoindentation[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 246-264. doi: 10.1016/j.jobab.2023.04.002
Citation: Yuri I. Golovin, Alexander A. Gusev, Dmitry Yu. Golovin, Sergey M. Matveev, Alexander I. Tyrin, Alexander A. Samodurov, Viktor V. Korenkov, Inna A. Vasyukova, Maria A. Yunaсk. Multiscale wood micromechanics and size effects study via nanoindentation[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 246-264. doi: 10.1016/j.jobab.2023.04.002

Multiscale wood micromechanics and size effects study via nanoindentation

doi: 10.1016/j.jobab.2023.04.002
More Information
  • Wood as a material is a natural composite with a complex hierarchically arranged structure. All scale levels of wood structure contribute to its macroscopic mechanical properties. The nature of such characteristics and deformation modes differs radically at different scale levels. Wood macroscopic properties are well studied, and the relevant information can be easily found in the literature. However, the knowledge of the deformation mechanisms at the mesoscopic level corresponding to the cellular structure of early and late wood layers of annual growth rings is insufficient. It hinders building the comprehensive multiscale model of how wood mechanical properties are formed. This paper described the results of scanning of mechanical properties of softwood and hardwood samples, such as common pine, small-leaf lime, and pedunculate oak, by means of nanoindentation (NI). The NI technique allows varying the size of deformed region within a wide range by altering maximal load (Pmax) applied to the indenter so that one can repeatedly and non-destructively test wood structural components at different scale levels on the same sample without changing the technique or equipment. It was discovered that the effective microhardness (Heff) and Young's modulus (Eeff) decreased manifold with Pmax growing from 0.2 to 2 000 mN. This drop in Heff was observed when the locally deformed region grew, and resulting from Pmax increase generally follows the rule similar to the Hall-Petch relation for yield stress, strength, and hardness initially established for metals and alloys, though obviously in those cases the underlying internal mechanisms are quite different. The nature and micromechanisms of such size effect (SE) in wood revealed using NI were discussed in this study. At Pmax < 0.2 mN, the deformed area under the pyramidal Berckovich indenter was much smaller than the cell wall width. Hence, in this case, NI measured the internal mechanical properties of the cell wall material as long as free boundaries impact could be neglected. At Pmax > 200 mN, the indentation encompassed several cells. The measured mechanical properties were significantly affected by bending deformation and buckling collapse of cell walls, reducing Heff and Eeff substantially. At Pmax ≈ 1–100 mN, an indenter interacted with different elements of the cell structure and capillary network, resulting in intermediate values of Heff and Eeff. Abrupt changes in Heff and Eeff at annual growth ring boundaries allow accurate measuring of rings width, while smoother and less pronounced changes within the rings allow identification of earlywood and latewood layers as well as any finer changes during vegetation season. The values of ring width measured using NI and standard optical method coincide with 2%−3% accuracy. The approaches and results presented in this study could improve the understanding of nature and mechanisms lying behind the micromechanical properties of wood, help to optimize the technologies of wood farming, subsequent reinforcement, and utilization, as well as to develop new highly informative techniques in dendrochronology and dendroclimatology.


  • Methodology: Y.I.G., A.I.T.; project administration: A.A.G., I.A.V.; supervision: Y.I.G.; data processing: D.Y.G., V.V.K., A.A.S.; writing, draft, review and editing: Y.I.G., D.Y.G., S.M.M., A.A.G., V.V.K., M.A.Y., A.I.T.; visualization: S.M.M., I.A.V., A.A.S., M.A.Y. All authors have read and agreed to the published version of the manuscript.
    Author contributions
    All the data is available within the manuscript.
    Data availability statement
    Declaration of Competing Interest
    The authors declare no conflict of interest.
  • loading
  • Armstrong, R.W., 2014. 60 years of Hall-Petch: past to present nano-scale connections. Mater. Trans. 55, 2–12. doi: 10.2320/matertrans.MA201302
    Baghaei, B., Skrifvars, M., 2020. All-cellulose composites: a review of recent studies on structure, properties and applications. Molecules 25, 2836. doi: 10.3390/molecules25122836
    Blanchet, P., Kaboorani, A.K., Bustos, C., 2016. Understanding effects of drying methods on wood mechanical properties at ultra and cellular levels. Wood Fiber Sci. 48, 117–128.
    Börjesson, M., Westman, G., 2015. Crystalline nanocellulose: preparation, modification, and properties. In: Matheus, P., Heitor, L.O.J. (Eds. ). Cellulose—Fundamental Aspects and Current Trends. London: IntechOpen.
    Bourmaud, A., Beaugrand, J., Shah, D.U., Placet, V., Baley, C., 2018. Towards the design of high-performance plant fibre composites. Prog. Mater. Sci. 97, 347–408. doi: 10.1016/j.pmatsci.2018.05.005
    Carrillo-Varela, I., Valenzuela, P., Gacitúa, W., Mendonça, R., 2019. An evaluation of fiber biometry and nanomechanical properties of different Eucalyptus species. Bioresources 14, 6433–6446. doi: 10.15376/biores.14.3.6433-6446
    Chen, C.J., Kuang, Y.D., Zhu, S.Z., Burgert, I., Keplinger, T., Gong, A., Li, T., Berglund, L., Eichhorn, S.J., Hu, L.B., 2020. Structure-property-function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666. doi: 10.1038/s41578-020-0195-z
    Codjoe, J.M., Miller, K., Haswell, E.S., 2022. Plant cell mechanobiology: greater than the sum of its parts. Plant Cell 34, 129–145. doi: 10.1093/plcell/koab230
    Cordero, Z.C., Knight, B.E., Schuh, C.A., 2016. Six decades of the Hall-Petch effect: a survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 61, 495–512. doi: 10.1080/09506608.2016.1191808
    Dhali, K., Ghasemlou, M., Daver, F., Cass, P., Adhikari, B., 2021. A review of nanocellulose as a new material towards environmental sustainability. Sci. Total Environ. 775, 145871. doi: 10.1016/j.scitotenv.2021.145871
    Díez-Pascual, A.M., Gómez-Fatou, M.A., Ania, F., Flores, A., 2015. Nanoindentation in polymer nanocomposites. Prog. Mater. Sci. 67, 1–94. doi: 10.1016/j.pmatsci.2014.06.002
    Donaldson, L.A., 2019. Wood cell wall ultrastructure. The key to understanding wood properties and behavior. IAWA J. 40, 645–672. doi: 10.1163/22941932-40190258
    Eder, M., Arnould, O., Dunlop, J.W.C., Hornatowska, J., Salmén, L., 2013. Experimental micromechanical characterization of wood cell walls. Wood Sci. Technol. 47, 163–182. doi: 10.1007/s00226-012-0515-6
    Ennos, R., 2020. The Age of Wood: Our Most Useful Material and the Construction of Civilization. Farmington Hills: Scribner.
    Feng, K., Dong, C.L., Gao, Y.L., Jin, Z.X., 2021. A green and iridescent composite of cellulose nanocrystals with wide solvent resistance and strong mechanical properties. ACS Sustainable Chem. Eng. 9, 6764–6775. doi: 10.1021/acssuschemeng.1c00948
    Gibson, L.J., 2012. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9, 2749–2766. doi: 10.1098/rsif.2012.0341
    Golovin, Y.I., 2021. Nanoindentation and mechanical properties of materials at submicro- and nanoscale levels: recent results and achievements. Phys. Solid State 63, 1–41. doi: 10.1134/s1063783421010108
    Golovin, Y.I., Gusev, A.A., Golovin, D.Y., Matveev, S.M., Vasyukova, I.A., 2022a. Multiscale mechanical performance of wood: from nano- to macro-scale across structure hierarchy and size effects. Nanomaterials (Basel) 12, 1139. doi: 10.3390/nano12071139
    Golovin, Y.I., Tyurin, A.I., Golovin, D.Y., Samodurov, A.A., Matveev, S.M., Yunack, M.A., Vasyukova, I.A., Zakharova, O.V., Rodaev, V.V., Gusev, A.A., 2022b. Relationship between thermal diffusivity and mechanical properties of wood. Materials (Basel) 15, 632. doi: 10.3390/ma15020632
    Golovin, Y.I., Tyurin, A.I., Golovin, D.Y., Samodurov, A.A., Vasyukova, I.A., 2021. Nanoindentation as a tool for high-resolution dendrochronology. Russ. Phys. J. 63, 2041–2042. doi: 10.1007/s11182-021-02269-7
    Hai, L.V., Son, H.N., Seo, Y.B., 2015. Physical and bio-composite properties of nanocrystalline cellulose from wood, cotton linters, cattail, and red algae. Cellulose 22, 1789–1798. doi: 10.1007/s10570-015-0633-z
    Huang, J., Dufresne, A., Lin, N., 2019. Nanocellulose: From Fundamental to Advanced Materials. Wienheim: Wiley-VCH Verlag GmbH & Co. KGaA.
    Huang, Y.H., Fei, B.H., Yu, Y., Wang, S.Q., Shi, Z.Q., Zhao, R.J., 2012. Modulus of elasticity and hardness of compression and opposite wood cell walls of Masson pine. Bioresources 7, 3028–3037. doi: 10.15376/biores.7.3.3028-3037
    Ioelovich, M., 2017. Characterization of various kinds of nanocellulose. Handbook of Nanocellulose and Cellulose Nanocomposites. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 51–100. doi: 10.1002/9783527689972.ch2
    Jakes, J.E., Stone, D.S., 2021. Best practices for quasistatic Berkovich nanoindentation of wood cell walls. Forests 12, 1696. doi: 10.3390/f12121696
    Kargarzadeh, H., Ahmad, I., Thomas, S., Dufresne, A., 2017. Handbook of Nanocellulose and Cellulose Nanocomposites. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
    Konnerth, J., Eiser, M., Jäger, A., Bader, T.K., Hofstetter, K., Follrich, J., Ters, T., Hansmann, C., Wimmer, R., 2010. Macro- and micro-mechanical properties of red oak wood (Quercus rubra L. ) treated with hemicellulases. Holzforschung 64, 447–453. doi: 10.1515/HF.2010.056
    Ma, T., Hu, X.N., Lu, S.Y., Liao, X.J., Song, Y., Hu, X.S., 2022. Nanocellulose: a promising green treasure from food wastes to available food materials. Crit. Rev. Food Sci. Nutr. 62, 989–1002. doi: 10.1080/10408398.2020.1832440
    Mania, P., Nowicki, M., 2020. Nanohardness and elasticity of cell walls of Scots pine (Pinus sylvestris L. ) juvenile and mature wood. Bull. Pol. Acad. Sci. Tech. Sci. 68: 1237–1241.
    Mittal, N., Ansari, F., Gowda V, K., Brouzet, C., Chen, P., Larsson, P.T., Roth, S.V., Lundell, F., Wågberg, L., Kotov, N.A., Söderberg, L.D., 2018. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12, 6378–6388. doi: 10.1021/acsnano.8b01084
    Moon, R.J., Jakes, J.E., Beecher, J.F., Frihart, C.R., Stone, D.S., 2009. Relating nanoindentation to macroindentation of wood. In: Hse, C.Y., Jiang, Z.H., Kuo, M.L. (Eds. ). Advanced Biomass Science and Technology for Bio-Based Products. Beijing: Chinese Academy of Forestry, 145–159.
    Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994. doi: 10.1039/c0cs00108b
    Oliver, W.C., Pharr, G.M., 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583. doi: 10.1557/JMR.1992.1564
    Oliver, W.C., Pharr, G.M., 2004. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20. doi: 10.1557/jmr.2004.19.1.3
    Oliver, W.C., Pharr, G.M., 2010. Nanoindentation in materials research: past, present, and future. MRS Bull. 35, 897–907. doi: 10.1557/mrs2010.717
    Pandey, K.K., Ramakantha, V., Chauhan, S.S., Kumar, A.N.A. 2017. Wood is Good: Current Trends and Future Prospects in Wood Utilization. Gateway East: Springer Nature Singapore Pte Ltd.
    Perlin, J., 1989. A forest journey: the role of wood in the development of civilization. Bulletin of the Torrey Botanical Club, 120, 77.
    Plocher, J., Mencattelli, L., Narducci, F., Pinho, S., 2021. Learning from nature: bio-inspiration for damage-tolerant high-performance fibre-reinforced composites. Compos. Sci. Technol. 208, 108669. doi: 10.1016/j.compscitech.2021.108669
    Qian, L., Zhao, H.W., 2018. Nanoindentation of soft biological materials. Micromachines 9, 654. doi: 10.3390/mi9120654
    Ross, R. 2021. Wood Handbook: Wood as An Engineering Material. Madison: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 543.
    Schwarzkopf, M., Muszyński, L., Hammerquist, C.C., Nairn, J.A., 2017. Micromechanics of the internal bond in wood plastic composites: integrating measurement and modeling. Wood Sci. Technol. 51, 997–1014. doi: 10.1007/s00226-017-0934-5
    Stanzl-Tschegg, S., Beikircher, W., Loidl, D., 2009. Comparison of mechanical properties of thermally modified wood at growth ring and cell wall level by means of instrumented indentation tests. Holzforschung 63, 443–448. doi: 10.1515/hf.2009.085
    Tabor, D., 1951. The Hardness of Metals. Oxford: Clarendon Press.
    Thakur, V., Guleria, A., Kumar, S., Sharma, S., Singh, K., 2021. Recent advances in nanocellulose processing, functionalization and applications: a review. Mater. Adv. 2, 1872–1895. doi: 10.1039/d1ma00049g
    Thomas, B., Raj, M.C., Athira, K.B., Rubiyah, M.H., Joy, J., Moores, A., Drisko, G.L., Sanchez, C., 2018. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118, 11575–11625. doi: 10.1021/acs.chemrev.7b00627
    Tortorella, S., Vetri Buratti, V., Maturi, M., Sambri, L., Comes Franchini, M., Locatelli, E., 2020. Surface-modified nanocellulose for application in biomedical engineering and nanomedicine: a review. Int. J. Nanomed. 15, 9909–9937. doi: 10.2147/ijn.s266103
    Toumpanaki, E., Shah, D.U., Eichhorn, S.J., 2020. Beyond what meets the eye: imaging and imagining wood mechanical-structural properties. Adv. Mater. 33, 2001613.
    Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., Hussin, M.H., 2020. Nanocellulose: from fundamentals to advanced applications. Front. Chem. 8, 392. doi: 10.3389/fchem.2020.00392
    Tze, W.T.Y., Wang, S., Rials, T.G., Pharr, G.M., Kelley, S.S., 2007. Nanoindentation of wood cell walls: continuous stiffness and hardness measurements. Compos. A Appl. Sci. Manuf. 38, 945–953. doi: 10.1016/j.compositesa.2006.06.018
    Vincent, M., Tong, Q.J., Terziev, N., Daniel, G., Bustos, C., Escobar, W.G., Duchesne, I., 2014. A comparison of nanoindentation cell wall hardness and Brinell wood hardness in jack pine (Pinus banksiana Lamb. ). Wood Sci. Technol. 48, 7–22. doi: 10.1007/s00226-013-0580-5
    Voyiadjis, G., Yaghoobi, M., 2017. Review of nanoindentation size effect: experiments and atomistic simulation. Crystals 7, 321. doi: 10.3390/cryst7100321
    Voyiadjis, G.Z., Yaghoobi, M., 2020. Size Effects in Plasticity: From Macro to Nano. New York: Academic Press, 394.
    Wang, J.W., Wang, L., Gardner, D.J., Shaler, S.M., Cai, Z.Y., 2021. Towards a cellulose-based society: opportunities and challenges. Cellulose 28, 4511–4543. doi: 10.1007/s10570-021-03771-4
    Wu, Y., Wu, X.Y., Yang, F., Zhang, H.Q., Feng, X.H., Zhang, J.L., 2020. Effect of thermal modification on the nano-mechanical properties of the wood cell wall and waterborne polyacrylic coating. Forests 11, 1247. doi: 10.3390/f11121247
    Zarna, C., Opedal, M.T., Echtermeyer, A.T., Chinga-Carrasco, G., 2021. Reinforcement ability of lignocellulosic components in biocomposites and their 3D printed applications: a review. Compos. C Open Access 6, 100171.
    Zhu, J.Y., Agarwal, U.P., Ciesielski, P.N., Himmel, M.E., Gao, R.N., Deng, Y.L., Morits, M., Österberg, M., 2021. Towards sustainable production and utilization of plant-biomass-based nanomaterials: a review and analysis of recent developments. Biotechnol. Biofuels 14, 114.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (314) PDF downloads(7) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint