Turn off MathJax
Article Contents
Tharindu N. Karunaratne, Prashan M. Rodrigo, Daniel O. Oguntuyi, Todd E. Mlsna, Jilei Zhang, Xuefeng Zhang. Unraveling biochar surface area on structure and heavy metal removal performances of carbothermal reduced nanoscale zero-valent iron[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2023.06.003
Citation: Tharindu N. Karunaratne, Prashan M. Rodrigo, Daniel O. Oguntuyi, Todd E. Mlsna, Jilei Zhang, Xuefeng Zhang. Unraveling biochar surface area on structure and heavy metal removal performances of carbothermal reduced nanoscale zero-valent iron[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2023.06.003

Unraveling biochar surface area on structure and heavy metal removal performances of carbothermal reduced nanoscale zero-valent iron

doi: 10.1016/j.jobab.2023.06.003

The authors acknowledge USDA-NIFA provides the funding support for this project. The authors thank Dr. Jason Street for providing soybean stover for this study. The authors also thank Dr. Rooban VKG Thirumalai at the Institute of Imaging and Analytical Technology for assisting with SEM and TEM characterizations.

  • Received Date: 2023-03-27
  • Accepted Date: 2023-06-06
  • Rev Recd Date: 2023-05-26
  • Available Online: 2023-08-16
  • Carbothermal reduction using biochar (BC) is a green and effective method of synthesizing BC-supported nanoscale zero-valent iron (nanoFe0) composites. However, the effect of BC surface area on the structure, distribution, and performance such as the heavy metal uptake capacity of nanoFe0 particles remains unclear. Soybean stover-based BCs with different surface areas (1.7-1 472 m2/g) were prepared in this study. They have been used for in-situ synthesis BCs-supported nanoFe0 particles through carbothermal reduction of ferrous chloride. The BCs-supported nanoFe0 particles were found to be covered with graphene shells and dispersed onto BC surfaces, forming the BC-supported graphene-encapsulated nanoFe0 (BC-G@Fe0) composite. These graphene shells covering the nanoFe0 particles were formed because of gaseous carbon evolved from biomass carbonization reacting with iron oxides/iron salts. Increasing BC surface area decreased the average diameters of nanoFe0 particles, indicating a higher BC surface area alleviated the aggregation of nanoFe0 particles, which resulted in higher heavy metal uptake capacity. At the optimized condition, BC-G@Fe0 composite exhibited uptake capacities of 124.4, 121.8, 254.5, and 48.0 mg/g for Cu2+, Pb2+, Ag+, and As3+, respectively (pH 5, 25 °C). Moreover, the BC-G@Fe0 composite also demonstrated high stability for Cu2+ removal from the fixed-bed continuous flow, in which 1 g of BC-G@Fe0 can work for 120 h in a 4 mg/L Cu2+ flow continually and clean 28.6 L Cu2+ contaminated water. Furthermore, the BC-G@Fe0 composite can effectively immobilize the bioavailable As3+ from the contaminated soil, i.e., 5% (w) of BC-G@Fe0 composite addition can immobilize up to 92.2% bioavailable As3+ from the contaminated soil.


  • loading
  • [1]
    Andjelkovic, I., Tran, D.N.H., Kabiri, S., Azari, S., Markovic, M., Losic, D., 2015. Graphene aerogels decorated with α-FeOOH nanoparticles for efficient adsorption of arsenic from contaminated waters. ACS Appl. Mater. Interfaces 7, 9758-9766.
    Cychosz, K.A., Thommes, M., 2018. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 4, 559-566.
    Galdames, A., Ruiz-Rubio, L., Orueta, M., Sánchez-Arzalluz, M., Vilas-Vilela, J.L., 2020. Zero-valent iron nanoparticles for soil and groundwater remediation. Int. J. Environ. Res. Public Health 17, 5817.
    Hou, X.H., Shi, J.D., Wang, N.N., Wen, Z.D., Sun, M.Z., Qu, J.H., Hu, Q., 2020. Removal of antibiotic tetracycline by metal-organic framework MIL-101(Cr) loaded nano zero-valent iron. J. Mol. Liq. 313, 113512.
    Kamiya, H., Iijima, M., 2010. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media. Sci. Technol. Adv. Mater. 11, 044304.
    Kang, Y.G., Yoon, H., Lee, W., Kim, E.J., Chang, Y.S., 2018. Comparative study of peroxide oxidants activated by nZVI: removal of 1,4-dioxane and arsenic(Ⅲ) in contaminated waters. Chem. Eng. J. 334, 2511-2519.
    Karunaratne, T.N., Oshani Nayanathara, R.M., Navarathna, C.M., Rodrigo, P.M., Thirumalai, R.V.K.G., Pittman, C.U., Kim, Y., Mlsna, T., Zhang, J.L., Zhang, X.F., 2022. Pyrolytic synthesis of graphene-encapsulated zero-valent iron nanoparticles supported on biochar for heavy metal removal. Biochar 4, 70.
    Kerkez, D.V., Tomašević, D.D., Kozma, G., Bečelić-Tomin, M.R., Prica, M.D., Rončević, S.D., Kukovecz, Á., Dalmacija, B.D., Kónya, Z., 2014. Three different clay-supported nanoscale zero-valent iron materials for industrial azo dye degradation: a comparative study. J. Taiwan Inst. Chem. Eng. 45, 2451-2461.
    Kong, L.J., Zhang, H.M., Shih, K., Su, M.H., Diao, Z.H., Long, J.Y., Hou, L.A., Song, G., Chen, D.Y., 2018. Synthesis of FC-supported Fe through a carbothermal process for immobilizing uranium. J. Hazard. Mater. 357, 168-174.
    Li, B.W., Hu, J.C., Xiong, H., Xiao, Y., 2020. Application and properties of microporous carbons activated by ZnCl2: adsorption behavior and activation mechanism. ACS Omega 5, 9398-9407.
    Li, R.H., Wang, J.J., Gaston, L.A., Zhou, B.Y., Li, M.L., Xiao, R., Wang, Q., Zhang, Z.Q., Huang, H., Liang, W., Huang, H.T., Zhang, X.F., 2018. An overview of carbothermal synthesis of metal-biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon N Y 129, 674-687.
    Liang, L.P., Xi, F.F., Tan, W.S., Meng, X., Hu, B.W., Wang, X.K., 2021. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3, 255-281.
    Liu, K., Li, F.B., Zhao, X.L., Wang, G.Y., Fang, L.P., 2021. The overlooked role of carbonaceous supports in enhancing arsenite oxidation and removal by nZVI: surface area versus electrochemical property. Chem. Eng. J. 406, 126851.
    Ma, D.M., Yang, Y., Liu, B.F., Xie, G.J., Chen, C., Ren, N.Q., Xing, D.F., 2021. Zero-valent iron and biochar composite with high specific surface area via K2FeO4 fabrication enhances sulfadiazine removal by persulfate activation. Chem. Eng. J. 408, 127992.
    Marcon, L., Oliveras, J., Puntes, V.F., 2021. In situ nanoremediation of soils and groundwaters from the nanoparticle's standpoint: a review. Sci. Total Environ. 791, 148324.
    Meng, J.W., Guan, H., Dai, X.J., Wang, X.Q., 2021. Amino-functionalized wood aerogel for efficient removal of copper ions from water. Int. J. Polym. Sci. 2021, 1-8.
    Park, M.H., Jeong, S., Lee, G., Park, H., Kim, J.Y., 2019. Removal of aqueous-phase Pb(Ⅱ), Cd(Ⅱ), As(Ⅲ), and As(V) by nanoscale zero-valent iron supported on exhausted coffee grounds. Waste Manag. 92, 49-58.
    Pasinszki, T., Krebsz, M., 2020. Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials 10, 917.
    Petala, E., Dimos, K., Douvalis, A., Bakas, T., Tucek, J., Zbořil, R., Karakassides, M.A., 2013. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(Ⅵ) removal from aqueous solution. J. Hazard. Mater. 261, 295-306.
    Praveen, S., Jegan, J., Pushpa, T.B., Gokulan, R., Bulgariu, L., 2022. Biochar for removal of dyes in contaminated water: an overview. Biochar 4, 10.
    Samy, M., Elkady, M., Kamal, A., Elessawy, N., Zaki, S., Eltarahony, M., 2022. Novel biosynthesis of graphene-supported zero-valent iron nanohybrid for efficient decolorization of acid and basic dyes. Sustainability 14, 14188.
    Shahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J., Mahmoud, K.A., Lee, D.S., 2017. Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustainable Chem. Eng. 5, 11481-11488.
    Singh, G., Lakhi, K.S., Sil, S., Bhosale, S.V., Kim, I., Albahily, K., Vinu, A., 2019. Biomass derived porous carbon for CO2 capture. Carbon N Y 148, 164-186.
    Stefaniuk, M., Oleszczuk, P., Ok, Y.S., 2016. Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem. Eng. J. 287, 618-632.
    Suazo-Hernández, J., Sepúlveda, P., Manquián-Cerda, K., Ramírez-Tagle, R., Rubio, M.A., Bolan, N., Sarkar, B., Arancibia-Miranda, N., 2019. Synthesis and characterization of zeolite-based composites functionalized with nanoscale zero-valent iron for removing arsenic in the presence of selenium from water. J. Hazard. Mater. 373, 810-819.
    Tan, X.F., Zhu, S.S., Wang, R.P., Chen, Y.D., Show, P.L., Zhang, F.F., Ho, S.H., 2021. Role of biochar surface characteristics in the adsorption of aromatic compounds: pore structure and functional groups. Chin. Chem. Lett. 32, 2939-2946.
    Tarekegn, M.M., Hiruy, A.M., Dekebo, A.H., 2021a. Correction: nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions. RSC Adv. 11, 27084.
    Vinícius de Lima, C., Juan, J.L., Faccio, R., González, E.A., Pistonesi, C., Pistonesi, M.F., Rebouças, J.S., 2022. Arsenic adsorption on nanoscale zerovalent iron immobilized on reduced graphene oxide (nZVI/rGO): experimental and theoretical approaches. J. Phys. Chem. C 126, 19916-19925.
    Wang, C.F., Wu, Y.F., Qu, T.X., Liu, S.S., Pi, Y.Q., Shen, J.Y., 2019. Enhanced Cr(Ⅵ) removal in the synergy between the hydroxyl-functionalized ball-milled ZVI/Fe3O4 composite and Na2EDTA complexation. Chem. Eng. J. 359, 874-881.
    Wang, M., Tsai, H.S., Zhang, C.F., Wang, C.Y., Ho, S.H., 2022. Effective purification of oily wastewater using lignocellulosic biomass: a review. Chin. Chem. Lett. 33, 2807-2816.
    Wu, Y., Guan, C.Y., Griswold, N., Hou, L.Y., Fang, X., Hu, A.Y., Hu, Z.Q., Yu, C.P., 2020. Zero-valent iron-based technologies for removal of heavy metal(loid)s and organic pollutants from the aquatic environment: recent advances and perspectives. J. Clean. Prod. 277, 123478.
    Yang, D., Yang, S.Y., Yuan, H.H., Wang, F., Wang, H.L., Xu, J.M., Liu, X.M., 2021. Co-benefits of biochar-supported nanoscale zero-valent iron in simultaneously stabilizing soil heavy metals and reducing their bioaccessibility. J. Hazard. Mater. 418, 126292.
    Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., Guerrero, V.H., 2021. Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 22, 101504.
    Zhang, H.M., Ruan, Y., Liang, A.P., Shih, K., Diao, Z.H., Su, M.H., Hou, L.A., Chen, D.Y., Lu, H., Kong, L.J., 2019. Carbothermal reduction for preparing nZVI/BC to extract uranium: insight into the iron species dependent uranium adsorption behavior. J. Clean. Prod. 239, 117873.
    Zhang, S.Z., Fu, T., Li, J.Y., Peng, Y.Y., Zhao, J.B., 2018. Platinum nanoparticles dispersed on high-surface-area roelike nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Appl. Energy Mater. 1, 6198-6207.
    Zhang, X.F., Elsayed, I., Navarathna, C., Schueneman, G.T., Hassan, E.B., 2019. Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification. ACS Appl. Mater. Interfaces 11, 46714-46725.
    Zhang, X.F., Elsayed, I., Oshani Nayanathara, R.M., Song, X.Z., Shmulsky, R., Hassan, E.B., 2022a. Biobased hierarchically porous carbon featuring micron-sized honeycomb architecture for CO2 capture and water remediation. J. Environ. Chem. Eng. 10, 107460.
    Zhang, X.F., Elsayed, I., Song, X.Z., Shmulsky, R., Hassan, E.B., 2020. Microporous carbon nanoflakes derived from biomass cork waste for CO2 capture. Sci. Total Environ. 748, 142465.
    Zhang, X.F., Karunaratne, T., Navarathna, C., Zhang, J.L., Pittman, C.U. Jr, 2022b. Nanoscale Zero-Valent Iron-Decorated Biochar For Aqueous Contaminant removal. Sustainable Biochar For Water and Wastewater Treatment. Amsterdam: Elsevier, 611-641.
    Zhang, X.F., Navarathna, C.M., Leng, W.Q., Karunaratne, T., Thirumalai, R.V.K.G., Kim, Y., Pittman, C.U., Mlsna, T., Cai, Z.Y., Zhang, J.L., 2021a. Lignin-based few-layered graphene-encapsulated iron nanoparticles for water remediation. Chem. Eng. J. 417, 129199.
    Zhang, X.F., Yan, Q.G., Hassan, E.B., Li, J.H., Cai, Z.Y., Zhang, J.L., 2017. Temperature effects on formation of carbon-based nanomaterials from kraft lignin. Mater. Lett. 203, 42-45.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (45) PDF downloads(1) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint