Citation: | Shusheng Pang. Recent advances in thermochemical conversion of woody biomass for production of green hydrogen and CO2 capture: A review[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2023.06.002 |
[1] |
Abdin, Z., Tang, C.G., Liu, Y., Catchpole, K., 2021. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. iScience 24, 102966.
|
[2] |
Afkhamipour, M., Mofarahi, M., Rezaei, A., Mahmoodi, R., Lee, C.H., 2019. Experimental and theoretical investigation of equilibrium absorption performance of CO2 using a mixed 1-dimethylamino-2-propanol (1DMA2P) and monoethanolamine (MEA) solution. Fuel 256, 115877.
|
[3] |
Asadullah, M., 2014. Biomass gasification gas cleaning for downstream applications: a comparative critical review. Renew. Sustain. Energy Rev. 40, 118-132.
|
[4] |
Baker, E.H., 1962. The calcium oxide-carbon dioxide system in the pressure range 1—300 atmospheres. J. Chem. Soc., 464-470.
|
[5] |
Baraj, E., Ciahotný, K., Hlinčík, T., 2021. The water gas shift reaction: catalysts and reaction mechanism. Fuel 288, 119817.
|
[6] |
Boerrigter, H., Paasen, S., Bergman, P., Koenemann, J.W., Emmen, R., 2005a. “OLGA” Tar Removal Technology: Proof-of-Concept (PoC) for Application in Integrated Biomass Gasification Combined Heat and Power (CHP) Systems. Report ECN-C-05-009. the Netherlands: Energy Research Centre of the Netherlands (ECN).
|
[7] |
Boerrigter, H., Paasen, S.V., Bergman, P., Konemann, J.W., Emmen, R., 2005b. Tar Removal from Biomass Product Gas; Development and Optimisation of the OLGA Tar Removal Technology. the Netherlands: Energy Research Centre of the Netherlands (ECN).
|
[8] |
Boretti, A., Banik, B.K., 2021. Advances in hydrogen production from natural gas reforming. Adv. Energy Sustain. Res. 2, 2100097.
|
[9] |
Cao, Y.C., Yang, Y.W., Zhao, X.L., Li, Q.F., 2021. A review of seasonal hydrogen storage multi-energy systems based on temporal and spatial characteristics. J. Renew. Mater. 9, 1823-1842.
|
[10] |
Choi, Y., Stenger, H.G., 2003. Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen. J. Power Sources 124, 432-439.
|
[11] |
Conway, W., Bruggink, S., Beyad, Y., Luo, W.L., Melián-Cabrera, I., Puxty, G., Feron, P., 2015. CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N, N-dimethylethanolamine (DMEA), N, N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes. Chem. Eng. Sci. 126, 446-454.
|
[12] |
Dashtestani, F., Nusheh, M., Siriwongrungson, V., Hongrapipat, J., Materic, V., Yip, A.C.K., Pang, S.S., 2021a. Effect of the presence of HCl on simultaneous CO2 capture and contaminants removal from simulated biomass gasification producer gas by CaO-Fe2O3 sorbent in calcium looping cycles. Energies 14, 8167.
|
[13] |
Dashtestani, F., Nusheh, M., Siriwongrungson, V., Hongrapipat, J., Materic, V., Pang, S., 2021. Effect of H2S and NH3 in biomass gasification producer gas on CO2 capture performance of an innovative CaO and Fe2O3 based sorbent. Fuel 295, 120586.
|
[14] |
Dashtestani, F., Nusheh, M., Siriwongrungson, V., Hongrapipat, J., Materic, V., Pang, S.S., 2020. CO2 capture from biomass gasification producer gas using a novel calcium and iron-based sorbent through carbonation-calcination looping. Ind. Eng. Chem. Res. 59, 18447-18459.
|
[15] |
Drift, A.V.D., Der, C.M.V., Boerrigter, M.H., 2005. MILENA Gasification Technology for High Efficient SNG Production from Biomass. the Netherlands: Energy Research Centre of the Netherlands (ECN).
|
[16] |
Duhoux, B., Mehrani, P., Lu, D.Y., Symonds, R.T., Anthony, E.J., Macchi, A., 2016. Combined calcium looping and chemical looping combustion for post-combustion carbon dioxide capture: process simulation and sensitivity analysis. Energy Technol. 4, 1158-1170.
|
[17] |
Ferreira-Aparicio, P., Rodriguez-Ramos, I., Guerrero-Ruiz, A., 2002. On the performance of porous vycor membranes for conversion enhancement in the dehydrogenation of methylcyclohexane to toluene. J. Catal. 212, 182-192.
|
[18] |
Florin, N., Fennell, P., 2011. Synthetic CaO-based sorbent for CO2 capture. Energy Procedia 4, 830-838.
|
[19] |
Gianotti, E., Taillades-Jacquin, M., Rozière, J., Jones, D.J., 2018. High-purity hydrogen generation via dehydrogenation of organic carriers: a review on the catalytic process. ACS Catal. 8, 4660-4680.
|
[20] |
Gonzalez-Olmos, R., Gutierrez-Ortega, A., Sempere, J., Nomen, R., 2022. Zeolite versus carbon adsorbents in carbon capture: a comparison from an operational and life cycle perspective. J. CO2 Util. 55, 101791.
|
[21] |
Haaf, M., Peters, J., Hilz, J., Unger, A., Ströhle, J., Epple, B., 2020. Combustion of solid recovered fuels within the calcium looping process - experimental demonstration at 1 MWth scale. Exp. Therm. Fluid Sci. 113, 110023.
|
[22] |
Hallac, B., Brown, J., Stavitski, E., Harrison, R., Argyle, M., 2018. In situ UV-visible assessment of iron-based high-temperature water-gas shift catalysts promoted with lanthana: an extent of reduction study. Catalysts 8, 63.
|
[23] |
Hongrapipat, J., Pang, S.S., Saw, W.L., 2016. Removal of NH3 and H2S from producer gas in a dual fluidised bed steam gasifier by optimisation of operation conditions and application of bed materials. Biomass Convers. Biorefin. 6, 105-113.
|
[24] |
Hongrapipat, J., Yip, A.C.K., Marshall, A.T., Saw, W.L., Pang, S., 2014. Investigation of simultaneous removal of ammonia and hydrogen sulphide from producer gas in biomass gasification by titanomagnetite. Fuel 135, 235-242.
|
[25] |
Hu, Y.C., Liu, W.Q., Peng, Y., Yang, Y.D., Sun, J., Chen, H.Q., Zhou, Z.J., Xu, M.H., 2017. One-step synthesis of highly efficient CaO-based CO2 sorbent pellets via gel-casting technique. Fuel Process. Technol. 160, 70-77.
|
[26] |
Hydrogen Production: Natural gas reforming, 2023. Available at: https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming.
|
[27] |
International Energy Agency (IEA), 2021. Global hydrogen review 2021. Available at: https://iea.blob.core.windows.net/assets/5bd46d7b-906a-4429-abda-e9c507a62341/GlobalHydrogenReview2021.pdf.
|
[28] |
International Energy Agency (IEA), 2022. Global hydrogen review 2022. Available at: https://iea.blob.core.windows.net/assets/c5bc75b1-9e4d-460d-9056-6e8e626a11c4/GlobalHydrogenReview2022.pdf.
|
[29] |
Ji, M.D., Wang, J.L., 2021. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int. J. Hydrog. Energy 46, 38612-38635.
|
[30] |
Joensen, F., Rostrup-Nielsen, J.R., 2002. Conversion of hydrocarbons and alcohols for fuel cells. J. Power Sources 105, 195-201.
|
[31] |
Juutilainen, S.J., Simell, P.A., Krause, A.O.I., 2006. Zirconia: selective oxidation catalyst for removal of tar and ammonia from biomass gasification gas. Appl. Catal. B 62, 86-92.
|
[32] |
Khan, F.M., Krishnamoorthi, V., Mahmud, T., 2011. Modelling reactive absorption of CO2 in packed columns for post-combustion carbon capture applications. Chem. Eng. Res. Des. 89, 1600-1608.
|
[33] |
Kostyniuk, A., Grilc, M., Likozar, B., 2019. Catalytic cracking of biomass-derived hydrocarbon tars or model compounds to form biobased benzene, toluene, and xylene isomer mixtures. Ind. Eng. Chem. Res. 58, 7690-7705.
|
[34] |
Majchrzak-Kucęba, I., Wawrzyńczak, D., Ściubidło, A., 2022. Experimental investigation into CO2 capture from the cement plant by VPSA technology using zeolite 13X and activated carbon. J. CO2 Util. 61, 102027.
|
[35] |
Manovic, V., Anthony, E.J., 2007. Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. Environ. Sci. Technol. 41, 1420-1425.
|
[36] |
Materić, V., Symonds, R., Lu, D., Holt, R., Manović, V., 2014. Performance of hydration reactivated Ca looping sorbents in a pilot-scale, oxy-fired dual fluid bed unit. Energy Fuels 28, 5363-5372.
|
[37] |
Mendes, D., Mendes, A., Madeira, L.M., Iulianelli, A., Sousa, J.M., Basile, A., 2010. The water-gas shift reaction: from conventional catalytic systems to Pd-based membrane reactors: a review. Asia Pac. J. Chem. Eng. 5, 111-137.
|
[38] |
Modisha, P.M., Ouma, C.N.M., Garidzirai, R., Wasserscheid, P., Bessarabov, D., 2019. The prospect of hydrogen storage using liquid organic hydrogen carriers. Energy Fuels 33, 2778-2796.
|
[39] |
Monteiro, J.G.M.S., Majeed, H., Knuutila, H., Svendsen, H.F., 2015. Kinetics of CO2 absorption in aqueous blends of N, N-diethylethanolamine (DEEA) and N-methyl-1, 3-propane-diamine (MAPA). Chem. Eng. Sci. 129, 145-155.
|
[40] |
Montenegro Camacho, Y.S., Bensaid, S., Lorentzou, S., Russo, N., Fino, D., 2017. Structured catalytic reactor for soot abatement in a reducing atmosphere. Fuel Process. Technol. 167, 462-473.
|
[41] |
Murray, L.J., Dincă, M., Long, J.R., 2009. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38, 1294-1314.
|
[42] |
Nakamura, S., Kitano, S., Yoshikawa, K., 2016. Biomass gasification process with the tar removal technologies utilizing bio-oil scrubber and char bed. Appl. Energy 170, 186-192.
|
[43] |
Navas-Anguita, Z., García-Gusano, D., Dufour, J., Iribarren, D., 2020. Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport. Appl. Energy 259, 114121.
|
[44] |
Newsome, D.S., 1980. The water-gas shift reaction. Catal. Rev. 21, 275-318.
|
[45] |
Niermann, M., Beckendorff, A., Kaltschmitt, M., Bonhoff, K., 2019. Liquid Organic Hydrogen Carrier (LOHC): assessment based on chemical and economic properties. Int. J. Hydrog. Energy 44, 6631-6654. [LinkOut]
|
[46] |
Oda, K., Akamatsu, K., Sugawara, T., Kikuchi, R., Segawa, A., Nakao, S.I., 2010. Dehydrogenation of methylcyclohexane to produce high-purity hydrogen using membrane reactors with amorphous silica membranes. Ind. Eng. Chem. Res. 49, 11287-11293.
|
[47] |
Oemar, U., Ang, M.L., Hee, W.F., Hidajat, K., Kawi, S., 2014. Perovskite LaxM1-xNi0.8Fe0.2O3 catalyst for steam reforming of toluene: crucial role of alkaline earth metal at low steam condition. Appl. Catal. B 148/149, 231-242.
|
[48] |
Olabi, A.G., Bahri, A.S., Abdelghafar, A.A., Baroutaji, A., Sayed, E.T., Alami, A.H., Rezk, H., Ali Abdelkareem, M., 2021. Large-vscale hydrogen production and storage technologies: current status and future directions. Int. J. Hydrog. Energy 46, 23498-23528.
|
[49] |
Palma, V., Ruocco, C., Cortese, M., Martino, M., 2019. Recent advances in structured catalysts preparation and use in water-gas shift reaction. Catalysts 9, 991.
|
[50] |
Pang, S., Xu, Q., 2010. Drying of woody biomass for bioenergy using packed moving bed dryer: mathematical modeling and optimization. Dry. Technol. 28, 702-709.
|
[51] |
Pang, S.S., 2019. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnol. Adv. 37, 589-597.
|
[52] |
Pang, S.S., Mujumdar, A.S., 2010. Drying of woody biomass for bioenergy: drying technologies and optimization for an integrated bioenergy plant. Dry. Technol. 28, 690-701.
|
[53] |
Pellegrini, L.A., De Guido, G., Moioli, S., 2020. Design of the CO2 removal section for PSA tail gas treatment in a hydrogen production plant. Front. Energy Res. 8, 77.
|
[54] |
Perejón, A., Romeo, L.M., Lara, Y., Lisbona, P., Martínez, A., Valverde, J.M., 2016. The Calcium-Looping technology for CO2 capture: on the important roles of energy integration and sorbent behavior. Appl. Energy 162, 787-807.
|
[55] |
Pfeifer, C., Rauch, R., Hofbauer, H., 2004. In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Ind. Eng. Chem. Res. 43, 1634-1640.
|
[56] |
Rabou, L., Almansa, G.A., 2015. 500 Hours Producing Bio-SNG from MILENA Gasification Using the ESME System ECN System for MEthanation (ESME): A Novel Technology Successfully Proven. the Netherlands: Energy Research Centre of the Netherlands (ECN).
|
[57] |
Saw, W., McKinnon, H., Gilmour, I., Pang, S.S., 2012. Production of hydrogen-rich syngas from steam gasification of blend of biosolids and wood using a dual fluidised bed gasifier. Fuel 93, 473-478.
|
[58] |
Saw, W.L., Pang, S.S., 2012. The influence of calcite loading on producer gas composition and tar concentration of radiata pine pellets in a dual fluidised bed steam gasifier. Fuel 102, 445-452.
|
[59] |
Saw, W.L., Pang, S.S., 2013. Co-gasification of blended lignite and wood pellets in a 100 kW dual fluidised bed steam gasifier: the influence of lignite ratio on producer gas composition and tar content. Fuel 112, 117-124.
|
[60] |
Shayan, E., Zare, V., Mirzaee, I., 2018. Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Convers. Manag. 159, 30-41.
|
[61] |
Siqueira, R.M., Freitas, G.R., Peixoto, H.R., do Nascimento, J.F., Musse, A.P.S., Torres, A.E.B., Azevedo, D.C.S., Bastos-Neto, M., 2017. Carbon dioxide capture by pressure swing adsorption. Energy Procedia 114, 2182-2192.
|
[62] |
Song, C.S., Pan, W., 2004. Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catal. Today 98, 463-484.
|
[63] |
Terlouw, T., Bauer, C., McKenna, R., Mazzotti, M., 2022. Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment. Energy Environ. Sci. 15, 3583-3602.
|
[64] |
The World's First Global Hydrogen Supply Chain Demonstration Project, 2017. Available at: https://www.nyk.com/english/news/2017/20170727_01.html.
|
[65] |
Tontiwachwuthikul, P., Meisen, A., Lim, C.J., 1992. CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column. Chem. Eng. Sci. 47, 381-390.
|
[66] |
Valente, A., Iribarren, D., Gálvez-Martos, J.L., Dufour, J., 2019. Robust eco-efficiency assessment of hydrogen from biomass gasification as an alternative to conventional hydrogen: a life-cycle study with and without external costs. Sci. Total Environ. 650, 1465-1475.
|
[67] |
Valverde, J.M., Sanchez-Jimenez, P.E., Perez-Maqueda, L.A., 2014. Role of precalcination and regeneration conditions on postcombustion CO2 capture in the Ca-looping technology. Appl. Energy 136, 347-356.
|
[68] |
Wang, Y.J., Pang, S.S., 2018a. Investigation of hydrogen sulphide removal from simulated producer gas of biomass gasification by titanomagnetite. Biomass Bioenergy 109, 61-70.
|
[69] |
Wang, Y.J., Pang, S.S., 2018b. The effects of temperature and gas species on ammonia removal in the simulated producer gas of biomass gasification by H2-reduced titanomagnetite. Energy Fuels 32, 5134-5144.
|
[70] |
Wijayanta, A.T., Oda, T., Purnomo, C.W., Kashiwagi, T., Aziz, M., 2019. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review. Int. J. Hydrog. Energy 44, 15026-15044.
|
[71] |
Wu, N., Lan, K., Yao, Y., 2023. An integrated techno-economic and environmental assessment for carbon capture in hydrogen production by biomass gasification. Resour. Conserv. Recycl. 188, 106693.
|
[72] |
Xu, Q.X., Pang, S.S., 2008. Mathematical modeling of rotary drying of woody biomass. Dry. Technol. 26, 1344-1350.
|
[73] |
Zeng, X., Ueki, Y., Yoshiie, R., Naruse, I., Wang, F., Han, Z.N., Xu, G.W., 2020. Recent progress in tar removal by char and the applications: a comprehensive analysis. Carbon Resour. Convers. 3, 1-18.
|
[74] |
Zhang, Y.L., Hu, G., Zhang, H., Liu, Q.F., Zhou, J.B., 2021. Thermodynamic analysis and optimization for steam methane reforming hydrogen production system using high temperature gas-cooled reactor pebble-bed module. J. Nucl. Sci. Technol. 58, 1359-1372.
|
[75] |
Zhang, Y.S., Zhang, S.J., Gossage, J.L., Lou, H.H., Benson, T.J., 2014. Thermodynamic analyses of tri-reforming reactions to produce syngas. Energy Fuels 28, 2717-2726.
|
[76] |
Zhang, Z.Y., Pang, S.S., 2019. Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100 kW dual fluidised bed gasifier. Renew. Energy 132, 416-424.
|
[77] |
Zhao, X.H., Joseph, B., Kuhn, J., Ozcan, S., 2020. Biogas reforming to syngas: a review. iScience 23, 101082.
|
[78] |
Züttel, A., 2004. Hydrogen storage methods. Naturwissenschaften 91, 157-172.
|