Volume 8 Issue 4
Oct.  2023
Turn off MathJax
Article Contents
Tharindu N. Karunaratne, Prashan M. Rodrigo, Daniel O. Oguntuyi, Todd E. Mlsna, Jilei Zhang, Xuefeng Zhang. Unraveling biochar surface area on structure and heavy metal removal performances of carbothermal reduced nanoscale zero-valent iron[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 388-398. doi: 10.1016/j.jobab.2023.06.003
Citation: Tharindu N. Karunaratne, Prashan M. Rodrigo, Daniel O. Oguntuyi, Todd E. Mlsna, Jilei Zhang, Xuefeng Zhang. Unraveling biochar surface area on structure and heavy metal removal performances of carbothermal reduced nanoscale zero-valent iron[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 388-398. doi: 10.1016/j.jobab.2023.06.003

Unraveling biochar surface area on structure and heavy metal removal performances of carbothermal reduced nanoscale zero-valent iron

doi: 10.1016/j.jobab.2023.06.003
Funds:

the USDA National Institute of Food and Agriculture (NIFA) 2020–65210–30763

More Information
  • Corresponding author: E-mail address: xz210@msstate.edu (X. Zhang)
  • Available Online: 2023-07-07
  • Publish Date: 2023-10-28
  • Carbothermal reduction using biochar (BC) is a green and effective method of synthesizing BC-supported nanoscale zero-valent iron (nanoFe0) composites. However, the effect of BC surface area on the structure, distribution, and performance such as the heavy metal uptake capacity of nanoFe0 particles remains unclear. Soybean stover-based BCs with different surface areas (1.7 − 1 472 m2/g) were prepared in this study. They have been used for in-situ synthesis BCs-supported nanoFe0 particles through carbothermal reduction of ferrous chloride. The BCs-supported nanoFe0 particles were found to be covered with graphene shells and dispersed onto BC surfaces, forming the BC-supported graphene-encapsulated nanoFe0 (BC-G@Fe0) composite. These graphene shells covering the nanoFe0 particles were formed because of gaseous carbon evolved from biomass carbonization reacting with iron oxides/iron salts. Increasing BC surface area decreased the average diameters of nanoFe0 particles, indicating a higher BC surface area alleviated the aggregation of nanoFe0 particles, which resulted in higher heavy metal uptake capacity. At the optimized condition, BC-G@Fe0 composite exhibited uptake capacities of 124.4, 121.8, 254.5, and 48.0 mg/g for Cu2+, Pb2+, Ag+, and As3+, respectively (pH 5, 25 ℃). Moreover, the BC-G@Fe0 composite also demonstrated high stability for Cu2+ removal from the fixed-bed continuous flow, in which 1 g of BC-G@Fe0 can work for 120 h in a 4 mg/L Cu2+ flow continually and clean 28.6 L Cu2+ contaminated water. Furthermore, the BC-G@Fe0 composite can effectively immobilize the bioavailable As3+ from the contaminated soil, i.e., 5% (w) of BC-G@Fe0 composite addition can immobilize up to 92.2% bioavailable As3+ from the contaminated soil.

     

  • Conflicts of interests
    The authors declare no competing financial interests.
    The authors declare that data will be made available on reasonable request.
    Availability of data and materials
    Authors' contributions
    Tharindu N. Karunaratne: Methodology, Data analysis, Writing original draft, Review & editing. Prashan M. Rodrigo: Methodology, Data analysis, Writing original draft, Review & editing. Daniel O. Oguntuyi: Methodology. Todd E. Mlsna: Funding acquisition, Scientific discussion, Review & editing. Jilei Zhang: Funding acquisition, Scientific discussion, Review & editing. Xuefeng Zhang: Funding acquisition, Conceptualization, Investigation, Data analysis, Writing original draft, Review & editing.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.06.003.
    1 Tharindu N. Karunaratne and Prashan M. Rodrigo contributed equally to this work and should be considered co-first authors.
  • loading
  • Andjelkovic, I., Tran, D.N.H., Kabiri, S., Azari, S., Markovic, M., Losic, D., 2015. Graphene aerogels decorated with α-FeOOH nanoparticles for efficient adsorption of arsenic from contaminated waters. ACS Appl. Mater. Interfaces 7, 9758–9766. doi: 10.1021/acsami.5b01624
    Cychosz, K.A., Thommes, M., 2018. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 4, 559–566. doi: 10.1016/j.eng.2018.06.001
    Galdames, A., Ruiz-Rubio, L., Orueta, M., Sánchez-Arzalluz, M., Vilas-Vilela, J.L., 2020. Zero-valent iron nanoparticles for soil and groundwater remediation. Int. J. Environ. Res. Public Health 17, 5817. doi: 10.3390/ijerph17165817
    Hou, X.H., Shi, J.D., Wang, N.N., Wen, Z.D., Sun, M.Z., Qu, J.H., Hu, Q., 2020. Removal of antibiotic tetracycline by metal-organic framework MIL-101(Cr) loaded nano zero-valent iron. J. Mol. Liq. 313, 113512. doi: 10.1016/j.molliq.2020.113512
    Kamiya, H., Iijima, M., 2010. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media. Sci. Technol. Adv. Mater. 11, 044304. doi: 10.1088/1468-6996/11/4/044304
    Kang, Y.G., Yoon, H., Lee, W., Kim, E.J., Chang, Y.S., 2018. Comparative study of peroxide oxidants activated by nZVI: removal of 1,4-dioxane and arsenic(Ⅲ) in contaminated waters. Chem. Eng. J. 334, 2511–2519. doi: 10.1016/j.cej.2017.11.076
    Karunaratne, T.N., Oshani Nayanathara, R.M., Navarathna, C.M., Rodrigo, P.M., Thirumalai, R.V.K.G., Pittman, C.U., Kim, Y., Mlsna, T., Zhang, J.L., Zhang, X.F., 2022. Pyrolytic synthesis of graphene-encapsulated zero-valent iron nanoparticles supported on biochar for heavy metal removal. Biochar 4, 70. doi: 10.1007/s42773-022-00196-5
    Kerkez, D.V., Tomašević, D.D., Kozma, G., Bečelić-Tomin, M.R., Prica, M.D., Rončević, S.D., Kukovecz, Á., Dalmacija, B.D., Kónya, Z., 2014. Three different clay-supported nanoscale zero-valent iron materials for industrial azo dye degradation: a comparative study. J. Taiwan Inst. Chem. Eng. 45, 2451–2461. doi: 10.1016/j.jtice.2014.04.019
    Kong, L.J., Zhang, H.M., Shih, K., Su, M.H., Diao, Z.H., Long, J.Y., Hou, L.A., Song, G., Chen, D.Y., 2018. Synthesis of FC-supported Fe through a carbothermal process for immobilizing uranium. J. Hazard. Mater. 357, 168–174. doi: 10.1016/j.jhazmat.2018.05.067
    Li, B.W., Hu, J.C., Xiong, H., Xiao, Y., 2020. Application and properties of microporous carbons activated by ZnCl2: adsorption behavior and activation mechanism. ACS Omega 5, 9398–9407. doi: 10.1021/acsomega.0c00461
    Li, R.H., Wang, J.J., Gaston, L.A., Zhou, B.Y., Li, M.L., Xiao, R., Wang, Q., Zhang, Z.Q., Huang, H., Liang, W., Huang, H.T., Zhang, X.F., 2018. An overview of carbothermal synthesis of metal-biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon N Y 129, 674–687. doi: 10.1016/j.carbon.2017.12.070
    Liang, L.P., Xi, F.F., Tan, W.S., Meng, X., Hu, B.W., Wang, X.K., 2021. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3, 255–281. doi: 10.1007/s42773-021-00101-6
    Liu, K., Li, F.B., Zhao, X.L., Wang, G.Y., Fang, L.P., 2021. The overlooked role of carbonaceous supports in enhancing arsenite oxidation and removal by nZVI: surface area versus electrochemical property. Chem. Eng. J. 406, 126851. doi: 10.1016/j.cej.2020.126851
    Ma, D.M., Yang, Y., Liu, B.F., Xie, G.J., Chen, C., Ren, N.Q., Xing, D.F., 2021. Zero-valent iron and biochar composite with high specific surface area via K2FeO4 fabrication enhances sulfadiazine removal by persulfate activation. Chem. Eng. J. 408, 127992. doi: 10.1016/j.cej.2020.127992
    Marcon, L., Oliveras, J., Puntes, V.F., 2021. In situ nanoremediation of soils and groundwaters from the nanoparticle's standpoint: a review. Sci. Total Environ. 791, 148324. doi: 10.1016/j.scitotenv.2021.148324
    Meng, J.W., Guan, H., Dai, X.J., Wang, X.Q., 2021. Amino-functionalized wood aerogel for efficient removal of copper ions from water. Int. J. Polym. Sci. 2021, 1–8.
    Park, M.H., Jeong, S., Lee, G., Park, H., Kim, J.Y., 2019. Removal of aqueous-phase Pb(Ⅱ), Cd(Ⅱ), As(Ⅲ), and As(Ⅴ) by nanoscale zero-valent iron supported on exhausted coffee grounds. Waste Manag. 92, 49–58. doi: 10.1016/j.wasman.2019.05.017
    Pasinszki, T., Krebsz, M., 2020. Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials 10, 917. doi: 10.3390/nano10050917
    Petala, E., Dimos, K., Douvalis, A., Bakas, T., Tucek, J., Zbořil, R., Karakassides, M.A., 2013. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(Ⅵ) removal from aqueous solution. J. Hazard. Mater. 261, 295–306. doi: 10.1016/j.jhazmat.2013.07.046
    Praveen, S., Jegan, J., Pushpa, T.B., Gokulan, R., Bulgariu, L., 2022. Biochar for removal of dyes in contaminated water: an overview. Biochar 4, 10. doi: 10.1007/s42773-022-00131-8
    Samy, M., Elkady, M., Kamal, A., Elessawy, N., Zaki, S., Eltarahony, M., 2022. Novel biosynthesis of graphene-supported zero-valent iron nanohybrid for efficient decolorization of acid and basic dyes. Sustainability 14, 14188. doi: 10.3390/su142114188
    Shahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J., Mahmoud, K.A., Lee, D.S., 2017. Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustainable Chem. Eng. 5, 11481–11488. doi: 10.1021/acssuschemeng.7b02695
    Singh, G., Lakhi, K.S., Sil, S., Bhosale, S.V., Kim, I., Albahily, K., Vinu, A., 2019. Biomass derived porous carbon for CO2 capture. Carbon N Y 148, 164–186. doi: 10.1016/j.carbon.2019.03.050
    Stefaniuk, M., Oleszczuk, P., Ok, Y.S., 2016. Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem. Eng. J. 287, 618–632. doi: 10.1016/j.cej.2015.11.046
    Suazo-Hernández, J., Sepúlveda, P., Manquián-Cerda, K., Ramírez-Tagle, R., Rubio, M.A., Bolan, N., Sarkar, B., Arancibia-Miranda, N., 2019. Synthesis and characterization of zeolite-based composites functionalized with nanoscale zero-valent iron for removing arsenic in the presence of selenium from water. J. Hazard. Mater. 373, 810–819. doi: 10.1016/j.jhazmat.2019.03.125
    Tan, X.F., Zhu, S.S., Wang, R.P., Chen, Y.D., Show, P.L., Zhang, F.F., Ho, S.H., 2021. Role of biochar surface characteristics in the adsorption of aromatic compounds: pore structure and functional groups. Chin. Chem. Lett. 32, 2939–2946. doi: 10.1016/j.cclet.2021.04.059
    Tarekegn, M.M., Hiruy, A.M., Dekebo, A.H., 2021. Correction: nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions. RSC Adv 11, 27084. doi: 10.1039/d1ra90135d
    Vinícius de Lima, C., Juan, J.L., Faccio, R., González, E.A., Pistonesi, C., Pistonesi, M.F., Rebouças, J.S., 2022. Arsenic adsorption on nanoscale zerovalent iron immobilized on reduced graphene oxide (nZVI/rGO): experimental and theoretical approaches. J. Phys. Chem. C 126, 19916–19925. doi: 10.1021/acs.jpcc.2c06206
    Wang, C.F., Wu, Y.F., Qu, T.X., Liu, S.S., Pi, Y.Q., Shen, J.Y., 2019. Enhanced Cr(Ⅵ) removal in the synergy between the hydroxyl-functionalized ball-milled ZVI/Fe3O4 composite and Na2EDTA complexation. Chem. Eng. J. 359, 874–881. doi: 10.1016/j.cej.2018.11.104
    Wang, M., Tsai, H.S., Zhang, C.F., Wang, C.Y., Ho, S.H., 2022. Effective purification of oily wastewater using lignocellulosic biomass: a review. Chin. Chem. Lett. 33, 2807–2816. doi: 10.1016/j.cclet.2021.11.060
    Wu, Y., Guan, C.Y., Griswold, N., Hou, L.Y., Fang, X., Hu, A.Y., Hu, Z.Q., Yu, C.P., 2020. Zero-valent iron-based technologies for removal of heavy metal(loid)s and organic pollutants from the aquatic environment: recent advances and perspectives. J. Clean. Prod. 277, 123478. doi: 10.1016/j.jclepro.2020.123478
    Yang, D., Yang, S.Y., Yuan, H.H., Wang, F., Wang, H.L., Xu, J.M., Liu, X.M., 2021. Co-benefits of biochar-supported nanoscale zero-valent iron in simultaneously stabilizing soil heavy metals and reducing their bioaccessibility. J. Hazard. Mater. 418, 126292. doi: 10.1016/j.jhazmat.2021.126292
    Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., Guerrero, V.H., 2021. Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 22, 101504. doi: 10.1016/j.eti.2021.101504
    Zhang, H.M., Ruan, Y., Liang, A.P., Shih, K., Diao, Z.H., Su, M.H., Hou, L.A., Chen, D.Y., Lu, H., Kong, L.J., 2019. Carbothermal reduction for preparing nZVI/BC to extract uranium: insight into the iron species dependent uranium adsorption behavior. J. Clean. Prod. 239, 117873. doi: 10.1016/j.jclepro.2019.117873
    Zhang, S.Z., Fu, T., Li, J.Y., Peng, Y.Y., Zhao, J.B., 2018. Platinum nanoparticles dispersed on high-surface-area roelike nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Appl. Energy Mater. 1, 6198–6207. doi: 10.1021/acsaem.8b01242
    Zhang, X.F., Elsayed, I., Navarathna, C., Schueneman, G.T., Hassan, E.B., 2019. Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification. ACS Appl. Mater. Interfaces 11, 46714–46725. doi: 10.1021/acsami.9b15139
    Zhang, X.F., Elsayed, I., Oshani Nayanathara, R.M., Song, X.Z., Shmulsky, R., Hassan, E.B., 2022a. Biobased hierarchically porous carbon featuring micron-sized honeycomb architecture for CO2 capture and water remediation. J. Environ. Chem. Eng. 10, 107460.
    Zhang, X.F., Elsayed, I., Song, X.Z., Shmulsky, R., Hassan, E.B., 2020. Microporous carbon nanoflakes derived from biomass cork waste for CO2 capture. Sci. Total Environ. 748, 142465. doi: 10.1016/j.scitotenv.2020.142465
    Zhang, X.F., Karunaratne, T., Navarathna, C., Zhang, J.L., Pittman Jr, C.U., 2022b. Nanoscale Zero-Valent Iron-Decorated Biochar For Aqueous Contaminant removal. Sustainable Biochar For Water and Wastewater Treatment. Elsevier, Amsterdam, pp. 611–641.
    Zhang, X.F., Navarathna, C.M., Leng, W.Q., Karunaratne, T., Thirumalai, R.V.K.G., Kim, Y., Pittman, C.U., Mlsna, T., Cai, Z.Y., Zhang, J.L., 2021a. Lignin-based few-layered graphene-encapsulated iron nanoparticles for water remediation. Chem. Eng. J. 417, 129199. doi: 10.1016/j.cej.2021.129199
    Zhang, X.F., Yan, Q.G., Hassan, E.B., Li, J.H., Cai, Z.Y., Zhang, J.L., 2017. Temperature effects on formation of carbon-based nanomaterials from kraft lignin. Mater. Lett. 203, 42–45.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (207) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return